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ABSTRACT

Many artificial intelligence applications
require the use of expert systems. As expert
systems move into new domains, several significant
changes can be expected. Among these are an
increase in number of rules in the rule base and
an increase in the number of data elements con-
tained in working memory.

Also, many new applications require that
expert systems move into real-time domains. Here,
a system must be able to process large quantities
of data which are changing rapidly. Many problem-
solving situations will be time critical, and the
system must take into account the availability
and distribution of scarce system resources.

For these reasons, the efficiency of a given

expert system design and its ability to perform
complex memory management tasks will become
Increasingly important. This will require modi-
fications in the traditional production system

architectures. In this paper, the design require-
ments of future expert systems are discussed, and
HAPS, a recently implemented production system
architecture designed to address these issues, is
presented.

| INTRODUCTION
An expert system is a computer program or
set of programs capable of performing near the

level of a human expert in some limited domain.
Previous work in this field has produced systems
which can perform medical diagnosis of blood
diseases (Shortliffe, 1976), predict the physical
structure of complex organic molecules Euchanan
& Feigenbaum, 1978), and configure VAX-11 computer
systems (McDermott, 1982). The level of success
of such systems indicates that expert systems
will soon move into broader, more complex domains.

As this occurs, several new constraints on
the design of expert systems can be expected:

1. The system must be capable of handling
larger rule bases. This is due to the fact that
the level of expertise exhibited by a given expert
system is directly related to the number of rules
in Its rule base. Thus, If a given system |Is
expected to increase both its domain and level of
expertise, the size of the rule base must
necessarily increase.
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2. The system must be capable of handling a
much larger working memory set. One reason for
this is that when the domain of a given expert
system becomes larger, more domain-specific knowl-
edge is required.

3. Some systems will be required to operate
in real-time situations. Many new applications,
such as the automation of satellite subsystems,
will require the processing of data which change
in real time. Also, these domains often require
problem solving in time-critical situations, which
means that the expert system must be flexible
enough to consider constraints imposed by the
availability and distribution of scarce system
resources during the problem solving process.

Such constraints imply that efficiency con-
cerns will become increasingly important in the
design of future expert systems. This demands
the development of new tools for the construction
of expert systems which take these efficiency

issues into account.

The remainder of this paper concerns the
identification of areas in which the design
requirements of future expert systems will strain
the current production system architectures.
Techniques are described which are capable of
performing efficiently under these new situations.
These techniques are incorporated into the design
of a new production system architecture known as

HAPS (the Hierarchical, Augmentable Production
System), a unique expert system building tool
designed to address the needs of future expert

systems explicitly.

I RELATED WORK

Most of the research to date concerning the
efficiency of production systems focuses on the
operation of pattern matching. This is the
process by which patterns from the conditional
portion of a production are compared to the data
elements in working memory. When all of the con-
ditionals of a production match, that production
may be instantiated. At any given time, the set
of all possible production instantiations is known
as the conflict set.

Pattern matching is the most time consuming
operation which the interpreter must perform and
is, therefore, the bottleneck of the system. The
most widely known and most efficient of the



pattern matching algorithms is the Rete Match
Algorithm (Forgy, 1982). This algorithm takes
advantage of the following characteristics of
production systems:

1. Pattern Similarity—Since productions
are testing against the same set of data items,
many of the patterns will have similar character-
istics. Thus, at least some of the matching for
many of the patterns can be done simultaneously.

2. Temporal Redundancy—The  contents  of
working memory change slowly over Lime. On any
given cycle, a few data items may be added and a
few may be modified or removed, but most remain
the same. Thus, pattern matching information can
be saved from cycle to cycle, with only a few
modifications.

Taking advantage of these concepts requires
the compilation of production patterns into a
discrimination network. Data elements which enter
working memory are sent through at the root of
the network. At the terminal nodes, modifications
are made to the conflict set. This results in an
algorithm where the execution time required for a
single firing is, in the best case, independent
oi the number of data items in working memory.
For this reason, the Rete Match Algorithm s
implemented in the interpreters of most state-of-
the-art production systems.

Il GOAL DIRECTEDNESS

Introducing goal directedness into a produc-
tion system eases the writing of programs in that
system. For example, the OPS5 system provides an
alternate conflict resolution  strategy which
facilitates means-ends analysis (Forgy, 1981).
Other systems are explicitly goal-directed (e.g.,
Sauers & Farrell, 1982); the system builds an
explicit hierarchy of goals during execution. At
any given time, such a system is focused on a
single goal, and the system objective is to find
a way of achieving that goal.

Conceptually, productions In a goal-directed
system are expressed in the form:

IN a given goal context,
IF some set of conditions is true
THEN perform some set of actions.

The use of an explicit goal hierarchy has
many advantages. From the user's standpoint,
goal-directed programs are easier to construct,
since a production is prohibited from firing
unless it is applicable to solving the specific
subtask at hand. Equally important, however, Is
the increase in run time efficiency which can be
obtained by incorporating goal-directedness into
a system design.

First, note that restricting productions to
firing in a particular goal context forms natural
partitions in the rule set. A set of equivalence
classes is defined, where productions In the same
class are all productions which fire in the same
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type of goal context. During system execution,
we know which class of productions is relevant to
achieving the current goal, and only productions
in that class need to be considered for instanti-
ation. This means that no class of productions
needs to be processed until that class becomes
relevant to the problem solving process.

Similarly, the nature of the goal hierarchy
can be exploited in the design of the working
memory structure. Often during the execution of
a goal-directed system, data items are inserted
into working memory which are relevant only to
achieving a given goal. Once a method for achiev-
ing that goal has been determined, those data
items are no longer needed.

We can take advantage of this characteristic
for efficiency reasons by introducing hierarchi-
cal levels of working memory. Data elements can
be declared local to a particular goal; when a
goal is achieved, its local data elements dis-
appear. Such a scheme allows the working memory
structure to grow hierarchically along with the
goal structure. This is important because it
permits all processing resulting from the creation
of a given data element to occur only within a
limited local environment.

While the notion of goal directedness is by
no means novel, the incorporation of an explicit
goal hierarchy into a production system architec-
ture is important in terms of efficiency because
it provides two key capabilities:

1. Productions can be integrated into the
problem solving process in such a way that system
resources are spent in processing only those pro-
ductions which are applicable to the solution of
the current subtask.

2. A hierarchical working memory scheme can

be introduced, which will allow for more effi-
cient management of the large, domain dependent
knowledge bases which will exist in future expert
systems.

An explicit goal hierarchy also allows for
the construction of expert systems with a much
more general control structure, which more closely
models the problem-solving processes of a human
expert in a dynamic environment (see Section VII).

IV PRODUCTION HIERARCHIES

Much research has been done concerning the
nature of the knowledge contained Inside a pro-
duction. This research has led to a general dis-
tinction between productions and meta-productions.
In general, a standard production represents a
piece of expert knowledge specific to a given
domain. A meta-production contains meta-
knowledge; that is, knowledge about the system's
knowledge and how to use it. The use of meta-
level knowledge allows a system to make high-
level decisions, such as which of a set of given
solution paths is most likely to lead to the best
answer to the problem at hand.
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Usually, meta-productions have some sort of
precedence over regular productions. This is due
to the nature of the knowledge encoded in the
meta-productions; it is generally preferable to
make high-level decisions concerning how the
system will attempt to solve a problem before
considering the minute details of the solution
itself.

This idea has been important in the design
of state-of-the-art, hierarchical planning systems
(e.g., Stefik, 1980). A hierarchical planner will
first produce an abstract representation of a plan
to accomplish a given task. Then, by gradually
considering more constraints, this plan becomes
increasingly detailed, wuntil the final plan in
complete detail is produced.

These concepts can be generalized to produce
the notion of production hierarchies. In this
scheme, productions are grouped together into sets
such that those productions which are similar
according to some pre-specified criteria are in
the same set. Rules may be grouped according to
such criteria as level of knowledge represented,
or level of detail of problem solution produced.

Next, we provide the capability of fetching
selected rule sets into the environment at execu-
tion time. The system is provided with initial
rule sets by the user. Existing productions can
recognize problem-solving situations which require
that additional rule sets be available, and these
can be loaded into the environment and declared
local to a given goal. The resulting production
hierarchy can grow as new levels of subproblems
are identified.

This is best illustrated through an example.
Suppose an expert system has the task of trouble-
shooting some malfunction in a satellite system.
Initially, only general problem-solving procedures
and high-level troubleshooting rules reside in
the environment. One production might notice
that the malfunction was due to a loss of power,
and might suggest focusing on the power subsystem.
At this point, the system has the ability to load
in a new rule set containing productions specific
to power subsystems. As the malfunction becomes
isolated to a smaller subset of possible faults,
we might load a production set specific to the
power subsystem of a particular satellite, a pro-
duction set specific to solar arrays, and even a
production set particular to environmental causes
of solar array failure.

One advantage of this scheme is that It pro-
vides an efficient way to manage large rule bases.
Individual groups of productions can reside in
separate source files (and on different physical
devices). A group of productions does not need
to reside In memory until they are needed. Also,
the addition of a new production set is often
triggered by the system's attention to a particu-
lar goal. In these instances, not only can the
goal hierarchy be used as a framework for building
production hierarchies, but it can also serve as
a framework for dismantling them. If a production
set was brought into memory as a response to the
creation of a particular goal, then it can be

removed from memory when that goal has been
achieved.

The addition of a hierarchical production
scheme into the expert system environment works
well in conjunction  with the goal-directed
partitioning strategy discussed earlier. The
resulting system is one in which, conceptually, a
library of production sets relevant to different
problem solving tasks is available. Several sets
are selected during system execution, and the
goal-directed nature of the system guides the
search through these selected sets. Together,
these techniques provide an efficient mechanism
for managing large rule sets.

V  ALTERNATE MEVIORY STRUCTURES

The efficiency of a data representation is
usually measured along two dimensions: space and
time. We have already considered the space effi-
ciency of working memory; a memory management
scheme based on hierarchical levels of working
memory has been described. We still need to
address, however, the time efficiency of the
operations performed on working memory.

The operations standardly performed on work-
ing memory are pattern matching against the indi-
vidual data elements, and updating the contents
of the data base. Efficient Implementation of
these operations is provided through the wuse of
the Rete Match Algorithm previously discussed.

The Rete algorithm was explicitly designed
to exploit the following characteristics of
production systems:

1. Due to the fact that productions test
against the same data set, many patterns will be
similar, and matching against features of patterns
which are the same can be done simultaneously.

2. The contents of working memory change
slowly over time. Therefore, pattern matching
information can be saved between match cycles to
avoid redundant calculations.

Temporal redundancy is critical to the effi-
ciency of the Rete algorithm. Imagine a situa-
tion, however, in which a set of data items
changes frequently (for example, during every
recognize/act cycle). Each time any data element
is updated, all of the production instantiations
in the conflict set which depend on that data
item must be removed or tagged invalid. Then,
the new value of the data item must be matched
again to form the set of valid instantiations.

This is clearly inefficient; yet, this is
precisely the situation which exists in a real-
time environment. Real-time systems must deal
with such data as health and status information,
links to other real-time information networks,
and feedback from sensor systems. Such data may
change hundreds of times in the interval between
production cycles.



One solution to the resulting efficiency

problem is to provide additional, globally
accessible memory structures in addition to
standard working memory. A variety of these

structures have been implemented in HAPS, includ-
ing system attributes, arrays, and tables.
Pattern matching must now occur in two stages.
Matching against standard working memory remains
a data-driven process; that is, matching is done
at the time the data base changes. Matching
against alternate memory structures, however,
must be perform dynamically, at instantiation
time (that is, at the start of each cycle).

In addition to solving some of the problems
concerning the processing of real-time data, this
scheme simplifies the interface to other software
systems. This permits the development of expert
systems consisting of many components, not all of
which are rule based. Finally, this scheme allows
for the possibility of creating separate match
procedures for each data type. Thus, in future
systems, the idiosynchratic behavior of each
memory structure can be identified and exploited,
in the same way the Rete algorithm takes advan-
tage of the temporally redundant nature of a
standard working memory.

Vi CONFLICT RESOLUTION

Conflict resolution is the process whereby
one production is selected to execute from the
set of all applicable Instantiations. Two types
of conflict resolution strategies are common:
elimination strategies, and selection strategies.
An elimination strategy is one which rules out
the consideration of certain alternatives.
Selection strategies are then used to pick among
the remainder. An example of an elimination
strategy is refraction, which rules out production
instantiations which have already fired in the
past. A common selection strategy is specificity,
which selects specific productions over more
general ones.

The standard conflict resolution strategies
have an important flaw: they are in general
unaware of the characteristics of the system
environment, and are thus unresponsive to changes
in this environment. This is especially true of
those characteristics which directly concern
system efficiency. An intelligent system would
be able to maintain a set of system performance
statistics over time, and would Include In the
conflict resolution process strategies which
enable the system to make use of these statistics.

This scheme can be demonstrated through the
use of an example. Suppose a large expert system
has been installed and has been operating in the
same environment for a fairly long period of time.
Assume also that a statistical summary of past
system performance is available. Now, in a cer-
tain context, several productions are able to
fire, each representing a different approach to
the solution of the problem at hand. One produc-
tion may have a history of consuming large amounts
of CPU time, and another may have a history of
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seldomly leading to a satisfactory solution. It
might be desirable to eliminate these productions
immediately. Of the remaining rules, some might
be more likely to lead to long-term solutions than
others, and it may be desirable to select these
first. Thus, conflict resolution can be used to
help allocate resources to tasks with the greatest
benefit.

Conflict resolution strategies can also
address real-time constraints by enabling produc-
tions themselves to alter the conflict resolution

strategies in critical situations. For example,
suppose an expert system is given a limited amount
of time to solve a critical problem. If time

begins to run out, we may want to consider only
those productions which always produce quick
solutions. Although this will probably provide
only a short-term failure workaround, the time-
critical nature of the situation will have dis-
appeared, and the system will now have more time
available to pursue a more permanent solution.

Finally, many systems require that some
operations (In this scheme, for example, the
matching against alternate memory structures) be
performed at instantiation time. The conflict
resolution process wusually assumes that it s
given a valid conflict set—a set of production
instantiations all of which have all of their
conditionals satisfied. Here, however, the system
has at instantiation time a Ilist of candidates
for the conflict set. These candidates are not
valid members of the conflict set until they are
found to satisfy the set of tests performed at
instantiation time.

This suggests that a type of meta-conflict
resolution procedure be available. Meta-conflict
resolution stategies are able to consider such
statistics as ~cost for instantiation and can
eliminate selected candidate instantiations before
they are tested for validity. For example, if
the system is performing under a time-critical
condition, it Is reasonable to immediately elimi-
nate candidate instantiations which would require
a great deal of some expensive processing (e.g.,
inferencing; see Section VIII) to enter the con-
flict set.

VIl CONTROL STRATEGIES

Most production systems use the same general
control structure; this is the recognize/act
cycle. In goal-directed systems, there is an
additional issue which needs to be addressed.
The system has a hierarchy of goals which need to
be achieved, and one must be chosen to be the
focus of attention on each cycle.

One of the most common search strategies
applicable here is depth-first search. In this
strategy, a goal is pursued until it is achieved,
or, if it sprouts subgoals, until all of its sub-
goals have been achieved. Another applicable
search strategy Is the breadth-first search, in
which all of the subgoals of a particular goal
are expanded one level before any deeper



114 R. Sauers and R. Walsh

expansion occurs.

These types of search strategies are adequate
for some applications. They do, however, have a
basic inherent flaw: both of these blind search
strategies are unresponsive to changes in the
system environment and are, therefore, unable to
take into account the particular characteristics
of the problem being solved.

This flaw is an important one when we are
concerned with system efficiency. As a simple
example, consider the situation in which a system
has two methods available to achieve a particular
goal, each of which involves the achievement of a
different subgoal. The system may not, however,
have enough information available to be able to
select the more efficient method in this particu-
lar case. Using a blind depth-first search
strategy, the system may waste large amounts of
some scarce system resource (for example, CPU
time) pursuing one goal when pursuing the other
would have led to an immediate solution.

This problem is closely related to those we
have identified during the analysis of conflict
resolution. Thus, it seems appropriate here to
apply techniques which are traditionally reserved
for conflict resolution: the use of selection and
elimination strategies. We can make use of system
performance statistics to produce a more effective
search of the goal hierarchy, thereby allowing
system resources to be applied in the directions
where they will most Ilikely produce desirable
results.

For example, in order to solve the problem
discussed above, an elimination strategy can be
used which rules out the pursuit of goals which
have consumed more than a specified amount of a
given system resource. Alternatively, a selec-
tion strategy may be used which pursues those
branches of the goal tree which have produced the
largest amount of new information for each unit
of some selected resource. Similarly, these con-
trol strategies can be used to prevent the pursuit
of goals which have failed under similar circum-
stances in the past, and to prevent infinite
recursion.

Control strategies work well in conjunction
with the explicitly represented goal hierarchy.
For example, the goal hierarchy may contain an
explicit OR branch; that is, in order to achieve
a goal, we can either achieve one set of subgoals
or a second set of subgoals. This represents a
situation in which there are multiple possible
solution paths. The system can begin to pursue
one solution path and then decide, through the
use of a control strategy which monitors depth of
subgoal expansion, that it might be more advan-
tageous to switch to an alternate solution path.
The resulting control structure is one which is
capable of recovering from situations which human
experts would be able to avoid, yet which could
not be handled using more traditional production
system architectures.

VIl INFERENCE

Another problem which is directly related to
memory management is the need for inference. This
need can be demonstrated quite easily. Suppose
some pattern in the conditional portion of a pro-
duction does not match. There are at least two
reasons why this may occur:

1. The data item being tested for represents
a proposition which is false in the current
context.

2. The proposition is true in the given
context, but is not explicitly represented in
working memory.

In the latter situation, we may be able to
infer the truth of the desired data element from
other data items which are explicitly represented.
In this case, an interpreter which does not permit
inferencing will disallow the execution of what
we  would like to be a valid production
instantiation.

Many knowledge representation schemes pro-
vide automatic inferencing capabilities (e.g.
Genesereth, Greiner, & Smith, 1980). In these
schemes, inferencing is performed at the time the
data base is queried. Inference mechanisms such
as these wusually require the representation of
some form of meta-level knowledge. These schemes,
however, are not currently applicable in the pro-
duction system scenario. This is mainly due to
the fact that we can take advantage of properties
such as temporal redundancy only for data items
which are explicitly represented in memory.

For this reason, inferencing in the produc-
tion system scenario is an expensive operation.
One method for increasing its efficiency is to
incorporate the following into the inference
scheme:

1. The individual patterns on which Infer-
encing is permitted should be tagged. This
ensures that inferencing is permitted only on
those clauses for which it is desirable.

2. Inferencing is performed only when the
appropriate data elements required for the
instantiation of a chosen production are not
explicitly represented in memory. Furthermore,
this inferencing is delayed until instantiation
time and is only executed for instantiations which
have passed the meta-conflict resolution process.

Under this scheme, we can associate a cost
with any given inference mechanism, and potential
instantiations  which  would require  extensive
calculations during the test for validity can be
eliminated by meta-conflict resolution strategies.

Finally, it has been shown that the inference
procedures required to derive new data elements
are not uniform over all data types (e.g., Fox,
1979). Thus, it is desirable for the user to be
permitted to define external inference routines
and to indicate which types of data element these
procedures are designed for.

Combining these ideas results in a simple



inference scheme which provides many of the
advantages of automatic inferencing mechanisms
without imposing an unnecessary strain on system
resources.

X CONCLUDING REMARKS

The research which has been described in this
paper has identified some of the problems which
will be faced by the designers of future expert
systems. It has also suggested several design
constraints to be considered in production system
architectures designed to handle these new expert
systems.

These considerations have led to the design
of a new production system architecture known as

HAPS, the Hierarchical, A.ugmentablc Production
syystem architecture. HAPS is a goal-directed
system, which allows both hierarchical levels of

the dynamic construction of
production hierarchies. In addition, HAPS pro-
vides predefined global memory types designed to
facilitate the implementation of large expert
systems in real-time situations.

working memory and

The system also provides modular, modifiable
sets of control strategies and conflict resolution
strategies which make the system responsive to
changes in its environment. These strategies take
into account cost estimates, history of system
statistics, and availability of scarce system
resources in order to guide the problem solving
process more effectively.

Inference procedures are also
handled, and cost estimates of operations per-
formed at Instantiation time can be included in
meta-conflict resolution strategies.

User-declared

system is equipped with a
sophisticated production compiler designed to
increase the overall level of system efficiency.
It Is hoped that systems such as HAPS will greatly
facilitate the building of the types of expert
systems which can be expected in the near future.

Finally, the
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