A PROBLEM REDUCTION APPROACH TO PROGRAM SYNTHESIS*

Douglas R Smith

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940 USA

ABSTRACT

Program synthesis is the transformation of a
specification of a user's problem into a computer program.
A problem reduction approach to program synthesis is
presented. During synthesis the user's problem is decom-
posed in a top-down manner into a hierarchy of subprob-
lems. with directly solveable subproblems at the bottom.
Solving these subproblems results in the bottom-up com-
position of a program whose structure reflects the sub-
problem hierarchy. The program is guaranteed to satisfy
the specification and to terminate on all legal inputs. We
illustrate this approach by presenting the knowledge
needed to synthesize a class of divide and conquer algo-
rithms and by deriving a Merge sort algorithm.

| Introduction

Program synthesis is the derivation of a computer
program from a specification of the problem it is intended
to solve. Human programmers often cope with complex
problems in the following top-down manner. First an
overall program structure is created which fixes certain
gross features of the desired program. Some parts of the
structure are at first underdetermined but their functional
requirements are worked out so that they can be treated
as relatively independent subproblems to be solved in a
similar manner at a later stage. A formal counterpart to
this approach involves the use of program schemas. A
schema provides the overall structure of the desired pro-
gram and its uninterpreted operator symbols stand for the
underdetermined parts of the structure. To use a schema
we require a corresponding design strategy. Given a prob-
lem specification Il a design strategy derives specifications
for subproblems in such a way that solutions for the sub-
problems can be assembled (via the schema) into a solu-
tion for n. A design strategy then is a way of generating an
instance of a schema which satisfies a given specification.

Given a collection of such schemas and their associ-
ated design strategies the problem reduction approach to
program synthesis can be described by a two phase pro-
cess - the top-down decomposition of problem
specifications and the bottom-up composition of programs.
In practice these phases are interleaved but it helps to
understand them separately. We are given an initial
specification. In the first phase a design strategy is
selected and applied to the initial specification thereby
generating some subproblem specifications. Then design
strategies are selected and applied to each of the subprob-
lem specifications, and so on. This decomposition process
terminates in primitive problem specifications which can
be solved directly, without reduction to subproblems. The
result is a tree of specifications with the initial

* The work reported herein was supported by the Foundation
Research Program of the Naval Postgraduate | with funds
provided by the Chief of Naval Research.

specification at the root and primitive problem
specifications at the leaves. The children of a node
represent the subproblem specifications generated by the
application of a design strategy. The second phase
involves the bottom-up composition of programs. Initially
each primitive problem specification is solved to obtain a
program (which is often a programming language opera-
tor). Subsequently whenever each of the subproblem
specifications generated by the application of design stra-
tegy D to specification Il have solutions, these subproblem
solutions are assembled via the corresponding schema into
a solution for n.

A prototype synthesis system based on problem
reduction has been implemented. It is capable, for exam-
ple, of synthesizing a mergesort algorithm from a
specification of the sorting problem. This synthesis
involves the decomposition of the sorting specification into
a hierarchy of specifications with four levels and thirteen
nodes. In this paper we illustrate the problem reduction
approach by presenting the top two levels of the derivation
of mergesort. In Section Ill we present a schema and
design strategy for a class of divide and conquer algo-
rithms. One of the principal difficulties in problem reduc-
tion is knowing how to decompose a problem into subprob-
lems. A formal deductive system which enables us to per-
form such problem decompositions is presented in Sec-
tions IV and V. In Section VI the design strategy for divide
and conquer is used to derive a mergesort algorithm. A
more comprehensive treatment of the material in this
paper may be found in (Smith, 1982b).

Il Specifications

The input to a program synthesis system is a formal
specification of a problem. For example, the problem of
sorting a list of natural numbers may be specified as fol-
lows™*

SORT:x = z such that Bag:x = Bag:z A Ordered:z
where SORT:LIST(N)-L1ST(N).

Here the problem, named SORT, is viewed as a mapping
from lists of natural numbers (denoted LIST(N)) to lists of
natural numbers. Naming the input x and the output z,
the formula Bag:x = Bag:z A Ordered: z. called the output
condition, expresses the conditions under which z is an
acceptable output with respect to input x. Here Bagx =
Bag:y asserts that the multiset (bag) of elements in the list
y is the same as the multiset of elements in x. Ordered.y
iIs a predicate which holds exactly when the elements of
list y are in nondecreasing order.

Generally, a specification |l has the form

¢+ We use the notation f:x to denote the result of applying the
function, predicate, or program f to argument x.

Mix = z such that I'x =» D:<x,2z>

where [LD+R
or more compactly, Il = <D,R,,0>. We ambiguously use
the symbol Il to denote both the problem and its

specification. Here the input and output domains are D
and R respectively. The input condition 1, a relation on D,
expresses any properties we can expect of inputs to the
desired program. If an input does not satisfy the input
condition then we don't care how the program behaves.
The output condition 0, a relation on DxR, expresses the
properties that an output object should satisfy. Any out-
put object z such that 0:<x,z> holds will be called a feasi-
ble output with respect to input x. We say program F
satisfies specification Il = <D,R,1.0> with derived input
condition /'if

wxeD [I'x Alx = 0:<x.Fixo]

is valid in a suitable first-order theory *. If I' is the
Boolean constant true then we simply say F satisfies II. In
our synthesis method we attempt to derive a program F
and a derived input condition I' from a given specification.
In this paper, however, we focus on the derivation of F and
for the sake of simplicity omit discussion of the derivation
of derived input conditions.

II1" A Class of Divide and Conquer Programs

The following schema represents the structure com-
mon to a class of divide and conquer programs:

F:x = if qix
then Directly_Solve:x
else Compose’(FxF)°Decompose:x.

Here fog. called the composition of f and g. denotes the
function resulting from applying f to the result of applying
g to its argument, fxg, called the product of f and g, is
defined by fxg:<x,y> = <fix,g:y> where <xl,...,xn> is an n-
tuple. It is convenient to allow functions to map tuples to
tuples.

The behavior of an instance of the schema can be
described as follows: if g:x holds then F:x evaluates to
Directly_Solve:x. Otherwise, x is decomposed via Decom-
pose into a 2-tuple which is recursively processed in paral-
lel by FxF. The resulting 2-tuple is composed via Compose
thus yielding the value of F:x.

Our design strategy for this schema is based on the
following theorem which provides sufficient conditions that
an instance of the schema satisfies a given specification.
The separability condition (4) provides the most important
constraint on the relationship between the output condi-
tion 0 of an instance of the schema and the output condi-
tions of Decompose and Compose. In words it states that if
input x0 decomposes into subinputs x1 and x2, and z1 and
z2 are feasible outputs with respect to these subinputs
respectively, and z1 and z2 compose to form z0, then z0 is
a feasible solution to input x0. Loosely put: feasible out-
puts compose to form feasible outputs.

Theaoren: 1: Lot D and R be sets,] a relation on D, O a rela-
tion on DR, Op & relation on DxDxD, Oy & relation on
RxRxR, and » a well-founded ordering onD. If

(1) Decomposs satisfies the specification

DECOMPOSE:xy = <z, .xp> such that I'x =¢ 1.z, A Lzy A

D. Smith 33

Tg >‘Zl fa Y >-23 N 09:(20.21.333
where DECOMPOSE:D-+DxD

with derived input eondition ~q;
{2) Compose =atisfier the specification

COMPOSE: <Z,2p> = g such that Opi<zp,2,,2,>
where COMPOSE:RxR-~R;

(3) Directly_Solve satisfies the specification

DIRECTLY_SOLVYE:x = z puch that q:x A L'x = O:<x,2>
where DIRECTLY_SOLVE:D-R.

{4) the lollowing separability condition holds

V(xg.xl.zg>€DXDKD V(zc,z,.t,;)ERxRxR
[Op:&zgz 2> A €Tz > A QKT 22> N
O <2g.7,.25> = 0:<zq,24>]

then the dimde and conguer program

Fx=ilqx
then Directly _Solve:x
else Composes(FxF)eDecompose:x

satiefies specification I1 = <D,R,1,0>.

Proof: A generalized form of thise theorem is proved In
{Smith, 1982b).

The key idea in our design strategy for divide and con-
quer algorithms is to use the separability condition like an
equation in three unknowns (0, Oc, and OD), given values
for any two we attempt to solve for a value of the third.
Initially we are given a specification Il = <D.R,l,0> so we
have 0. During synthesis we wish to determine the
specifications of the subproblems Decompose and Compose
- in essence OD and Oc respectively. One approach is to a)
choose a simple known operator D as say, Decompose, b)
use the separability condition to "solve for" 0C, then c)
form a detailed specification for Compose based on 0C. We
turn now to a formal deductive system which enables us to
derive output conditions like Oc

IV The Precondition Problem

The traditional problem of deduction has been to fAnd
a proof of a given formula in some theory. A more genera]
problem, which we call the precondition problem (Smith,
1982a), 18 moat simply stated in the propositional caleulus:
given & goal A and hypothesis H, find a lormula P, called a
precondition, such that PAH =+ A is a tautelogy. In other
worda P providex any additional premises under which A
can be shown to fellow irem H. A more complex definition
iIs required Iin a (@ret-order theory . Lat
Gy Gore...Ghx, G be a closed formula not necessarily in
prenex lorm where & i either 3 or v for i=1,2,..n. A
V.2 - - Zpiprecomdition ol hz, QgTe.. Gz G is B
quantifierfree formula P dependent only on variables
Z|,Zg,...Ty Buch that

@z 1 PeTo.. . QhZa[P=oC]

ix valid in ¥.
For example, consider the formula

34 D. Smith

victNw jeN[i%|?] (1

a) "folse” is a }H-precondition of {1) since

Jalse =» o igN wjeN [i%<5%)
holds,

b} "i=0"is a fi}-precondition of (1) since

wieN [i=0 = wjeN [i8<;?]]
holds,

¢) "i<j" is a {i,j}-precondition of (1) since

wieN ' jeN [i<j = i%<52]
holds.

Note that false is a precondition of any formula. In gen-
eral we are interested in preconditions which are as weak
as possible yet have a structurally simple form.

Continuing our discussion from the previous section,
suppose that we are given a relation 0 on DxR and we have
chosen a decomposition operator Decompose with output
condition 0D. We wish to derive an output condition 0C for
the, as yet unknown, operator Compose To do so we pose
the problem of finding a {z0,z1 z2-precondition of

W €2p,2;,2p2eRXRXR W <xg.x; 23> DXDX]D
[Op <zpz@e> A D€z, 2> A D€zg2> = Oi<xpzg>] (2)

Let O be such & precondition, then we have by definition
that

WV <X, 21 TP EDXDXD W <24,2. 22> RXRXR
[Op€<zaz)Z2e> A<z .8 > A DCxgz> N
00:(!0,! 1L Eg> =b 0:“0.’0}}

holds. That is, any jz0,z1,zzj-precondition of (2) enables
the separability condition to hold and thus can be used as
an output condition for Decompose.

Y AFormal System for Deriving Preconditions

In this section we present a natural deduction-like for-
mal system for deriving preconditions. More extensive sys-
tems are presented in (Smith, 19B2a; Smith, 19B2b).

A Roduction Rules

A reduction rule generates a precondition ior a goal
formula by decomposing it into subgoals, then composing
the derived preconditions of the subgoals. The lollowing
rules are for the most part extensions of typical goal
reduction rules (Bledsoe, 1977). Only those rules required

by our example are presented. We use the notetion g
where H = }A,,hg.... 4y | 85 an abbreviation of the fermula

hy Ahg AR =G,

R1. Reduction of junchive Goals - if the goal formula

has the form B }? then generate subgoals gmd 1‘-:1 I

F and § are derived precenditions of g and g resrec-

tiveg. then return PAQ as derived precondition of
Bnt

R2. Substitution of Equal Terms - if the gonlisgwhereG
containn an ceourrence of aterm r. apd r* = 8" is an

axiom in ¥ or hypothesig tn H, and ¥ unifies jr.r'§ then
generate the subgoal ¢ 3}‘3/' (G with 3'¢ replacing
an occurrence of r). It P is a derived precondition of
G{slg’,f then return P as derived precondition of g

B. Primitive Rules

We also use two rules, called primitive rules, which
can direclly generate a precendition for a goal.

P1. If the goal is g and substitution ¥ unifles G with either
an axiom of ¥ or an hypothesis in H, then generate the
precondition frue .

F2. If the geal is g and we seek a {I,,...T,{-precondition

and G and H' depend only on the varables z,.. 2z,
m

where H' has the lform _Alh,-, and A l;=m € H, then
’=

generate the precondition H'=sG.

C. The Deduction Process

The derivation of a precondition of goal statement G
can be described by a two stage process. In the first phase
reduction rules are repeatedly applied to goals reducing
them to subgoals. Primitive rules Pl and P2 are applied
whenever possible. The result of this reduction process
can be represented by a goal tree in which 1) nodes
represent goals/subgoals, 2) arcs represent reduction rule
applications, and 3) leaf nodes represent goals to which a
primitive rule has been applied. The second phase involves
the bottom-up composition of preconditions. Initially each
application of a primitive rule to a goal yields a precondi-
tion. Subsequently whenever a precondition has been
found for each subgoal of a goal G then a precondition is
composed for G according to the reduction rule employed.
In a working system we have developed a single precondi-
tion is selected from amongst the alternative derived
preconditions of a goal by maximizing over a heuristic
measure of weakness and structural simplicity. A detailed
presentation of the derivation of a precondition is provided
in the following section.

VI Synthesis of a Mergesort Algorithm

Consider again the specification

SORT:x = 7 such that Bag:x = Bag:z A Ordered:z
where SORT:LIST(N)-LIST(N).

As indicated above, we shall proceed with the synthesis of a
divide and conquer algorithm by trying to establish the
conditions of Theorem 1. The main task before us is to find
operators Compose and Decompose whose output condi-
tions satisfy the separability condition. One way to
proceed is to select some simple known operator for either
Decompose or Compose. Suppose we concentrate on
Decompose. We know it is to map LIST(N) to
LIST(N)XLIST(N). An appropriately structured Data Struc-
ture Knowledge Base should allow us to retrieve all known
operators which perform such a mapping. Suppose we
have available the operator Split which decomposes its
input list into two halves of roughly equal length. Split can
be specified as follows:

Split:2g = <x,, 25> such that Length:z, = Lengthizpdive A
lengthize = (1+Length:zg) div2 A x4 = Append: <z, 2>
where Split:LIST(N) »LIST{N)xLIST{N).

By x div k we mean integer division by k. In order to verify
that Split can be used az the Decompose operator we
instantiate the specification of Decompose {condition (1) of
Thecrem 1) as follows:

i. replace the input condidens l'xg, I:z,, and 1.z, with true
(the input condition of SORT);

it. replace zq I, and 2, >z, with Length:zg>Length:z,
and Length:xp>Length:zs. See (Smith, 1982b} for details of
melecting a muitable well-founded ordering on the input
dormein,

i replace Op with the output conditions of Split,

tv. replace the input and output domaing of Dacomposge
with the input and output domains of Split respectlively.

It is easy to prove that 3Split satisfies ihe resulting
specification with derived input condition Lengthizg>l.
Intuitively, the meaning of the derived input condition is
that only inputs of length greater than 1 are decomposed
by Split into strictly smaller sublists.

We next attermnpt to create a specification for Compose
which has the form given in condition {2) of Theorem 1. To
do 50, we need to derive an output condit.en Op. In crder
te find an cutpul condition O we set up the foliowing
precondition problem (as discussed in Section IV): Find a
{zp.2, . 2g)-precondition of

v <zg.21.22>€LIST(N)XLIST(N)XLIST(
' €202 ;.3 >eLI STCN)XLIST(N)XLIST(

[Length:ze>Length:z; A Length: zg>Lengthizy A

Length'z, = Length:zp div 2 A

length:zz = (1+Length:xp) div 2 A Append:zg = <x,.Tp> A
Bag.x, = Bag:z, ~ Orderad:z, /A

Bag.zp; = Bag:2s N Ordered:zg

= Bag:2g = Bag:#p /\ Ordered:z).

This precondition problem has been crealed Irom (2) by
replacing

i. O with the output condition of SORT.

4. D and R with the input and output type (LIST(N)) of
3S0RT, and

. Op with the output conditions of Split.

The derived precondition gives us an cutput condition for
Corppose which gatisfies the separability condition of
Theorem 1. A derivation of the precondition

Ordered:z, ~ Ordered:zp =>
Union:<Bag:z, Bag:zp> = Bag:zp A Ordered:zq (3)

Is presented in Figure 1 and described below. For concise-
ness we list the hypotheses separately at the top of the
derivation. Teo the left of each geal node in this tree and in
brackets 1= given the derived precondition of the goal. The
arcg of the goal tree are annotated with the name of the
rile and axiom or hypethesia used. The primitive rule
used on each laaf node is also noted. In this example the
given goal Bag:zp = Bag:zg A Ordered:zg i3 reduced by
application of the rule Ri {reduction of a cenjunction).
The primitive rule P2 is applied to the subgoal Ordered:z,
yielding precondition

Ordered:z, ~ Ordered:zg = Ordered:zq (4)

The subgoal Bag:zy = Bag:my Is reduced by spplication of
rule R2 and hypothesis hl to

Bag:Append:<z,.z,> = Bag:zy

D. Smith 35

and then further reduced via exiom

Bag:Append: <w,wy> = Union: <Bagw, Bagru;> (5)

Union: <Beg:z, Bag:z,> = Bag: 2.

Applying rule R2 with hypotheses h6 and hB the subgoal (4}
finally reduces to

Union:<Bag:z,,Bag:z,> = Bag:z,.

Thiz formula is expressed i terms of the desired variables
%g. 2,, and z; ooly so primitive rule P2 can be applied
yieiding the precondition
Ordered:z; A Ordered:z, =

Union: <Bag:z , Bag:z,> = Bag:z; (6)
In the composition phase of the derjvation Lhe precondi-
tivns generated by the primitive rules arc passed up Lhe
goal tree and composed. Each newly composed precondi-
tien is then run threugh e sumplification process. We
record only the simplified form of a composed precondi-

tion. Finally (3) is formed by simplilying the conjunction of
{4) and (8).

A epecification for Compose is created by instantiating
condition (2} of Theorern 1 as follows:

1. replace O by (B):
it. replace D and R by LIST(N).

The resulting specification describes the problem of merg-
ing two sorted listd into a single sorted list:

Merge:<z,zp> = zg such that Ordered:z, A Ordered:z,
= Union: <Bag:z, Bag:zs> = Bag zq /A Ordered: 2,
where Merge:LIST(N)xLIST{N} - LIST(N).

In (Smith, 1982b) we derive a divide and conquer algorithm

which satisfies this specificalion.

It remains to synthesize a program for Diractly_Solve.
From the verification of Splil we obtain Length:x>1 as ~q:x,
thus we take Length:x<! as qx. Instantiating the
specification in condition (3} of Thesrem 1 we obtain

DIRECTLY_SOLVE:x = z such that Length:z=<] =>
Beg:z = Bag:z A Ordered:z
where DIRECTLY_SOLYE:LIST{N)-LIST{N)
It i easlly shown that the identity function satisfies this
specification.
Finally the operators constructed above are assem-
bled into the following mergesort program:
Maort:x = if Length:pe<1
then x
else Marges(MerortxMsort)=Split:x
According to Theoremn 1 this program Batinfles

spectfication SDRT. In other words, Msort terminates with
& feanible output on all input lists.

36 D. Smith

Hypotheses: hi. Append:<z, x> =24
h2. Length:xr, = Length:r, div?2
h3. Length:zy = {1+Length:z,) div 2
h4. Length:zy > Langth:z,
hS5. Length:zg > Lengthix,
h6. Bag:r, = Bag:'z,
h7. Ordered.z,
hB. Beg:z, = Bag:z,
h8. Ordered.z,

Variables: jzg,2,,z,]

<Q3> Bag:zy = Bag'zy ~ Ordered:zq
R1

<Q2> Ordered:z,
P2

<Ql> Bag:zq = Bag:zg

R2+h1

«<Q1> Beg:Append: <z, x> = Bag:z,
R2+(5)

<Q1> VUnion <Bag:z Bag:z,> = Bag:z,
R2+h6. R2+h8

<Q1> Union:<Bag:z, Bag:z,> = Bag:z,
P2

where Q1 ig Ordered:z;, A Ordered:z; =
Unionh: <Bag:z, Bag:2,> = Bag:z,,
Q2 ls Ordered:z, A Ordered:z, = Ordered:z,. and

Q2 is Ordered:z, A Ordered:z, =
Union: <Bag:z, Bag:z,>» = Bag 2o ~ Drdered:z,

Figure 1: Derivation of output conditions for Merge.

VIl Concluding Remarks

Several of the choices made during the derivation of
merge sort were arbitrary in the sense that alternatives
were available which lead to other sort algorithms. If we
had chosen to select a simple Compose operator, say
Append, we would derive a Quicksort algorithm. With a
slight variation on the divide and conquer program schema
analogous derivations lead to insertion and selection sorts.
Each of these four sort algorithms are derived in detail in
(Smith, 1982b). See (Green and Barstow 1978; Clark and
Darlington, 1980) for related derivations of these sorting
algorithms.

Our problem reduction approach is most closely
related to theorem proving approaches to program syn-
thesis (e.g. Bibel, 1980; Manna and Waldinger, 1980).
which, given a specification n=<D,R,l,0>, extract a pro-
gram F from a constructive proof of the theorem

(7)
vzeld SaeR [z =» 0.<x.25]
In contrast. the problem reduction abpproach extracts a

program F from a constructive derivation of an {x}-
precondition of (7). The resulting precondition is the
derived input condition of F. Since the synthesis process
itself can generate some or all of the input conditions, the
task of creating specifications is made easier for the user.
Also, the design strategies can be viewed as complex infer-
ence rules applied in a backwards-chaining manner result-
ing in the decomposition of complex problems into simpler
subproblems. With this approach we hope to make the
synthesis process more manageable, to cope with more
complex problems, and to produce larger well-structured
programs.

The formalization of top-down programming has also
been explored in (Dershowitz and Manna, 1975) where
several strategies for designing program sequences, if-
then-else statements, and loops are presented.

In this paper we have introduced a problem reduction
approach to program synthesis. If we hope to automate
the synthesis of programs for solving complex problems
then we must have formal methods for breaking problems
into simpler subproblems. The problem reduction
approach is based on decomposing problems with respect
to the structure of program schemas representing various
classes of algorithms. The schemas and their design stra-
tegies capture much of our knowledge about program-
ming. In order to obtain powerful synthesis performance
we need to discover those algorithm schemas which cover
the important applications in some domain and devise
design strategies for them. We have taken a first step in
that direction with design methods for divide and conquer
algorithms and a few others. A prototype system has been
constructed which can perform the derivations in this and
our earlier papers.

REFERENCES

[1] Bibel, W., "Syntax-directed, Semantics-Supported Pro-
gram Synthesis." Artificial Intelligence 14:3 (1980)
243-282.

[2] Bledsoe. W. "Nonresolution Theorem Proving."
Artificial Intelligence 9:1 (1977) 1-35.

[3] Clark, K.L,, and Darlington, J,, "Algorithm
Classification through Synthesis." The Computer Jour-
nal 23:1 (1980) 61-65.

[4] Dershowitz, N., and Manna, Z., "On Automating Struc-
tured Programming", in Proc. Colloques IRIA on Prov-
ing and Improving Programs, Arc-et-Senans, France,
July 1975.

[5] Green. C.C, and Barstow. D.R., "On Program Synthesis
Knowledge." Artificial Intelligence 10:3 (1978) 241-
279.

[6] Manna, Z., and Waldinger, R.J., "A Deductive Approach
to Program Synthesis." ACM TOPLAS 2:1 (1980) 90-121.

[7] Smith, D.R, "Derived Preconditions and Their Use in
Program Synthesis", in Sixth Conference on
Automated Deduction, Ed. DW. Loveland, Lecture
Notes in Computer Science 138. Springer-Verlag, New
York. 1982. 172-193.

[8] Smith, D.R., Top-Down Synthesis of Simple Divide and
Conquer Algorithms, Technical Report NPS 52-82-011,
Naval Postgraduate School, Monterey, California,
November 1982.

