
Extracting Knowledge from Expert Systems 

J o h n M c D e r m o t t 

Depa r tmen t o f C o m p u t e r Sc ience 

Carneg ie -Me l lon Un ive rs i t y 

P i t t s b u r g h , PA 1 5 2 1 3 

A b s t r a c t . Our understanding of how to use large amounts of 
knowledge to enhance the problem solving capabilities of 
computer programs is quite limited. Over the past several 
years a number of knowledge based systems have been 
developed, and this experience has provided us with a 
handfull of techniques we can apply in a few domains. What 
we don't have yet is much of an appreciation of why these 
techniques work or of the limits of their usefulness In order to 
take this next step, we need more data. Unfoitunately, the 
analyses of the expert systems currently being built tend to 
ignore questions that could provide precisely the data needed. 
This paper proposes a few questions that it might be worth 
asking and shows how answers to those questions could 
begin to give us the understanding we lack. 

1. Introduction 
If those of us involved in expert systems research have a 
common goal, surely it is to understand how to use large 
amounts of knowledge in solving problems. We have made 
some progress In the 1970s progress promised to be rapid; a 
small number of interesting systems were developed, and their 
developers described the tasks the systems could perform and 
the various techniques used. Over the past few years, many 
more people have become involved, and expert systems are 
now springing up all over. Unfortunately, this dramatic growth 
in the number of expert systems has not, as far as I can see, 
been accompanied by even a modest growth in our 
understanding of the relationship between knowledge and 
search. The problem is a lack of data. Though the number of 
expert systems that have been developed is now sufficient to 
allow us to begin to deepen our understanding, the 
information available about those systems is inadequate. 

I am aware of only a few attempts to draw general lessons 
from an examination of a number of expert systems. A paper 
by Feigenbaum focuses on several of the systems developed 
at Stanford's Heuristic Programming Project [Feigenbaum 77]. 
Although the paper gives some indication of the nature of the 
task each system addresses, its primary purpose is to provide 
an existence proof that the by now well known tools of the 
knowledge engineer can be used with success in a variety of 
domains. More recently, a group of experienced expert 

system builders wrote a paper which offers a map linking task 
characteristics with techniques for solving the task [Stefik 02]; 
the paper is one of the chapters in a forthcoming book on 
expert systems [Hayes Roth 83]. While the paper will be a 
valuable guide to people tryiny to construct Al application 
systems, several of the systems discussed are by no stretch of 
the imagination knowledge based; thus the relationship 
between some of the prescribed techniques and knowledge-
intensive tasks is not at all clear. Two other works containing 
the insights of experienced expert systems builders will soon 
be available [Buchanan 03a], [Buchanan 83b]. Though both 
works provide a number of important insights, they focus 
almost exclusively on a single task domain. Neither indicates 
very clearly the scope of the various lessons learned. 

This paper assumes that what distinguishes expert systems 
from other Al systems (and hence what makes thorn 
interesting) is that they briny relatively large amounts of 
knowledge to bear in solving problems. The claim made here 
is that a few basic aspects of task domains are the sources of 
the significant variety one finds among expert systems. If 
systems are described in terms of these aspects, we will gain 
an understanding of the various roles knowledge can play and 
an appreciation of the factors that define these roles. In the 
next section, four aspects of task domains are identified, and 
then in the third section, three expert systems are described in 
terms of those aspects. On the basis of these descriptions, 
several hypotheses about knowledge and its roles in problem 
solving are generated. The four aspects identified are 
supposed to be taken seriously; though the set is undoubtedly 
incomplete, we cannot understand the roles knowledge plays 
in problem solving without attending to those four aspects. 
The hypotheses are not to be taken seriously; their function is 
to suggest what we might learn about knowledge if we had a 
large number of systems to serve as data points. Since each 
hypothesis was generated on the basis of at most three data 
points, all any of them can do is tentatively point the way. 

2. Figuring out the questions 
In order to understand the roles knowledge plays in any 

particular task domain, it is necessary to know at least the 

following sorts of things about the task: 



J. McDermott 101 

• Compartmentalizability of the task knowledge. 

• Uncertainty of the task information. 

• Applicability of the task knowledge. 

• Thickness of the task knowledge. 

How and to what extent task knowledge can be 
compartmentalized depends almost exclusively on the 
structure of the task; the more compartmentalized the 
knowledge, the narrower its scope and the simpler the choice 
of what pieces of knowledge to apply. Knowledge operates on 
information made available by the task environment; the more 
uncertain that information, the less control the knowledge has. 
Each piece of knowledge has limited applicability; a piece of 
knowledge is more or less powerful depending on how 
precisely it specifies the set of situations in which it is 
applicable. Finally, many different pieces of knowledge may 
be relevant in the same situation; the thicker the task 
knowledge, the more knowledge there is to bring to bear at 
any given time. The rest of this section further elaborates 
each of these aspects. 

2 . 1 . The compar tmen ta l i zab i l i t y o f know ledge 
Before much sense can be made of compartmentalizability, it 
is necessary to find a structure that can serve as a 
compartment. One plausible structure is the subtask. When 
human experts talk about what they do, they frequently first 
locate themselves by naming some subtask and then indicate 
what conditions have to be satisfied in order for some 
behavior to be appropriate. The subtask name appears to 
stand for a set of conditions all of which must be satisfied 
before any of the behaviors associated with that subtask are 
appropriate. Typically subtasks are organized hierarchically; 
higher level subtasks are partitioned into a set of smaller, more 
focused subtasks. It is not clear what the criteria for being a 
primitive subtask are; presumeably experts differ somewhat 
with respect to the level to which they decompose the task. 
But since experts can communicate successfully with others 
using subtask names, it is unlikely that the decompositions 
differ to a very great extent. Pieces of knowledge with the 
same common set of applicability conditions are distinguished 
from other pieces of knowledge associated with other 
subtasks. But within the subtask there are no such obvious 
boundries; in that sense, all of the knowledge associated with 
the subtask is potentially relevant whenever the subtask is 
being performed. 

Human experts are not at all good at estimating how much 
knowledge is associated with each subtask. And in fact there 
is no apparent way of getting a reasonable estimate that does 
not involve building a system which performs the task. 
Without an estimate of the amount of knowledge associated 
with each subtask, it is impossible to understand the access 

requirements the task imposes. If there is very little knowledge 
associated with each subtask, it may be possible to statically 
impose a structure on that knowledge. The more knowledge 
that is relevant to a subtask. the more likely it is that there will 
be issues of how to determine dynamically when to apply 
which pieces of knowledge. 

2 .2 . The uncer ta in t y of i n fo rmat ion 
Two ways in which the task environment strongly shapes the 
nature of the task are with (1) the reliability of the data it 
provides, and (2) the points in time, relative to the task, at 
which the data become available. The unreliability of data is a 
more or less serious issue depending on a variety of factors. If 
the agent can assume the data are correct (whether or not 
they are), then true reliability is irrelevant. If the task 
environment provides a measure of reliability for each datum, 
then (unless the measure is itself unreliable) reliability is only a 
minor issue. If there is ambiguity about the reliability of at 
least some of the data, but there are ways of determining 
whether a datum is incorrect within the time frame imposed by 
the task, then although data reliability is a serious issue, it is at 
least more tractable than the case in which unreliability cannot 
be recognized. 

If the task environment provides additional data to the agent 
during the course of the task, it makes a difference who 
initiates whatever interaction there might be. If the task 
environment is passive and interactions are initiated only by 
the agent, the most significant question is what information 
does the agent have access to (eg, can the agent ask for new 
information and clarification or confirmation of data already 
provided?) If the task environment is active and intitiates 
interactions with the agent, the issue is whether new data can 
conflict with data provided earlier; if so, a significant question 
is whether the conflicting data are generated independently of 
what is happening in the task or because of the effects of the 
task on the task environment. 

2 .3. The app l i cab i l i t y of know ledge 
In any given situation, an agent may have some pieces of 
knowledge it is certain are applicable, other pieces of 
knowledge it suspects may be applicable, and presumeably a 
great deal of knowledge it is certain is not applicable. I will 
use the term "applicability factor" to distinguish among these 
three cases. If the conditions on the applicability of an action 
have an applicability factor of 1, performing the action will 
result in a transition to a state that is on a solution path. If the 
conditions of applicability have an applicability factor less than 
1 but greater than 0, there is some likelihood that performing 
the action will result in a transition to a state on a solution 
path But an applicability factor less than 1 signals that if the 
agent performs the action, it may have to backtrack. 

There are three reasons why an agent might misuse its 



102 J. McDermott 

knowledge: (1) the agent does not have sufficient information 
about the current situation (ie, the conditions of applicability 
on an action are not satisfied), (2) it has misleading 
information about the current situation, or (3) it does not know 
the precise conditions under which its knowledge is relevant 
(le, the applicability factor is less than 1). In the first case, if 
the agent can recognize when it is lacking such information 
and can get the exisimg information from its external 
environment, it will not fail to apply relevant knowledge. In the 
third case, it may be that the agent is simply ignorant; if the 
conditions under which the knowledge is relevant can be more 
precisely defined, then the conditions of applicability may be 
able to be elaborated to the point that the applicability factor 
becomes 1; see [Doyle 03] for a more thorough discussion of 
this point. However, if the conditions under which a piece of 
knowledge is relevant are highly complex or if no one knows 
them, the possibility of misapplying the knowledge will remain. 
In such cases it may be possible to extract from an expert or 
otherwise acquire a reasonably accurate measure of the 
likelihood that applying the knowledge will result in a state on 
the solution path; if so. the applicability factor can be taken 
into account in guiding the search. 

It is important to distinguish between tasks in which the agent 
can know when it has accomplished the task (achieved its 
goal) and tasks in which this is not possible. In tasks in which 
the agent uses only knowledge whose applicability factor is 1, 
it knows when it has accomplished its task because it sees 
there is nothing more to do In tasks where some of all of the 
knowledge used has an applicability factor less than 1, if the 
agent knows enough about its goal to determine whether it is 
on a path leading to that goal, then although it may have to 
search extensively, it will recognize when it has achieved the 
goal; in such cases, the only role for applicability factors is to 
make search more efficient. In tasks in which the agent 
cannot know whether il has achieved its goal, the applicability 
factors not only can help direct the search, but can also serve 
as indirect measures of the likelihood that the goal has been 
achieved. 

2 .4 . The t h i c k n e s s of know ledge 
Task knowledge is thick if the same situations can evoke a 
wide variety of actions depending on the agent's meta-goals. 
If, for example, the agent can deal with its task at a number of 
levels of abstraction, its knowledge is thicker than that of an 
agent who can deal with the task at fewer levels of abstraction. 
A more interesting example of how the same situation can 
invoke different knowledge arises when we ask how the 
association between an action and the conditions of 
applicability on that action are justified. If someone who 
claims some piece of knowledge K is always relevant in 
situation S is asked to justify that claim, the knowledge K' that 
is used as justification is also relevant in situation S; K' has the 
same function as K, but presumeably is more basic and thus 

relevant in many situations besides S. At the limit is analogy. If 
problems that arise while a task is being performed can be 
solved with knowledge having no direct connection to the 
task, endless opportunities for creative problem solving open 
up. 

3. Conver t ing exper t sys tems to data 
points 

In this section, the aspects of task domains identified above 
are used to analyze three knowledge based systems; the 
results of the analyses are several hypotheses about the 
effects on problem solving competence of large amounts of 
domain knowledge. Since only three systems are considered, 
the analyses will collectively prove to be woefully inadequate, 
and the hypotheses will be at best suggestive. It will hopefully 
be clear, however, that if the set of aspects were extended a 
bit and if fifty or a hundred data points were used instead of 
three, a number of interesting hypotheses could be generated. 

The three systems we will consider were (or are being) 
developed at CMU for Digital Equipment Corporation. Rl is a 
computer system configurer [McDermott 82a]; given a set of 
components, it adds any support components that might be 
missing and determines what the spatial relationship among 
all ot the components should be. XSEL is a salesperson's 
assistant [McDermott 82b]; it helps the salesperson select a 
set of components tailored to the customer's needs and 
design a floor layout for the resulting system. The XSEL user 
can call on R1 to configure or reconfigure the current set of 
component selections and can provide information to R1 
which insures that the resulting configuration will satisfy 
special requirements of individual customers [McDermott 81]. 
PTRANS is a manufacturing management assistant [Haley 83]; 
it helps insure that the inevitable problems which arise and 
threaten to delay the delivery of systems to customers are 
resolved satisfactorily In time, XSEL will interact with 
PTRANS so that a delivery date can be confirmed as soon as 
an order is booked. 

RVs original task was to generate the configuration diagram 
and do the order-completeness checking required before a 
VAX 11 order could be built in one of Digital's final assembly 
and test plants; the original version of RI was tested in the Fall 
of 1979 and began to be used on a regular basis in January, 
1980, to configure al l 'VAX-11 orders. The information 
available to R1 consisted of just the set of components (line-
items) ordered by the customer; no information was available 
about how the customer intended to use various components 
or how he intended to lay them out on the floor. As XSEI. was 
being developed, it became clear that it could collect and pass 
on to R1 information that would enable R1 to tailor its 
configurations to the requirements of individual customers; 
consequently. R1 was extended to be able to use this 
additional information. More recently RVs knowledge has 



J. McDermott 103 

been augmented, by developers at Digital, so that it can now 
configure systems other than the VAX 11. The version of R1 
discussed below is the version currently used by Digital. 

XSELs development is occurring in two stages. The initial 
version of the system assists salespeople with both 
component selection and floor layout design; the assistance 
provided in component selection assumes the user already 
has a good appreciation of the customer's computing needs. 
This version of XSEL began to be field tested in May, 1983. 
Though its capabilities have been strongly shaped by a user-
design group which was formed early in its development, no 
significant redefinition of XSL L's task has occurred. A major 
extension to XSFL is being developed at CMU; the extended 
system will be an expert in sizing a customer's computing 
needs. The version of XSEl discussed in this paper is the 
version which includes the yet to be refined sizing capability. 

PETRANS will ultimately be able to assist with the management 
tasks that arise from the time an order is received by Digital's 
manufacturing organization until it is delivered to the 
customer. The initial version of PIRANS, howevei, deals only 
with management issues which arise in final assembly and test 
plants. These plants build complex systems from components 
produced by high-volume plants. The principal management 
tasks are determining when and where on the floor to build 
each system, insuring that the necessary parts are on hand 
when it is time to issue them to the floor, and tracking the 
progress of each system on the floor so that problems can be 
resolved as they arise. In order to perform these tasks, 
PTRAINS must be able to construct plans and then modify 
these plans appropriately as unforeseen circumstances arise. 
The initial version of PTRANS began to be tested al Digital in 
July, 1903, and is the version discussed in this paper. 

All three of these systems are implemented in OPS5 [Forgy 
81]. OPS5 is a general purpose rule-based language; like 
other rule based languages, OPS5 provides a rule memory, a 
global working memory, and an interpreter which tests the 
rules to determine which ones are satisfied by the descriptions 
in working memory. An OPS5 rule is an IF-THEN statement 
consisting of a set of patterns which can be matched by the 
descriptions in working memory and a set of actions which 
modify working memory when the rule is applied. On each 
cycle, the interpreter selects a satisfied rule and applies it. 
Since applying a rule results in changes to working memory, 
different subsets of rules are satisfied on successive cycles. 
OPS5 does not impose any organization on rule memory; all 
rules are evaluated on every cycle. 

3.1 . The compar tmen ta l i zab i l i t y of know ledge 
RTs 280 subtasks conform quite closely to the 200 300 
subtasks human configuration experts identify. R1 has about 
2400 rules distributed among these 200 subtasks. On the 
average, then, there are 9 rules (pieces of domain knowledge) 
associated with each subtask; though there is some variation 
in the amount of knowledge associated with each subtask, for 
most of the subtasks there are between 5 and 15) relevant 
rules, and no subtask has more than 30 rules associated with 
it. Typically 2 or 3 of the rules associated with each subtask 
recognize when other subtasks must be performed and enable 
those subtasks by depositing the subtask names in working 
memory. Almost none of RTs knowledge is relevant to more 
than one subtask. 

XSEL has about 3000 rules distributed among 209 subtasks. 
All but about 30 of its rules are relevant to only a single 
subtask; thus, on the average, there are about 10 rules 
associated with each subtask. At any given time, typically 2 of 
the 30 rules relevant to more than one subtask are potentially 
relevant. Thus the total number of ru'es potentially relevant at 
any given time is, on the average, about 12. 

The tasks PTRANS assists with are performed simultaneously 
by a number of different people. The responsibility of some of 
these agents is to insure that the information other agents use 
is as accurate as possible. Since these monitoring tasks are 
not associated exclusively with any particular part of the 
process, their relevance comes and goes as the various tasks 
which rely on the monitoring tasks come and go. F TRANS has 
about 1400 rules Approximately 700 of these are distributed 
among 175 subtasks; thus there are about 4 rules associated 
with each subtask. At any given time. 34 of the 700 rules 
relevant to more than one subtask are potentially relevant. 
Thus the total number of rules potentially relevant at any given 
time is, on the average, about 38. The 34 demon rules 
associated with each task are not easily compartmentalized. 
The mean number of demons that any two subtasks have in 
common is 4.3 and the mode is 2, a few subtasks have no 
demons in common and a lew have more than 20 in common. 
Thus whatever structure might characterize the 
interrelationships among the demons, it appears to have 
nothing to do with the task structure. We have had little 
success so far in identifying any organizational principles at 
all. 

One might expect in tasks like the configuration task, which 
have a fairly well-defined structure, that only a relatively small 
amount of knowledge would be potentially relevant at any 
given time. But the data for all three systems appears to 
support the following hypothesis: 

H1: Only a relatively small amount of an 
expert's knowledge is potentially relevant 
in any given situation. 



104 J. McDermott 

The intriguing question is to what extent this is true of more 
general problem solvers. It would seem plausible that in 
domains in which there is not a clear focus on a small set of 
issues (ie, in which there are not strong expectations about 
what sot of events might occur), much more knowledge would 
be potentially relevant. What is not at all clear is how much 
more and whether there is anything at all in common between 
the sort of compartmentalization of knowledge that we find in 
expert systems and that which we could expect to find in 
general problem solvers. 

Since the only system with a significant amount of knowledge 
not associated with specific subtasks is PTRANS and since 
the knowledge it has that is not associated with specific 
subtasks appears to be structureless, a possible hypothesis is: 

H2: Subtasks serve as the dominant 
organizing principle for an expert's 
knowledge. 

Much of the knowledge that an expert has appears to be 
relevant in the context of only a single subtask. Because 
subtasks often form a 'hierarchy, this is not quite as restrictive 
as it may sound; knowledge that is relevant in several subtasks 
will be associated with a higher level, subsuming subtask. 
When a piece of knowledge is useful in a variety of subtasks 
that have no common ancestor, there is no obvious way to 
characterize the relationship among those uses. 

3 .2 . The unce r t a i n t y of i n f o rma t i on 
Decause the configuration task as originally defined for Rl did 
not include direct inter action with a salesperson or customer, 
the only data available to Rl was that provided at the 
beginning of the task. This input consists of a list of 
quantity/component name pairs and sometimes other 
information describing customer specific configuration 
requirements. The major uncertainty associated with the data 
is whether the set of specified components are orderable, play 
together, and are complete; and these uncertainties are 
precisely those which the task is there to resolve. Any 
changes to the order, or additional information which a 
salesperson or customer might want to provide, occur after 
the task has been performed; such changes define a new 
configuration task, rather than reflecting uncertainty in the 
data for the initial task. 

Whether XSEL is providing assistance with component 
selection or with floor layout, it asks the user for some initial 
information. In the case of component selection, the 
information consists (possibly of a mixture) of direct and 
indirect measures of the customer's computing needs 
together with an indication of how much the customer is 
willing to pay to satisfy those needs. In the case of floor 
layout, the information consists of descriptions of the rooms 
which will house the system and possibly customer 
preferences for the placement of some or all of the 

components. In both cases, there are two ways in which the 
information provided is unreliable. (1) Viewed as a 
measurement, a piece of information can simply be incorrect; 
more frequently the measurement cannot be (easily) made 
with precision and thus the value provided is only an 
approximation. (2) Viewed as a constraint, a piece of 
information can be more or less significant, if the constraints 
that define the customer's needs cannot all be simultaneously 
satisfied, some of those constraints must be relaxed. It is 
sometimes important for XSEL to deal explicitly with these 
uncertainties. When XSEL provides assistance in sizing a 
customer's needs, for example, it keeps track of the expected 
precision of each value; thus when it encounters an 
inconsistency, it has information it can use to determine which 
constraints to relax and how much to relax them. 

Whenever PTRANS is asked to assist with the processing of 
an order, it is provided a standard set of initial information. 
Part of the information is R l ' s output along with other 
customer-related information such as the desired delivery 
date the other information PTRANS is provided is for the 
most part related to resource availability (materials, floor 
space, etc). All of this information is unreliable. If any of the 
customer related information change's, a change order is 
issued, the change order indicates what information has 
changed and what the new values are. Every resource has 
time information associated with it that indicates how much of 
the resource is expected to be available at specific points in 
the future; whenever an expectation changes, this information 
is updated. PTRANS is designed to manage (create, 
implement, and modify) plans precisely because of these kinds 
of uncertainties; that is, it is built on the premise that these 
uncertainties are inevitable and thus tries to cushion their 
impact rather than eliminate them. Decause it is impossible to 
predict the precise nature of the changes (customer and 
resource) that will occur and exactly where they will occur and 
because the number of possible changes is extremely large, 
PTRANS does not explicitly keep track of the uncertainties, 
but just adapts to the changes when they occur. 

Since R1, XSEL, and PTRANS all, though in different ways, 
directly address issues of data validity, a possible hypothesis 
is: 

H3: An expert's task is almost always, at least 
in part, one of data validation. 

Since RVs task is to determine the completeness and 
configurability of a set of components, it is primarily a data 
validation task. XSEL's task often requires drawing the 
attention of the user to an inconsistency between the 
resources required and the desired purchase price. PTRANS 
task is primarily one of responding opportunistically to more 
current, and thus presumeably more accurate, task 
information. In all three cases, the reason for the data 
validation is to simplify or avoid what would otherwise be 



J. McDermott 105 

impossibly complex problems. 

Because the initial version of R1 had no way of interacting with 
salespeople, when it discovered a problem with an order, it 
had no way of getting the customei specific information it 
needed to resolve the problem; thus a possible hypothesis is: 

H4: Tasks which are defined in such a way 
that the environment cannot intrude after 
the task has begun should always be 
redefined to allow intrusion. 

Until RVs task was redefined, its only recourse when it 
encountered either a completeness or a configuration 
problem was to select one of the possible solutions somewhat 
arbitrarity. In the absence of additional data from the 
salesperson, it had to make a number of questionable 
assumptions. 

3 .3 . The a p p l i c a b i l i t y o f k n o w l e d g e 
Though Rl typically has about 9 rules that are potentially 
relevant at any given time, ordinarily only 2 or 3 of those rules 
have condit ions that are fully satisfied. That a rule's 
condit ions are satisfied is a necessary but not a sufficient 
condit ion for the rule to be applied. In addition a rule must 
satisfy OPSS's conflict resolution strategies; these strategies 
order rule instantiations on the basis of considerations such 
as the recency of the data satisfying the rules and the relative 
specificity of the rules Almost all of RVs rules have an 
applicability factor of 1. That means if a rule's conditions are 
satisfied and if that rule is net dominated by some other rule 
on the basis of OPS5's conflict resolution strategies, applying 
the rule will result in a transition to a state that is on a solution 
path. Those pieces of RVs knowledge that have an 
applicability factor less than 1 bear on unibus configuration 
R1 is uncertain of the relevance of some of its unibus 
configuration knowledge because the relevance of the 
knowledge can only be judged after it is applied. R1 may, for 
example, begin to create a unibus configuration that turns out 
to be unacceptable because there is insufficient space; when 
it recognizes such a situation it backtracks. In order for R1 to 
have unibus configuration knowledge whose applicability 
factor is 1, it would have to have knowledge which explicitly 
identified all valid (or all invalid) unibus configurations. 

In many respects the applicability of XSEL's knowledge is very 
similar in character to RVs. Of the 12 or so rules that are 
potentially relevant at any given time, ordinarily only 2 or 3 are 
fully satisfied. Much of XSEL's knowledge has an applicability 
factor of 1. The knowledge that has an applicability factor less 
than 1 is that which maps from indirect to more direct 
measures of computing needs. This knowledge associates 
some (possibly very indirect) measure of a computing 
resource need with some set of cues. Since XSEL cannot 
verify the adequacy of its proposed sizings, it uses 
applicability factors not only to order its search, but to provide 

an indication to the user of the degree of variation in possibly 
acceptable (correctly sized) computer systems. XSEL can 
recognize when some set of constraints appear to be 
inconsistent. Before asking the user to relax some of the 
constraints, it checks to see whether there is an interpretation 
of the constraints which makes them consistent. 

How many of PTRANS' 38 potentially relevant rules are 
actually relevant on any given cycle depends to a great extent 
on whether any part of the environment is changing in an 
unexpected way. When the environment is relatively stable, 
ordinarily only 1 or 2 rules are actually relevant; but when 
unexpected changes occur, as many as 10 or 20 demon rules 
may also be relevant. Most of PTRANS' demon rules have an 
applicability factor of 1. Most of the rules associated with 
subtasks have an applicability factor less than I; this 
uncertainty manifests itself both in the form we saw in R1 and 
in the form we saw in XSEL. The knowledge PTRANS has that 
is like R l ' s unibus configuration knowledge is used to 
generate floor assignments; both tasks can be viewed as 
instances of the general bin packing problem. 1 he knowledge 
that is like XSEL's sizing knowledge is used to estimate the 
amount of time various events are going to take. XSEL and 
PTRANS must both predict the future performance of entities 
they neither fully understand nor control. However the tasks 
differ because what PTRANS predicts are events that will 
occur while it is performing its task; thus PTRANS can 
recognize when it has failed and recover by backtracking. 

What is common to those subtasks in which R1 , XSEL, and 
PTRANS search is the relatively large number of different 
actions that can be appropriate; thus a possible hypothesis is: 

H5. If the situations in which an expert can 
find itself evoke a relatively small number 
of different behaviors, the pieces of 
knowledge that the expert uses to 
determine how to act in those situations 
will have an applicability factor of 1. 

There are many different ways in which a large number of 
situations can be mapped onto a small number of behaviors. 
One that is frequently useful for expert systems is to treat a 
large fraction of the situations as an equivalence class and 
single out a relatively small number of situations as special 
cases. Thus there are a few situations that are particularly 
interesting and the rest evoke an "ordinary" response. 

Since RVs domain is narrower than either XSEL's or PTRANS' 
and since most of RVs knowledge has an applicability factor 
of 1, a possible hypothesis is: 

H6: The narrower the domain, the more likely 
it is that the expert will almost never 
search. 

I suspect that this hypothesis is false. Currently, R1 is quite 
expert, seldom needs to search, and yet is able to discriminate 



106 J. McDermott 

among only 2500 different types of situations XSEL, on the 
other hand, is as yet much less expert, searches much more 
frequently, but is able to d.scriminate among 3000 different 
types of situations It is possible that XSEL searches more 
than R1 because its domain is not as narrow But it is likely, I 
think, that XSEL searches more because it is less well 
developed I suspect that by the time XSEI. has 9000 or 
10,000 rules it will be as expert at computer system sizing as 
Rl is at configuration and will do as little search. 

3 .4 . The t h i c k n e s s o f k n o w l e d g e 
For the most part, Rl deals with the world at a single level of 
abstraction Its knowledge is primarily about configurable 
components and their possible interrelationships. It does 
understand that the task it performs has a hierarchical 
decomposit ion, and it performs a variety of abstract tasks. But 
the knowledge it uses to make its way around in those abstract 
tasks is still knowledge of configurable components. 
Moreover, its knowledge is single-level; it does not know why 
its rules, (as opposed to its conclusions) are valid. Though 
many of its rules could be justified on the basis of more 
general engineering knowledge, a significant number could be 
fully justified only by appealing to custom. 

XSEL also deals with the world at a single level cf abstraction; 
but its level of abstraction is somewhat higher than R1's. 
Whereas Rl deals with individual configurable components, 
XSEL deals with sets of identical configurable components. 
Like R1 . XSEL cannot explain why its rules are valid However 
it comes closer than Rl to being able to do so. Its sizing rules 
associate indicators of need with descriptions of computing 
resources. Since XSEL has to interact with users of widely 
varying degrees of sophistication, these indicators vary widely 
in their degree of generality. Highly unsophisticated users 
force XSEL back to first principles. 

Because PTRANS" world changes so frequently, it deals with 
the distant future at a high level of abstraction in an effort to 
avoid getting bogged down in ephemeral details. It deals with 
the present and near future at a variety of levels of abstraction 
depending on the nature of its current subtask. To perform its 
various scheduling functions, it requires very little information 
about the objects it is dealing with. But to provide assembly 
and testing assistance to technicians, it must descend into a 
rococo world similar in many respects to R I s Like R1 and 
XSEL, PTRANS cannot explain why its rules are valid. 

Since R1 deals with computer systems at a lower level of 
abstraction than XSEL and since R1 does almost no search, a 
possible hypothesis is: 

H7: The more abstract a piece of knowledge 
is relative to other knowledge about the 
same situation, the lower its applicability 
factor will be. 

In order for a piece of knowledge to have an applicability 
factor of 1, it must be possible to specify precisely the 
situations in which the knowledge is relevant; that requirement 
delimits the base level of abstraction for that piece of 
knowledge. If the knowledge is to be used in a more abstract 
space, not all of the information required to determine the 
applicability of the knowledge will be available. 

Since R1, XSEL, and PTRANS all have quite thin knowledge 
and since all of them occassionally encounter problems they 
cannot resolve and all of them must do at least some search, a 
possible hypothesis is: 

H8 Thick knowledge reduces the number of 
intractable problems; it can also reduce 
the amount of search. 

When a expert encounters a difficult problem, he can 
sometimes uncover the knowledge needed to solve the 
problem by trying to justify the knowledge ordinarily used to 
solve such problems. Presumeably this strategy works 
because as different layers of knowledge are built up for 
different purposes, pieces of knowledge that would be highly 
redundant at some level are not included at that level, these 
omissions reduce the size of the search space, but at the cost 
of incompleteness. 

4. Concluding remarks 
It occured to me, as I began working on this paper, that it 
might have more validity if it included, as data points, systems 
from a wide variety of backgrounds, rather than |ust systems 
developed at CMU. As I pursued this idea, however, I 
discovered that the kind of system data I wanted is not very 
easy to find in the literature. That may, of course, be because 
the data I was looking for is not very valuable, or is odd, or is 
peculiar to a particular approach to developing systems. But I 
suspect not. I he area of knowledge based systems is new 
enough that we have not yet had time to define our needs. 
The purpose of this paper is not to define those needs, but to 
raise the issue and make some stabs. 

One general point that I think does come through even from 
the narrow base I have provided is that the analyses of expert 
systems and their tasks is likely to look quite different from that 
of classical search intensive systems and tasks. Knowledge is 
certainly used in those programs, but it is a very small amount 
of general knowledge, mostly with a low applicability factor. 

Given just the data available from R1, XSEL, and PTRANS, the 
hypotheses presented above are not implausible. Rut mostly 
they are simplistic. What is surely missing is an adequate 
amount of data from which to generate substantive 
hypotheses. Thougti my shadow hypotheses lack substance, 
they do suggest the sort of advantages substantive 



J. McDermott 107 

hypotheses could confer. First, having a partial description of 
a role that knowledge can play gives us something to refine 
and exploit or falsify: we can focus our efforts on pushing and 
shaping promising insights. Second, substantive hypotheses 
also provide an avenue of discovery; given a set of hypotheses 
to reflect on, we are in a position to discover holes 
(approaches that have not been tried). But we are not going 
to have substantive hypotheses about the role of knowledge in 
problem solving unless our analyses of the expert systems we 
build lay bare the natures of their tasks. 

Acknowledgements 

The ideas in this paper have evolved as a result of discussions 
with many people. Helpful comments on earlier drafts were 
made by Danny Robrow, Bruce Buchanan, Dick Duda, Bob 
Cnyelmore, Lee Erman, Paul Haley, Gary Kahn, Dave 
McKeown, Allen Newell, Dennis O'Connor, l ed Ghortliffe, and 
Mark Stefik; I am sorry to say that in several cases, I was not 
able to do justice to their suggestions. Paul Haley and Kemal 
Oflazer helped with some of the data analysis. 


