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Abstract: This paper presents a review of different
approximate reasoning techniques which have been pro-
posed for dealing with uncertain or imprecise know-
ledge ,especially in expert systems based on produc-
tion rule methodology. Theoretical approaches such

as Bayesian inference,Shafer's belief theory or Za-
deh's possibility theory as well as more empirical

proposals such as the ones used in MYCIN or in PROS-
PECTOR, are considered. The presentation is focused
on two basic inference schemes the deductive infe-
rence and the combination of several uncertain or im-

precise evidences relative to a same matter. Several
kinds of uncertainty are taken into account in the
models which are described in the paper different

degrees of certainty or of truth may be associated
with the observed or produced facts or with the "if..,
then..." rules; moreover the statements of facts or
of rules may be imprecise or fuzzy and the values of
the degrees of certainty which are used may be only
approximately known. An extensive bibliography, to

which it is referred in the text, is appended.

Key words: uncertainty; imprecision; inference; com-
bination of evidence; belief function; possibility;
necessity; degree of truth; fuzzy set; production
systems; expert systems.

1-Introduction:
we have to deal
may be uncertain,
te, mutually inconsistent,
called approximate,inexact, plausible reasoning me-
thods are strongly needed in knowledge engineering.
Inference procedures with uncertainty are becoming mo-
re important in rule-based expert systems since the
knowledge given by human experts is often uncertain
or imprecisely stated.

For a long time, the Bayesian model had been the only
numerical approach to inference with uncertainty,sin-
ce no quantification was introduced in the patterns
of plausible reasoning analyzed by Polya[33]. Several
mathematical models of uncertainty, which depart from
the usual probability approach, have been recently
proposed, particularly Shafer's belief theory[40]and
Zadeh's possibility theory [53]. In the sane time,
many researchers in Artificial Intelligence have felt
a need for alternatives of the standard Bayesian ap-
proach (see[45] for a discussion) and have proposed
and used (generally with success) more empirical mo-
dels, particularly in expert systems such as MYCIN
[41], PROSPECTOR [11], CASNET [481, SPERIL [20],(see
also [27],[13],[27],[39]).

In the following, we try to present a synthetic view
of most of these proposals within the compass of a
small number of pages. The paper is organized in three
main parts. The first part is devoted to an unified

The pieces of information with which

in decision or reasoning processes,
imprecise or even vague, incomple-

and time-varying. Thus,so-

presentation of the different mathematical approaches
of unrertainty, including Shafer's belief theory, Za-
deh's possibility and fuzzy set theories and probabi-
lity theory. Then, the deductive inference scheme with
various kinds of uncertainty is deall with in the {ra-
mework of probability andfor possibility theory. Last-
ly, the combination of several uncertain or imprecise
cvidences, relative to a same matter and possibly par-
ttally inconsistent, is discusscd using Dempster-Sha-
fer's approach.

TI-Diffenent mathematical approaches of uncertainty
embedded in 4 common framework

&Eﬁg&iiﬁng the uncertainty ol vvenly
We start with an clementary prescentation of Shafer's
helief theory (46 ){see alsa™10T Grl ] tor an ALl.-
oriented introduction),whose probability theory and
Zadeh's possibility theory are particular cases,as
it willt be seen later,
Let U be the exhaustive sel ot Lthe possible {and mu-
tually exclusive) values of a quantity X. X may be a
numer ival quantity or just a "parameter” that takes
non-numerical values. U will be supposed, finite for
simplicity, except if the contrary is cxplicitly sta-
ted, [ is sometimes called the universe of discourse

or the frame of discernement. In the f;ITnGinnT wi

are interested in propositions of the form "the Lruce
value of X is in A",or more briefily "X is in A",where
Agl, Let T(U) denote the set of suhsets of II;
T(U) may be viewed as the set of rhe events,eachevent
corresponding to a propoesition,

Let m be a set function from T(U) teln,1|,such that

aw{@P) = 0; AT m{A) = | (i)

mis valled a basic probability assignment and is sup-
posed to represent an uncertain body of evidence re-
garding the value of some quantity X. A certain body
aof evidence wauld be represented by a statement 'X is
in F, exactly and certainly" (i.e.m(F)=I and ¥A £ F,
m{A)=0); note rhat a certain body of evidence does
not necessarily lead to a precise specification of the
value of ¥X({the value of X would be knowvm with precisic
only if F is a singleten of U). When the body of cevi-~
dence is vncertain, the subset F is randomnized (in-
deed mathematically speaking,{|)expresses that m re-
presents_a random set), m is 4 probability distribu—
tion on‘g(U),not onll, Thus,m{A)} is not the probabili-
ty of the proposition 'X is in A' in general, The sub-

uncertain evidence under consideration,
From m 2 so-called belief (or credibilitx) function

Cr,from®(U) tof0,1], is defined as

¥Yaceu, Cria) = m{B) (2)

=



Thue the credibility of the proposition "X is in A"is
computed from the valuegsof m attached to the proposi-
tions 'X is in B' which entail "X is in A'.

By duality a so-called plausibility function P1,from
Q) tel0,1]1, is defined as,the overhar danut1ng the
cumplement,Vngu.p1(a)=170r(3) (»

) n(B) (&)

An @

Thus the plausibility of the proposition 'X is in A'
is computed from the values of m attached to the pro-
positions which de  not entail "X is not in A";cthe
plausibility of an event corresponds to the non—credi-
bility of the oppesite event,which is natural. 1t can
be checked that

Lr{@=0; PLH{@I=0; Cr{U)=1; PL{U)=! (35)

.if A€ B,then Cr{A)<cr(B),P1(AY-<P1(B} {(b)

W ACUTL(A) - Cr(A) (7)
CHACUCr(A)+Cr (A1, MI(AY+PTI(AY 21 (8)

All these properties are in apreemenlt with the intui-
tive meaning penerally attached to the concepts of
plausihility and credibilitLy, For instance (8} shows
that two opposite events may secn both plausibic whi-
le it is allowed to {ind an event not credible and Lhe
opposite e¢vent too. In this framework the situation
of total igoorance can be easily modelled, while it is
not possible to deal with ignorance in an effective
manner in the framework of probability theory. With
this apporach it is possible to distinguish betwecn
the lack of belicf and disbelicf since Cr{A)=0 does
nol entails Cr{E)=1 = P1{A)=0, while Cr(E)=1 cntails
Cr{A) 0.

This moedel dees not seem in disagreement with the te-
sic ideas used by Colby and Smith[3] in Ltheir empiri-
tal bub quantitative approach of belief.

Two important particular cases of credibility and plas-
sibility functions are got for special structures of
the set of focal elements,

= When the only possible focal elements are singletons
of U{h.e. m{A)=0 as soon as A has more than one ele-
ment),we clearly recover a probability measure

P=Cr=P1 and (3) reduces to P(A)+TP{RA)=1. Thus probabi-
lity corresponds, in terms of m, to an evidence which
is precise but "inconsistent"(the focal elements are
mutually exclusive since they are eingletons).

- When the set of focal elements can be ordered in a

nested sequence Algazg.. {-hn,it can he shown (see

for instance[40] that

vYac U, YB gU,Cr(AnBY=min(Cr{A),Cr(B)) {3)
YAGU, ¥BgU,PL{AUB)msmax(PL{A) ,PI{B))  (10)
{9) and (10) contrast with VAEU, Ve cl, if

AnB= @, then P(ALB)= F{A} + P(B) (11)

A plausibility function that satisfies (10) is nothing
but a possibility measure in the sense of Zadeh[54];

a credibility function whiLh satisfies(Q) is called a
1ity expressed by (3) mirrors the fact that the neces-
sicy of an event corresponds to the impossibility of
the opposite event in modal semantics. In the follo-
wing,a possibility measure and the dual measure of ne-
cegsity will be respectlvely denoted by I and N,the re-
lacion YA €U, N(A) =1=11 (A) (12)

contrasts with the probabilistic situation where

P{A) =1 - P(R).

Pogeibility and necessity correspond, in termg of m,
to an evidence which is comsistent{all the focal ele-
ments are nested;in that case Shafer[40] wmpeaks of
consonant plausibility and belief functions)but which
is not precise in general with respect to the specifi-
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cation of the value of the quantity X under conside-
ration(at most one focal element is a singleton).
{5),(9) and (10)yield as immediate consequences

P AQU,mindNCAYLN(RY ) =0, max (T{AY, (AN =1 (13)
CVASU N(AD O =TI =1, (A <] =+ N(A)=D {14)
{(1m)expresses thar an event must be completely possi-
ble before being somewhat necessary. An event whose
probality or necessity is equal to | can be regarded
as cettain, while it is not the case for an event who-
se possibility is | since the oppusite event may elso
have a possibility equal te 1.

An important comsequence of (10) is the fact that a
possibility measure{and then the dual necessity mea-
sure) can be expressed in terms of a so-called possi-
bility distributionsw, from U to[0,7 1, defined by

¥ ucll, ®(u) = n{{ul)and then

YAagl, T{A) = max s(u) {(15)
uch

Yacl, N(a) = min{l -X{u)) {16)
ue ¥

The extension of (15) and (16) Lo non-finite sets such
that B", is obvious. Since N{U) = !, £ is normalized
in the sense that maxMu)=!. When X js the characte—
ueif
ristic function of a crisp subset ¢ of U(then m{Q)=I
and m{A)=0 if A#Q), (13} and (lﬁ) reduce respectively
to N{AY= if Ang#P and N{A)= { if A2Q
0 otherwise 0 otherwise
the links between possibility and intersection and bet-
ween necessity and inclusion. When cvaluating the possi-
bility of an event, only the most favorable case is ta-
ken into account as it is shown by (15), which departs
from probability where the evaluation is cumulative

, which shows

Py = 2 pHu).,
From a practical point of view,it is impertant that
probability, possibility and anecessily measures -

can be directly exnresqed in terms of a distribu-
tion which requer only!U|~1 numerical values tu be de-
fined, while 2 0'_2 values are needed to define a
functlon m.

N.B.: For a discussion of the axjomatice of plausibili-
ty, credibility functions, possibility, probability and
necessity measures in a common framework, see Dubois
Prade[ 9); see alsol91for a "possibilistic" interpreta-
tion of histograms concurrently with the usual probabi-
listic interpratation;this double interpretation ena-
bles to build possibility, probability and necessity
measures hased on a same body of evidence such that

¥ A,N{A) s P(A)ST (A), which is satisfactory for the
intuition,

b) - Fuzzy events and vague statements : From an uncer-—
tain body of evidence, we may want to evaluate the pro=-
bability, the possibility,or the necessity of a propo-
sition which is itself vaguely atated. Zadeh(5l Jhas in-
troduced the concept of a fuzzy set in order to repre-
sent vague predicates such as "tall","large",...More
recently,in PRUF,this author has proposed to represent

a vague proposition by equating the possibility distri -
bution of the variable whose value is restricted by the
propogition,with the membership function of the fuzzy
set representing the meaning of the vague predicate
(possibly compound}present in the proposition;this ap—
proach enables also to deal with fuzzy quantifiers such
as'ppsat','several',’'a few',,.. SeelS3].

LetB(U),the set of fuzzy subsets of U. A fuzzy set is
defined by its membership function pp from U tol0,1].
Usual set-operations are extended toﬁkuzzy setg in the
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following way[51)(se2[8 ]Jfor alternative definitions).
. complementation fucU.uK(u)-l-uﬁ{u) (17

(18)
(19)

The usual properties of set-operations are preserved
except the non-contradiction and excluded-middle laws
which are weakened in VusU m1n(uﬁ(u) ux(u))S% and in

. intersection VucU,uAnB{u)=min(uA(u),uB(u))

. union VU€U’HAUB(U}-maX(uﬁ(u>’UB(U))

Vuell max(u (u), ux(u))aj, it is npot surprising that an

111-defxned set somewhat overlaps its complement which
is itself not-accurately defined. The fuzzy set inclu-
sion {5 defined by th#aKJ Ha (u)<u {u) (20) .'bre that

viewing Hy and n_ as twao pnssxblllty distributions re-

B
presenting two uncertain bodies of evidence,the pos-
gibility and the necessity measures defined from bg

are respectively greater and smaller than the possi-
bility and the necessity measures defined from Uy

which is quite natural gince the bady of evidence re-

presented by uB is less informative than the one re-

presented by Byt The standard definitions of the pro-

bability,of the possibility and of the necessity of
a fuzzE event Ae T(U) are respectively given by

P{a)= uﬂ(u).p(u) with pu)=P{(ul)(Zadeh[52]1) (21)
uel)
f(a)=max minfu, (u),m(w)) withn(u)=n({u}) (Zadeh[53]X22)
uell
N(A) = min max(h (u), | -»u)) (23
uell

when U is not finite,”2_' is replaced by a Lebesgue-
Stielges integrai,’'max’ and'min’ by 'sup' and 'inf',
(21} is the expression of an expectation and (1!)still
holds using (18} and (19). It can be easily checked
that (22) and {23) generalizes {15) and (16) and that
(g)h(lD),(lz)still holds using (17)-(19)as well as
fkeS{U)."(A)zN(ﬁ);however,only weahker versions of (13)
and {14)hold,due to the lack of nen—conttadiction and
excluded-middle laws for fuzzy gets, From a multi-va-
lued logic point of view,{22)still evaluates the non-
emptiness of a generalized intersection while (23}is

a degree of inclusion. The fact that probability,pos-
sibility and necessity measures are increasing with
reapect to set inclusion as defined by (20),is compa-
tible with the entailment principle(see{54])"if X is

in A,then X is in B"as soon as A€8 in the as=nse of ().

It may seems surprising that a measure of a fuzzy e—
vent ig a scalar rather than a fuzzy number;indeed

an alternative appreach which yields fuzzy numbers
exists (see[8)for instance),but ecalar evaluationa

are generally pufficient for practical purposes,Smets
[43]has defined the plausibility and the credibility
of fuzzy event in a natural way &8 upper and lower ex-
pectations (seel6]).Yager(50]has introduced generali-~
zed plausibility and credibility functions defined from
fuzzy focal elements (see also[21]),

c) non-interactivity : The notion of non—interactivi-
ty in possibility theory plays a role analogous to that
of independence in probability theory., Two quantities
or varisbles, X and Y,which take their values respec-
tively on U and V are sald te be non-interactive if
their join possibility . d1str1but10n1(x Y,frOm Ux¥V to

[o, I;supposed to be normalized,is such that
¥(u,v)elxv, r (u v)-mmlxx(u) , x (v)) (24)

where Xy and x, are the marginal possibility distri-
butions obtained from Iﬁ ¥ by projectien :

xk(u)-supnkly(u.v) and xY(v)=sup!k
veV uel
{(24) expresses the fact that the fuzzy set of the pos-
sible values of X does not depend on the value of ¥
and reciprocally. Defining the cartesian product of
twe fuzzy sets A and B of U and V respectively, by
VhrU.VV£V.phxﬁ(u,V)-min(Ph(u).PB(V)) {26}

it can be shown,if X and Y are non—interactive varia-
bles (see[35], )thnt

(25)

Y(ro]

vAcH(UY, VB XYY, Ny ¢ (AxBY=min{n, (&), 7, (B)) (27
X,Y(A+B)*max(ﬂx(ﬁj.n?(B)) (28)
Y(Axa)*min(ﬁ (ﬁ),NY(B)) (25}
_ NX’Y(Afﬂ)-max(Nx(A).NY(B)) (30
where A+B=AxE, and HK,Y'NK.Y'HX'NXP¥’NY are the pos-

sibility and necessity measures built from]& Y’xkand
1
x, respectively. When X and Y are interactive,the sign

¥

'=' is geplaced by '='in (27) and (28) and by ':'
{29) and (30).

Remark : In MYCIKI41], 2 measure of belief and a mea-
sure of digbelief in the hypothesis h knowing the evi-
dence e,respectively denoted by MB{h,e) and MD(h,e},
are used. From the definitions of MB(h,e) and of
MD(h,e)in terms wf the probabilities P(hle)and P{h},
it can be easily checked that {(’'4' means the negation}
MB{ah,e) = MD(h,e) an
MB{h,e)>0+MD(h,e)=D; |-MD(h,e)} <1+ MB(h,e)=0 (32)

{31) and (32} are analogous to (12) and {14) respec-
tively,viewing MB{h,e}as a necessily measure and

M (h,e)as the complement to | of a possibility measu-
re, Indeed,the following formulae are used in MYCIN
{aand v denote the conjuxtion and the disjunction res-
pectively),
HD(hIAhZ.E)’mﬂX(HD(hI.e].Nn(hz,e)) H

in

(33
Mm(h]vhz.e)-min(HD(hl,e), HD(hZ,e))
MB(h!Ahz.e)-min(HB{hl.e),MB(hz,e)) H (34)

MB(h h,,e)=max(MB(h ,e) MB(h,,e))
which are the exact counterparts of {(27)-{30).

d) degree of truth : We close this background on the
representation and the measurement of uncertainty with
a ghort discussion of the relation between the notion
of a degree of truth and possibility and necessity
measuren., A degree of truth may be viewed as a measu-
re of the conformity betwcen a representation of the
contents of the propesition under consideration and

a representation of what is actually known of the rea-
licy. Thue the degree of truth of a propesicion is re-
lative to our state of knowledge. Let ug suppose that
the uncertain body of evidence ir represented by a
poesibility distribution x, and that the contents of

the proposition p="X is in A" under consideration is
aleo represented by a poseibility distribution ﬂh

{which is crisp ¥ p iz a non—vague statement).Then,
using (22) and (23) we can compute the possibility that
p iBs true given e:
m{p,e)=sup mm(:r (), 2, (u))

uell
and the necessity that p is true given e :

(35)



N(p,e)=inf max(¥ (u), 1- X (u)) (36)
. p e

ucl
N.B.: Cayrel, Farreny, Prade [4] have designed a
procedure of pattern-matching where M(p,e) and N{p,e)
are uwsed in order to evaluate the scmantic similari-
ties between patterns and data.

It has been shown that either when » is the charac-
B

teristic function of a singleton (i.e¢. the evidence
is precise) er when the propositionp is non-vague,

the quantity v{(p,e)=_li{p,e)+N(p,e) (37
2

can be reparded as a genuine degree of truth in the
sense that the truth-functionality is preserved for
the negation,the conjunction and the disjunction; see
Dubois Prade [ I0)and also Gaines [14] . For instance,
we have viap,e) = 1 - v{p,e) (38)
As poioted out in Prade {34], the certainty factor
CF(h,e)=MB(h,e)-MD(h,e), used in MYCIN, can be vie-
wed as a degrec of truth up to a scaling effect sin-
ce v(h,e)= 1+CF(h,e) (39)

2

coincides with (37) in the analogy presented in che
remark of section TI,c., Zadeh [54) has introduced a
ruzzy degree of truth named'compatibiliey'. The com-
patibility of & with respect to X iz a fuzzy set
CP(p,e) of the Feal interval [0,1]%whose membership
function is defined by

¥ref0,31, PCP(p.c)(r)= sup n;(u) (40

r = xh(u)
=0 if j%—l(r) =@

CP{p,e) is nothing but the fuzzy set of Lhe possible
values of the variablex}(u) when the possible wvalues

of u are restricted by the possibility distribution

%, . It can be shown [33 that

i{p,e} = sup min(r, (r)) {41)
re[0,1] Fereey

N(p,e} = inf max(r,l = u,. {ry} {42)
relont] Hep(p,e)

Thus CP{p,e) contains the informations N(p,e) and
N(p,e). Using extended operations on fuzzy numbers

[8] , CP{(qp,e) can be easily expressed in terms of
CP{p,e), and CP{pms,e) or CP{pvg,e} in terms of CP(p,e)
and of CP{q,e), See [35] ,[7] .

Conversely,given the possibility distriburion xp of

the proposition under consideration,and its fuzzy
truth-value¥, it is pessible to get the greatest so-
lution (in the sense of fuzzy set inclusion) L of

the equation ©=CP{p,e); we have
VucU,x:(u) = ut(’b(U)) (43)

K+ representawhat we may conclude about the reality
krowing that the propesition p is ¥ -true. See [54] ,
[35]. Note that x} -xP tor u_(r)=r, ¥r; ifgis a

crisp subeet of [0,11 (particularly ify is a scalar
value);(; is non fuzzy.

III - Deductive inference with uncertainty :

a) — The general problem under consideration :Let us
consider a causal link between a variable Y taking
its values in V and a variable X taking its values in
U, expreased by a collection aof rules,

if Xig in Ai, then ¥ ig in Bi with gi (44)

where Vi’ A;@U, B,gV and g; is a degree of uncer—
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tainty of the rule such as a probability or a possi-
bility degree or is a truth-value; the subsets Aiand

Bi may be fuzzy; moreover,vhatever its nature g may

be only approximately knowm and the set of its possi-
ble values represcnted by a fuzzy pumber. Given some
uncertain body of evidence concerning the value of X,
the problem consists in deducing what can be said about
the value of ¥ taking into account the uncertainty of
the rules and the fact that they may be only vaguely
stated, Using representations in terms of probability
or in terms of pessibility,this general problem can
reccive at least approximate solutions in geperal. In
the following,we review the main results.

b)- Complete description of the causal link :Let us
suppose we know a possibility distributionnx of the

variable % and a conditional possibility distribution
Xy defined on VYXU which restricts the possible va-

lues of ¥ when the value of X is given. Then the pos-—
sibility distrihutkntxx Y attached to the pair (X,¥)

is obtained as
Yuel, ¥ w.v,rx,,‘,(u,v) =rnm(xY ; K(v"") , xx(u))

By projection we get the possibitity distribution of ¥
Vvev,ﬂ}(v)=sup min(xYHx(v,u),n&(u)) (4b)

urll
The;umlognus of {46) in terms of probability is clear-
ly VveV p (v)=Zy py | (voud.py(L) (47}
The preblem in possibility theory of deriving x |

“rl%lY from n& ¥ remains open, however see Che Xty
L]

proposals of Wguyen [30], Hisdal 118}, Zadeh [53].We
may think of using operators other than min in (46);
other noticeable eligible operators are the product

or the operator T defined by T(a,b)=max(0,a+b-1);ho-
wever ,min is the greatest of all the possible eligi-
ble operators (sec (357). In generalJrle nr,rylxare

and Bi's af (44) are not

(45)

not available since the Ai's

to deal with an incomple-
link.

just singletons;then we have
te degcription of the causal

c)~ Incomplete description of the causal link :

a)- in terms of probability: Let us consider the n
rulesPif X 18 in Ai.then Y is in B, with P(Bi|Ai)(and

Y is in Fi with F(F, 14, )=1-P(B,|A.) together with the

rule"if ¥ is in Ac,then Y Is in V (P{VlAo)=1) where
(Ao,AI.....An) forms a partition of U(i.e. the Ai's

are exhaustive and mutually exclusive), then from Px

and these collection of rules,we can deduce

p,lv)= ;;‘ P(Bil A}).P(A])+ k P{Bkl Ak) .P{AK)+P (A0)
Yoot TR "2:1 5, | ™

where P{Ai)= Z px(u)
uchi

with the underlaying assumption that the probability

is distributed uniformly in the designated subset be-

caugse no information is available. See ['21) . Ighizuka,

Fu and Yao [21] have proposed an extension of this ap-

proach when the Ai's are fuzzy sets.

& ) — In terms of possibilicty : Again we consider a

collection of rules

if X is in Ai, then Y is in Bi is T true (49)

where the Ai's and the Bi's may be normalized fuzzy

sets (which can be viewed as possibility distributions)

(48)
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and where ¥%i is a fuzzy truth-value {(i.e. a fuzzy
set of [0,1] which may represent linguistic truth-
qualifications,see [54] , 171 }. Note that there is
no hypothesis of mutual exclusiveness or of exhaus-
tiveness concerning the Ai's.

Each rule (49) expresses a partial knowledge about
the unknown possibility distribution XYIX.More preci-

sely "if X is in Ai, then Y is in Bi" can be under-
stood as

chv,uai(v):irg mln(tfo(v.u).’LAi(u)) {507
(50) expresses that the possibility distribution of

Y,computed from (46) witthx= Mai is included in Bi.

The greatest solution of (50} with respect to fuzzy
set inclusion is given by {see 7387, [35] )

» U)_[“L““J\i(u)suﬂi("’)(SI)

!
(,v)=y ug; (W ifug () rug, ()

yueU,VveV,

|
¥ AieBi
implication which is sometimes known as Godel-Brouwer
implication (see [14] );whan we use the product ins-
tead of min in {50),we get Bo: (V)
. BRI \V
Yucl,¥vrv, 2 (u,v)=amin(l, !
pAi(uJ

=] if Fﬁi(u) = 0

Yi X Ai-»Bi

defined by (51) corresponds to a multivalent

AivEi Yif uy g (WA0 (52}

which corresponds to a multivalent implication alrea-
dy considered by Goguen [1?1 and Gaines [147]; lastly,
when we use g(a,b)=max(0,a+h*l),We get

. A N . =mi -
Yucl,PveV, o lM__Bl(u,\.r)‘frlm(I.I uAi(u)+uBi(v)) {53)

which corresponds to tukasiewicz implication.lt can
be shown that

3 52 g |
P aivBi ™" aieBi ¥ Ai+Bi (34
Using {(43),(46) aad (51),from the rule i and an uncer-—

tain body ol evidence concerning the value of X repre-
sented by?fx,supposed to be normalized,we deduce

VVFV,HY(V}= sup min(u!i(ui (u, v L)) (55)

ucl
It can be noticed that u

Al+Bi
AixBi(deflned by{26)) is also

a scolution of (50),however it is not the greatest sclu-
tion generally and its use in (55) leads to a smaller

nm, {in the sense of fuzzy set inclusion} which thus
would be arbitrarily precise, When uzi(r)zr, ¥r, il

nx- Ui {and more generally if "xsuﬁi)'ue BRL Ty=ugn.
by {553)which is in conformity with the usual modus po-
nens;if ﬂx-uxi, nY(v)=I,b’ch(i.e.Y remains indeter-

minate)which is naturzl;as soon as Ty is not comple-

tely ipcluded in u some level nf jndetermination

AL’
appears(mote precisely it can be shown that
¥v, n_(v)zsup 7 {u) (see [35] ),

Y " .?u)-é

Al

It must be pointed out that {55} does not allow to
infer from "if X is in Ai, then Y is in Bi" and from
"X ia almost in Ai™ that "Y is almost in Bi" except
if we introduce fuzzy tolerance relations Ru and Rv

which enable te enlarge AL and 8i respectively in
sup min(u,. (W), p, {u,u’))2p,.(u) and in
atel Al RU Al
- L}
sup m\:n(“ni(")’}‘w(""’ ))3uBi(V),uRUand u

, modeling
v'e

RV
approximate equalities; see [35].
Provided that the collection of rules is consistent

with the existence of a unique n sthe global result

¥l X
is obtained by aggregating the different results pgiven
by (55) for each rule by means of the idempotent ope~
rator 'min’.

n.B. : The approximate reasoning scheme which leads

to (53) can also be discussed equivalently in terms

of fuzzy truth-values intwmducing the compatibility

of u,. with respect to Ty and the compatibility af

Al
u with respect to Ty See Baldwin 2] ;3 it can alse

Bi
be shown that (5%) generalizes the rule of detachment
in multivalent logics,see [7] and |35) ,For other dis-
cussioms see [25)1 , [281, [421,[461, T47I.

Remark : If we suppose that a possibility measurel
and its dual necessity measure N are defined on a set
of prepositions p,q,...,then it can be shown that
(Prade [353T)

M{p*q)~2 and N(p):b *» N{q)min{a,b) (%86)
MN{p+q)=] and r(p)sb » Mgl b {(57)
Jp~q)+a and N{p)=1 -+ T{g)™ a (58)
compared to

P{p+g)za and P(p)*d ~ Flq)zmax(0,a+b-13}(59)
.Plalp):a and P(p} b + P(q)> a.b (60Q)

where P is a probability measure.

¥) - Mixed problem : lastly, we consider a situation
where probability and possibility are mixed together,
We have the n + | rules

if X is in AL, then ¥ is in Bi i=1,n

if X is in Ao, then Y is in V where the Ao,A|,...

LAT

are non-fuzzy and form a partition at U and the Bi's

are normalized fuzzy sets.A distribution of probabili-
= N = i . i L

1y Py P(Ai){z_i=“Pi 1) is known. The problem is ro

know what can be said of the proposition "Y is in B"
in terms of probability. As it has been recognized by
Zadeh [56], the information cvonsisls ol a probability
distribution and of a conditienal possibility distri-
bution “YIK(v'u)=“Bi(VJ if uehAl. This.problem has been

considered by Dempster [é} when the Bi are nen-fuzzy.
When they are,using the degree of intersecrion IN{R,Bi}
and the degree on inclusiecn of Bi in B obtained from
{22) and (23),i,e.
B, BiY=sup min(uB(v).uBi(vﬂ;
WiV
N(B,Bi}=int
vV
compute the nlausibilicy
Ply (B)=3__, pi. (8 Bi)+po (61)
and the credibility Cr, (B)<y [, pi.-N(BIBi) (62)
where {61) and (62} are straightforward generaliza-
tions of (4) and (2) using degrees of intersection
and of inclusion respectively.Lastly,when the values
of the pi's are approximatively known and represen~
ted by fuzzy numbers,expressions (61} and (62) can be
generalized and remain computationally tractable using
recent results in fuzzy arithmetics by Dubois and Pra-
de{see [35] ).

IV- Combining : In this section we successively deal
with the combination of uncertain bodies of evidence
and with the combination of uncertain informations

max(uB(v),l-uBi(v)) we are in position to

a)- combining uncertain bodies of evidence :Let m

and m, be two basic probability assigmments (in the

2
gsenar of (1)) representing two uncertain bodies of
evidence relative to a same matter.Dempster's rule of



combination [ 6 lenables to combine them in order to
get a new basic probability assignment m delined hy

(@) =0;¥C#P, m(c)= ﬂlnBJ=Ci:j ™ (Ai)emy (B))

cem (AT). N
%‘ﬁ{@wnl( 1) mz(li_])

Note that m does noL exist when there is no common

part between the focal elements of m and Lhose of my.

Dempster's rule of combination is associative.Zadeh
[55] has discussed the normalization in (63)which may
he unsuitybl ince when the denominater of (&3)is nol
I . - T '\) S F: ] - 2
swe thE;?%;}g;&a ml(ALLmZ(HJ) 0 which evaluates Lhe

degree to which the two evidences are dissonanc; the
normalization conceals the existence of this dissonan-
ce, Some particular cases of (63) are notiepable.When

m, e m, reduce to twe probability distributions P

and p,,(63} pives hack the combined probability dis-
tribution p: YucU,plu)= P}ﬁu}:fsz” (b4)

= lu)py ()

s
1{f 1 has only two clements u and U{i.e.there arc only

two pusaibilities), p(u) = . pylul.pplu)  (B5)
I-pl(U)-Pz(u)+2p](U).pz(u

(63)

(b4) pives
This aggrepation operation has been extensively used
by Kayser [227.When m, reduces to P and mz(A)FI

(which entails m, (B)=0,FBFAY, (63) pives the usval

2
conditioning plu)= ijuj if oA and plu)=0 if ufa
ey,
v 'I) =
with ](A) = PI(U)-

T By and n, are suirh LhaL,ﬂA,ml(A)=I—ml(U) and
mz(A}=|-m2(U),i.e.A is the unique and common foual
clement (apart U)of fy and m, .Then {B3) pives for m,

whoge focal elements are also A amd U
tm(A)=m](A)+m2(A)—m1(n).m2(A)

m(U)=(l-m1(A)).(1—m2(A))

When m. and m, reduce Lo two possibility distributions

" and uz,the result viven hv (63} is not a possibili-

ty distribution excepl in some noticeable particular

cases(when apart of U,ml and m, have only one [ocal

clement each,but not necessarily the same),Il we want
to obtain & possibility distribution @, several prapo-
sals can be made with some justifications (see [35}),
among them,we have the analogous of (H4)
Yue U, w(u)=min(n; () ,mq(u))

sup min(ﬂl(u),nz(u))

ucl
In (67),the use of the normalization may be discussed
as in the case of Dempster's rule and we may think of
using other operations than 'min’,see [35] .

(h6)

(67)

b) - ¢ombining uncertain informations : First we briof
ly recall the Bayesian model. Knowing the conditiomal
probabilities P(hlel) and P(hlez) of the hypothesis h

1 and €y

the probability of h whan we observe e, and ¢y is e~

qual to (see [21] or [457 )
P(hlel.ez)-P(hle]).P(hlez)

P(h)

when the evidences e are respectively cbserved

P(el).P(eZ)
P(e[,ez)

(68}

where P(h)is the a priori probabilicy of the hypothesi .
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When the two sources of evidence are independent,
P(el.rz)=P(uI).P(ez) and (68) can be sgimplified,
In PROSPECTOR 111, [127, a rule of combination,which
is derived of the Bayesian mode! with some additio-
nal assumpticns for "subjective" probability has beem
prupused;some limitations of this rule has been poin-
ted oul in 132 ].Sec alse [317. In MYCTHN 140),the be-—
liet or disbulief measures arce combined in the follo-
wing way
R Hh(h,eI)>O and HH(h,ez)vﬂ {which entails
HD(h.vl)=HU(h.ci)=U) (69)
Mh(h,eIhcz)=MH(h,c|)+MH(h,02)—HB(h.U]).Mh(h,e
Y MD(h,eI)>U and MD{(h,e ) >0 (which entails
Mﬁ(h.e])tﬁh(h,ez)=0) (70)

MD(h,e se,)=MD(h,e )+MD(h,e,)}-MN(h,e ) MD(h,e

2)
In case of a positive measure of belief and a posi-

tive measure of disbelief there is a conflict.Note
that (69) and (70) are similar to (66) .Adams ['11 has
shown that (69) or (70) are consistent with Bayesian
model provided that the two sources of evidence are
independent(remember that MB(h,e) and MD(h,e) are
defined from P(h|le) and P(h)).Lastly,Ishizuka,Fu,Yao
[19] have proposed a slightly different rule of com-

bination for the certainty factors CF(h,e) in MYCIN.

V - Cone luding remarks The intented purpose of this
paper is to give an unified view of the mathematical
models we have at our disposal in order to deal with
uncertainty.The presentation has particularly empha-
sized two recent theories which are still ill-known
specially in A.l.:Shafer's belief theory and Zadeh's
possibility theory (see 123 ], [49],[26],[44 Ifor ex-
amples of use of this latter theory in diagnosis and
expert systems).The main applications of these models
to two inference schemes, partic.ularly important for
applications to expert systems,the deductive inferen-
ce and the combination,have been surveyed and the
link with more empirical approaches,such as the one
used in MYCIN,has been stressed.Unfortunately it was
not possible to present each proposal in great details
within the compass of a small number of pages.Lastly,
important classes of approximate or plausible reaso-
ning techniques have not been considered here,espe-
cially analogical reasoning and default reasoning
(see [36]);although these approaches do not use nu-
merical quantification in general it would be interes-
ting to consider them in an enlarged synthesis in the
future.
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