
A PROBLEM REDUCTION APPROACH TO PROGRAM SYNTHESIS* 

Douglas R Smith 

Department of Computer Science 
Naval Postgraduate School 
Monterey, CA 93940 USA 

ABSTRACT 
Program synthesis is the transformation of a 

specification of a user's problem into a computer program. 
A problem reduction approach to program synthesis is 
presented. During synthesis the user's problem is decom­
posed in a top-down manner into a hierarchy of subprob­
lems. with directly solveable subproblems at the bottom. 
Solving these subproblems results in the bottom-up com­
position of a program whose structure reflects the sub-
problem hierarchy. The program is guaranteed to satisfy 
the specification and to terminate on all legal inputs. We 
illustrate this approach by presenting the knowledge 
needed to synthesize a class of divide and conquer algo­
rithms and by deriving a Merge sort algorithm. 

I Introduction 

Program synthesis is the derivation of a computer 
program from a specification of the problem it is intended 
to solve. Human programmers often cope with complex 
problems in the following top-down manner. First an 
overall program structure is created which fixes certain 
gross features of the desired program. Some parts of the 
structure are at first underdetermined but their functional 
requirements are worked out so that they can be treated 
as relatively independent subproblems to be solved in a 
similar manner at a later stage. A formal counterpart to 
this approach involves the use of program schemas. A 
schema provides the overall structure of the desired pro­
gram and its uninterpreted operator symbols stand for the 
underdetermined parts of the structure. To use a schema 
we require a corresponding design strategy. Given a prob­
lem specification II a design strategy derives specifications 
for subproblems in such a way that solutions for the sub-
problems can be assembled (via the schema) into a solu­
tion for n. A design strategy then is a way of generating an 
instance of a schema which satisfies a given specification. 

Given a collection of such schemas and their associ­
ated design strategies the problem reduction approach to 
program synthesis can be described by a two phase pro­
cess - the top-down decomposition of problem 
specifications and the bottom-up composition of programs. 
In practice these phases are interleaved but it helps to 
understand them separately. We are given an initial 
specification. In the first phase a design strategy is 
selected and applied to the initial specification thereby 
generating some subproblem specifications. Then design 
strategies are selected and applied to each of the subprob­
lem specifications, and so on. This decomposition process 
terminates in primitive problem specifications which can 
be solved directly, without reduction to subproblems. The 
result is a tree of specifications with the initial 

* The work reported herein was supported by the Foundation 
Research Program of the Naval Postgraduate School with funds 
provided by the Chief of Naval Research. 

specification at the root and primitive problem 
specifications at the leaves. The children of a node 
represent the subproblem specifications generated by the 
application of a design strategy. The second phase 
involves the bottom-up composition of programs. Initially 
each primitive problem specification is solved to obtain a 
program (which is often a programming language opera­
tor). Subsequently whenever each of the subproblem 
specifications generated by the application of design stra­
tegy D to specification II have solutions, these subproblem 
solutions are assembled via the corresponding schema into 
a solution for n. 

A prototype synthesis system based on problem 
reduction has been implemented. It is capable, for exam­
ple, of synthesizing a mergesort algorithm from a 
specification of the sorting problem. This synthesis 
involves the decomposition of the sorting specification into 
a hierarchy of specifications with four levels and thirteen 
nodes. In this paper we illustrate the problem reduction 
approach by presenting the top two levels of the derivation 
of mergesort. In Section III we present a schema and 
design strategy for a class of divide and conquer algo­
rithms. One of the principal difficulties in problem reduc­
tion is knowing how to decompose a problem into subprob­
lems. A formal deductive system which enables us to per­
form such problem decompositions is presented in Sec­
tions IV and V. In Section VI the design strategy for divide 
and conquer is used to derive a mergesort algorithm. A 
more comprehensive treatment of the material in this 
paper may be found in (Smith, 1982b). 

II Specifications 

The input to a program synthesis system is a formal 
specification of a problem. For example, the problem of 
sorting a list of natural numbers may be specified as fol­
lows* 

S0RT:x = z such that Bag:x = Bag:z A Ordered:z 
where S0RT:LIST(N)-L1ST(N). 

Here the problem, named SORT, is viewed as a mapping 
from lists of natural numbers (denoted LIST(N)) to lists of 
natural numbers. Naming the input x and the output z, 
the formula Bag:x = Bag:z A Ordered: z. called the output 
condition, expresses the conditions under which z is an 
acceptable output with respect to input x. Here Bag:x = 
Bag:y asserts that the multiset (bag) of elements in the list 
y is the same as the multiset of elements in x. Ordered.y 
is a predicate which holds exactly when the elements of 
list y are in nondecreasing order. 

Generally, a specification II has the form 

♦ We use the notation f:x to denote the result of applying the 
function, predicate, or program f to argument x. 



D. Smith 33 

or more compactly, II = <D,R,I,0>. We ambiguously use 
the symbol II to denote both the problem and its 
specification. Here the input and output domains are D 
and R respectively. The input condition 1, a relation on D, 
expresses any properties we can expect of inputs to the 
desired program. If an input does not satisfy the input 
condition then we don't care how the program behaves. 
The output condition 0, a relation on DxR, expresses the 
properties that an output object should satisfy. Any out­
put object z such that 0:<x,z> holds will be called a feasi­
ble output with respect to input x. We say program F 
satisfies specification II = <D,R,I.0> wi th derived input 
condition / ' i f 

is valid in a suitable first-order theory *. If I' is the 
Boolean constant true then we simply say F satisfies II. In 
our synthesis method we attempt to derive a program F 
and a derived input condition I' from a given specification. 
In this paper, however, we focus on the derivation of F and 
for the sake of simplicity omit discussion of the derivation 
of derived input conditions. 

I l l A Class of Divide and Conquer Programs 

The following schema represents the structure com­
mon to a class of divide and conquer programs: 

F:x = if q:x 

then Directly_Solve:x 

else Compose°(FxF)°Decompose:x. 

Here fog. called the composition of f and g. denotes the 
function resulting from applying f to the result of applying 
g to its argument, fxg, called the product of f and g, is 
defined by fxg:<x,y> = <f:x,g:y> where <xl,...,xn> is an n-
tuple. It is convenient to allow functions to map tuples to 
tuples. 

The behavior of an instance of the schema can be 
described as follows: if q:x holds then F:x evaluates to 
Directly_Solve:x. Otherwise, x is decomposed via Decom­
pose into a 2-tuple which is recursively processed in paral­
lel by FxF. The resulting 2-tuple is composed via Compose 
thus yielding the value of F:x. 

Our design strategy for this schema is based on the 
following theorem which provides sufficient conditions that 
an instance of the schema satisfies a given specification. 
The separability condition (4) provides the most important 
constraint on the relationship between the output condi­
tion 0 of an instance of the schema and the output condi­
tions of Decompose and Compose. In words it states that if 
input x0 decomposes into subinputs x1 and x2, and z1 and 
z2 are feasible outputs with respect to these subinputs 
respectively, and z1 and z2 compose to form z0, then z0 is 
a feasible solution to input x0. Loosely put: feasible out­
puts compose to form feasible outputs. 

The key idea in our design strategy for divide and con­
quer algorithms is to use the separability condition like an 
equation in three unknowns (0, Oc, and OD), given values 
for any two we attempt to solve for a value of the third. 
Initially we are given a specification II = <D.R,I,0> so we 
have 0. During synthesis we wish to determine the 
specifications of the subproblems Decompose and Compose 
- in essence OD and Oc respectively. One approach is to a) 
choose a simple known operator D as say, Decompose, b) 
use the separability condition to "solve for" 0C, then c) 
form a detailed specification for Compose based on 0C. We 
turn now to a formal deductive system which enables us to 
derive output conditions like Oc 



34 D. Smith 

(1) 

Note that false is a precondition of any formula. In gen­
eral we are interested in preconditions which are as weak 
as possible yet have a structurally simple form. 

Continuing our discussion from the previous section, 
suppose that we are given a relation 0 on DxR and we have 
chosen a decomposition operator Decompose with output 
condition 0D. We wish to derive an output condition 0C for 
the, as yet unknown, operator Compose To do so we pose 
the problem of finding a {z0,z1 z2-precondit ion of 

holds. That is, any jz0,z1,zzj-precondition of (2) enables 
the separability condition to hold and thus can be used as 
an output condition for Decompose. 

Y A Formal System for Deriving Preconditions 

In this section we present a natural deduction-like for­
mal system for deriving preconditions. More extensive sys­
tems are presented in (Smith, 19B2a; Smith, 19B2b). 

C. The Deduction Process 

The derivation of a precondition of goal statement G 
can be described by a two stage process. In the first phase 
reduction rules are repeatedly applied to goals reducing 
them to subgoals. Primitive rules PI and P2 are applied 
whenever possible. The result of this reduction process 
can be represented by a goal tree in which 1) nodes 
represent goals/subgoals, 2) arcs represent reduction rule 
applications, and 3) leaf nodes represent goals to which a 
primitive rule has been applied. The second phase involves 
the bottom-up composition of preconditions. Initially each 
application of a primitive rule to a goal yields a precondi­
tion. Subsequently whenever a precondition has been 
found for each subgoal of a goal G then a precondition is 
composed for G according to the reduction rule employed. 
In a working system we have developed a single precondi­
tion is selected from amongst the alternative derived 
preconditions of a goal by maximizing over a heuristic 
measure of weakness and structural simplicity. A detailed 
presentation of the derivation of a precondition is provided 
in the following section. 

VI Synthesis of a Mergesort Algorithm 

Consider again the specification 

As indicated above, we shall proceed with the synthesis of a 
divide and conquer algorithm by trying to establish the 
conditions of Theorem 1. The main task before us is to find 
operators Compose and Decompose whose output condi­
tions satisfy the separability condition. One way to 
proceed is to select some simple known operator for either 
Decompose or Compose. Suppose we concentrate on 
Decompose. We know it is to map LIST(N) to 
LIST(N)xLIST(N). An appropriately structured Data Struc­
ture Knowledge Base should allow us to retrieve all known 
operators which perform such a mapping. Suppose we 
have available the operator Split which decomposes its 
input l ist into two halves of roughly equal length. Split can 
be specified as follows: 



D. Smith 35 



36 D. Smith 

program F from a constructive derivation of an {x}-
precondition of (7). The resulting precondition is the 
derived input condition of F. Since the synthesis process 
itself can generate some or all of the input conditions, the 
task of creating specifications is made easier for the user. 
Also, the design strategies can be viewed as complex infer­
ence rules applied in a backwards-chaining manner result­
ing in the decomposition of complex problems into simpler 
subproblems. With this approach we hope to make the 
synthesis process more manageable, to cope with more 
complex problems, and to produce larger well-structured 
programs. 

The formalization of top-down programming has also 
been explored in (Dershowitz and Manna, 1975) where 
several strategies for designing program sequences, if-
then-else statements, and loops are presented. 

In this paper we have introduced a problem reduction 
approach to program synthesis. If we hope to automate 
the synthesis of programs for solving complex problems 
then we must have formal methods for breaking problems 
into simpler subproblems. The problem reduction 
approach is based on decomposing problems with respect 
to the structure of program schemas representing various 
classes of algorithms. The schemas and their design stra­
tegies capture much of our knowledge about program­
ming. In order to obtain powerful synthesis performance 
we need to discover those algorithm schemas which cover 
the important applications in some domain and devise 
design strategies for them. We have taken a first step in 
that direction with design methods for divide and conquer 
algorithms and a few others. A prototype system has been 
constructed which can perform the derivations in this and 
our earlier papers. 

REFERENCES 

VII Concluding Remarks 

Several of the choices made during the derivation of 
merge sort were arbitrary in the sense that alternatives 
were available which lead to other sort algorithms. If we 
had chosen to select a simple Compose operator, say 
Append, we would derive a Quicksort algorithm. With a 
slight variation on the divide and conquer program schema 
analogous derivations lead to insertion and selection sorts. 
Each of these four sort algorithms are derived in detail in 
(Smith, 1982b). See (Green and Barstow 1978; Clark and 
Darlington, 1980) for related derivations of these sorting 
algorithms. 

Our problem reduction approach is most closely 
related to theorem proving approaches to program syn­
thesis (e.g. Bibel, 1980; Manna and Waldinger, 1980). 
which, given a specification n=<D,R,I,0>, extract a pro­
gram F from a constructive proof of the theorem 

(7) 

In contrast, the problem reduction approach extracts a 

[1] Bibel, W., "Syntax-directed, Semantics-Supported Pro­
gram Synthesis." Artificial Intelligence 14:3 (1980) 
243-282. 

[2] Bledsoe. W.. "Nonresolution Theorem Proving." 
Artificial Intelligence 9:1 (1977) 1-35. 

[3] Clark, K.L., and Darlington, J., "Algorithm 
Classification through Synthesis." The Computer Jour­
nal 23:1 (1980) 61-65. 

[4] Dershowitz, N., and Manna, Z., "On Automating Struc­
tured Programming", in Proc. Colloques IRIA on Prov­
ing and Improving Programs, Arc-et-Senans, France, 
July 1975. 

[5] Green. C.C., 
Knowledge.' 
279. 

[7] 

and Barstow. D.R., "On Program Synthesis 
Artificial Intelligence 10:3 (1978) 241-

[6] Manna, Z., and Waldinger, R.J., "A Deductive Approach 
to Program Synthesis." ACM TOPLAS 2:1 (1980) 90-121. 

Smith, D.R., "Derived Preconditions and Their Use in 
Program Synthesis", in Sixth Conference on 
Automated Deduction, Ed. D.W. Loveland, Lecture 
Notes in Computer Science 138. Springer-Verlag, New 
York. 1982. 172-193. 

[8] Smith, D.R., Top-Down Synthesis of Simple Divide and 
Conquer Algorithms, Technical Report NPS 52-82-011, 
Naval Postgraduate School, Monterey, California, 
November 1982. 


