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A b s t r a c t 

A scheme for explicit ly representing and using expert 
knowledge of a procedural k ind is described. The scheme al­
lows the explicit representation of both declarative and proce­
dural knowledge wi th in a unified framework, yet retains all the 
desirable properties of expert systems such as modular i ty , ex­
planatory capabil i ty, and extendabil i ty. It thus bridges the gap 
between the procedural and declarative languages, and allows 
formal algorithmic knowledge to be uni formly integrated w i th 
heuristic declarative knowledge. A version of the scheme has 
been ful ly implemented and applied to the domain of automobile 
engine fault, diagnosis. 

§1 Introduction 

Expert systems have been very successful in a wide 
variety of applications [Michie 1980]. The purpose of these 
systems is to acquire the formal and heuristic knowledge of 
specialists in some part icular domain, and then to use this know­
ledge to solve problems that the specialists would normally tackle. 
The domains in which expert systems have proved most suc­
cessful are those where heuristic knowledge is important , either 
because the related problems are ill-defined or are too complex 
for purely formal methods to be tractable [Buchanan and Duda 
1982). 

Some of this specialist or expert knowledge is best 
expressed as a set of facts and axioms or rules about those 
facts. Tor example, here is some declarative knowledge from 
the automotive domain [Sully and Unstead 1978]: 

What faults reduce gasoline flow f rom the pump? 
A choked suction line or d i r ty filter. 
A cracked diaphragm. 
D i r t under a valve. 
Leakage from the pump or discharge line. 

Rule-based expert systems seem to model this aspect 
of expert knowledge quite well. Here is a typical rule for one of 
the above faults : 

IF there is reduced gasoline flow in the fuel pump 
T H E N C O N C L U D E that the suction line may be 
choked. 

The success of these rule-based expert systems stems 
largely f rom the fact tha t the knowledge representation is ap­
propriate to the problem domains that they address. Indeed, the 
authors usually stress the importance of choosing the "r ight" 
domain [Buchanan and Duda 1982]. 
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On the other hand, some of our knowledge about solv­
ing problems may be viewed as procedural knowledge that desc­
ribes sequence* of things to do or goals to be achieved. This k ind 
of knowledge is often diff icult and cumbersome to describe in a 
declarative manner [Winograd 1975]. In fact, even though some 
procedural knowledge can be incorporated in pure rule-based 
systems, it is there only because the rule interpreter executes the 
rules procedurally in some specified order. This means that pro-
cedural knowledge and the establishment of contexts in which 
a part icular inference is valid can only be represented impl ic i t ly 
in the system (e.g., by ordering the clauses of a premise and 
thus ensuring a part icular sequence of evaluation). 

This can create dependencies and interrelationships 
that tend to make the knowledge base not quite as modular 
or flexible as perhaps was originally intended. Because of the 
homogeneity of the rule representation, it is not possible to 
distinguish between those rules for which the order of invocation 
is important and those for which it is not. This is not only bad 
methodology, but it impairs the explanatory capabil i ty of the 
system and reduces the possibilities for efficient implementation 
on multiprocessor machines. 

Note that we are not saying that such knowledge can-
not be represented declaratively — all we are saying is that in 
some domains it cannot easily or naturally be so represented, 
which complicates the construction of the expert system and 
reduces thr explanatory capabil i ty of the system (see [Clancey 
1981] for a more detailed discussion of these points). 

These problems have encouraged some researchers to 
investigate ways of representing procedural knowledge explici t ly. 
In the simplest cases, special mechanisms are introduced, such 
as heterogeneous sets of rules that are dissimilar in nature f rom 
the rest of t he knowledge base (e.g., the therapy rules in M Y C I N 
[Shortliffe 1970]), or precedence relations, which require that 
certain rules be invoked before others (e.g., "contexts" in Prospec­
tor [Reboh 1981]). Al ternat ively, specialist procedures may be 
used for certain sections of the problem-solving process. However, 
these approaches are either not sufficiently general to express 
much procedural knowledge, or tend to destroy many of the 
desirable properties of the system, such as explanatory capabi l i ty, 
modular i ty, and, most impor tant ly , the ease w i th which know­
ledge can be integrated incrementally into the existing store of 
knowledge. 

Another problem w i th many rule-based expert systems 
is that one of the pr imary reasons for the rule representation 
— that is, being able to use and examine such knowledge in 
different ways in different situations — is rarely realised. For 
example, many rule-based systems are restr icted to either in ­
voking rules on the basis of facts becoming known (data-driven 
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invocation), or invoking them on the basis of certain goals be­
coming impor tant (goal-directed invocation). Furthermore, the 
facts and goals that give rise to the invocation are required 
to occur expl ici t ly w i th in the rule itself, i.e., as rule antece-
dents or consequents, respectively. Whi le this simplifies the 
representation, it is a very restrictive assumption and does not 
readily permit the kind of hypothetico-deductive reasoning used 
by most problem-solving experts [Clancey 1981]. 

For example, the system should be able to be goal-
directed, yet also be able to alter its line of reasoning and set 
up different hypotheses (goals) if a part icular ly unusual fact is 
observed. One might also want a certain rule to be invoked 
only when a certain goal was (or was not) being at tempted, yet 
sti l l want it to be data dr iven ( in the context of this goal) if a 
part icular ly significant fact was observed. For example, a lump 
in some tissue should perhaps invoke a rule to investigate the 
possibility of cancer, but not when the current hypothesis is a 
viral infection (where such lumps are usually caused by reacting 
glands). 

In this paper we describe a scheme for explicitly repre-
senting procedural knowledge while st i l l retaining the benefits 
of rule-based systems. T h " basis of the scheme is to use a repre-
sentation that is sufficiently r ich to describe arb i t rary sequences 
of actions in a simple and natural way, while at the same t ime 
avoiding explicit procedure "cal l ing" (see [Georgeff 1982]). The 
scheme also allows a wider class of invocation cr i ter ia than is 
available in most rule-based, expert systems. We shall call sys­
tems that are based on this scheme procedural expert systems. 

To evaluate the scheme, we have implemented a system 
called Peritus,* a knowledge engineering tool which allows the 
creation of procedural expert systems specific to any chosen 
problem domain [Bonollo and Georgeff 1983]. Al though we shall 
not discuss this system in any detai l , for most of our examples 
we shall use an actual run f rom the domain of automobile engine 
faul t diagnosis. 

§2 The Knowledge Representat ion 

The basic structure of a procedural expert system (PES) 
is similar to tha t of most rule-based expert systems. Tha t is, it 
consists of (1) a knowledge base for storing informat ion about 
both the problem domain and the specific problem being ex­
amined, and (2) an inference mechanism for manipulat ing this 
knowledge [Buchanan and Duda 1932]. 

The knowledge base itself comprises a data base con­
ta in ing facts about the problem and a set of specialized inference 
procedures called knowledge areas (KA ) . 

A knowledge area consists of an invocation part and a 
body. The invocation part is an arb i t rary logical expression that 
may include conditions on both current ly known facts and cur­
rent ly active goals. A KA can only be invoked if this expression 
evaluates to " t r ue " , in which case the KA is considered to be 
potential ly useful in solving the problem at hand. 

The body of a KA can be viewed as a specialized in­
ference procedure. In essence, it is simply a procedure that 
establishes sequences of subgoals to be achieved (facts to be dis-

* "Peri tus" is the La t in word meaning ' 'sk i l l fu l " or "expert" . 

covered) and draws conclusions (establishes other facts) on the 
basis of achieving (or not achieving) these subgoals. 

Despite the procedural nature of the KAs , the system 
is deductive in the sense that once a fact has been added to 
the data base, it cannot be subsequently deleted. Judgmental 
reasoning is accomplished by associating probabil i t ies or cer­
tainties w i th both the facts and the inference procedures, in 
much the same way as for the more usual rule-based systems. 

2 .1 Representing Procedural Knowledge 

Procedural control is specified by using a recursive 
transit ion network (RTN) . The arcs of the R T N are labeled wi th 
predicates (tests) and functions (actions), in much the same way 
as for an augmented transit ion network ( A T N ) [Woods 1970].* 

A given arc of the network can be traversed only if 
the predicate labeling that arc evaluates to " t rue" . A l l possible 
paths in the R T N are explored, beginning at a specified start 
state and ending at a specified final state. (Of course, only 
those paths w i th arcs whose associated predicate evaluates to 
" t rue" may be followed.) This is unlike the procedure adopted 
for ATNs, which exit as soon as one path has been traversed to 
the final state. The order in which the paths are explored should 
be considered as undeGned (i.e., the val idi ty of the inference 
procedure should not depend on this ordering). However, in the 
implementat ion described in this paper, paths are explored in a 
depth-f irst manner. 

A typical KA body is shown in Figure 1. "Start" is the 
start state and "end" the final state of the network; the tests 
on arcs are indicated by a ''?". Now if, for example, all the arc 
tests evaluated to " t rue" , the transit ions tr1, tr2, tr2, tr4 and 
tr5 would all be made, and the actions a2, a3, a4 and a5 all 
executed, in that order, before the KA exited. If, on the other 
hand, test t2 fails, then only the transit ions tr\ and tr5 would 
be effected, and only action a5 would be executed. 

The functions and predicates labeling the arcs of the 
RTN can be any computable functions or predicates. In the 
Peritus system, these are specified in LISP and can make use of 
variables local to the KA. Free variables are not allowed. 

There is also a special class of functions and predicates 
that access the data base and add new facts to i t . Some of 
these predicates ask whether certain facts are t rue or not, and 
wi l l set up subgoals to ascertain these facts if they are not 
current ly known (i.e., not current ly in the data base). We shall 
call these predicates goal-invoking predicates. As in most goal-
directed systems, goal-invoking predicates can be viewed as a 
form of impl ic i t subroutine call. Simi lar ly, some of the functions 
labeling the arcs may draw conclusions that add facts to the data 
base, thus making it possible for previously requested subgoals 
to be achieved. 

In essence, the R T N is used to define a language over the 
predicates and functions that label the arcs of the network 
(see [Georgeff 1982]). This language determines the allow­
able sequences of predicate and funct ion evaluation, but not 
necessarily determinist ical ly. Instead of an R T N , i t may be 
preferable to use some other [sufficiently expressive] means of 
describing sequences (such as, for example, temporal logic). 
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For example, consider the fol lowing procedure for isolat­
ing an electrical-system faul t in an automobile engine that wi l l 
not start [Gregory 1980]: 

spark-plug test: Disconnect a spark plug lead and see if a spark 
jumps to the cylinder head on attempted engine 
start . If the spark is satisfactory or blue, then 
the spark plug may be faul ty. If the spark is 
absent, weak, or yellow, proceed to the next 
test. 

coil-lead test: (Instructions on how to test the spark from the 
coil) If the spark is satisfactory or blue, proceed 
to the next test. If the spark is absent, weak, or 
yellow, then the low-tension circui t is suspect; 
proceed to the low-tension test. 

d is t r ibutor test: If there is evidence to suggest that the high-
tension leads from the d is t r ibutor are not operat-
ing properly, conclude that they may be faul ty. 
If the high-tension leads appear to be in order, 
conclude that the d is t r ibutor may be at fault . 

low-tension test:( Instruct ions about how to perform this test) If 
a test lamp lights on the ignit ion side of the coil 
but not on the d ist r ibutor side, conclude that 
the coil and/or the coil lead may be faul ty. If 
the test lamp doesn't l ight on the ignit ion side 
of the coil, conclude that the low-tension circuit 
may be faulty. 

A KA corresponding to this procedure is shown in 
diagrammatic form in Figure 2. There are a number of things to 
note about the body of this KA (we shall consider the invocation 
part later). First., when facts are required to be established 
(e.g., as in "spark is satisfactory or blue") other KAs may be 
invoked to ascertain this informat ion. In this case, an "ask-user" 
KA might be invoked, but in general many KAs might respond 
before the fact is established (as might be the case, for instance, 
in checking the status of the high-tension leads). 

Second, note how very important is the order in which 
the facts are ascertained. The conclusions to be made at any 
stage are context-de.pendent, i.e., they depend cri t ical ly on the 
knowledge that certain alternatives have already been ruled out 
(or in). In general, the conclusions may also depend on the tests 
and actions being carried out in a part icular t ime order (such as 
listening for a scraping noise after applying the brakes in order 
to establish the condit ion of the disc pads). Note also just how 
much heuristic in format ion is contained in this ordering, how 
we start off w i th the spark plugs rather than the coil (part ly 
because they are easy to rect i fy, part ly because they are the 
more common faul t ) and then proceed from one end of the 
c i rcui t to the other. To discard this informat ion (or to represent 
it impl ic i t ly ) , leads not only to inefficient problem-solving, but 
also to a behaviour tha t is diff icult to explain and diff icult to 
follow (Clancey 1981]. 

The R T N formalism can also represent other control 
constructs, including i terat ion and recursion. Such control con­

structs are needed when it is desired to examine different in­
stances of a given object type. For example, we might have a 
KA (or KA "schema") for determining whether or not a single 
spark plug is faul ty. This KA would be invoked whenever a goal 
was set up to determine the status of some particular spark plug. 
However, by using i terat ion (represented as a loop in an RTN) , 
we can also set up this goal for any arb i t ra ry number of spark 
plugs in the engine, thus creating mult ip le instances of the spark 
plug KA . The abi l i ty to explicit ly establish goals in this way can 
be very useful when one wishes to examine different instances 
of a given object type in a specified order (e.g., such as test ing 
the spark plugs in f ir ing order) or when a certain conclusion 
depends on interactions among instances. 

We can thus view the R T N as specifying sequences of 
subgoals to be achieved and, depending on the conditions ob-
taining, as drawing conclusions about the current problem. This 
is similar to the way in which, for example, rules in goal-directed 
systems (e.g., E M Y C I N [van Melle 1980]) are used to set up sub-
goals to be achieved, and then make conclusions on the basis of 
these subgoals having been achieved. The scheme described in 
this paper differs in that the achievement of subgoals may be 
explicit ly sequenced in quite complex ways, and the conclusions 
reached may be valid only if this sequencing is maintained. 

2.2 Representing Ut i l i tar ian Knowledge 

The invocation part of a KA is any arb i t rary expression 
that evaluates to " t rue" or "false". A KA can be invoked 
only if this expression evaluates to " t rue" , in which case the 
KA is considered to be useful in solving the current problem. 
One can thus view invocation expressions as domain-specific 
meta level rules [Davis 1980] that constrain the application of 
KAs to situations in which they are likely to be useful.* 

An invocation expression can include functions that 
examine the current goals and functions that respond to new 
data. The current system uses a goal stack to keep track of all 
current goals and uses a goal function to test whether a given 
goal (or generalization) is present on the goal stack. The goals 
on the goal stack form an inference chain whereby for each goal 
gi, the goal , (which is closer to the " top" ) may be viewed as 
a subgoal to be determined as part of the process of establishing 
0i- A fact function is also provided to ascertain whether or not 
a given fact occurs in the data base.** 

An invocation expression consisting solely of the goal 
function results in standard goal-directed invocation, whereas 
an expression consisting solely of the fact funct ion results in 
standard data-driven invocation. For example, two simple KAs 
f rom the automotive domain are shown in Figure 3. In Figure 
3(a), the KA is goal-directed, and corresponds to a standard 

*As in MYClN- l i ke systems [Shortliffe 1976], a request for a fact 
establishes a goal that is a generalization of the fact. Thus, any 
subsequent test for an instance of tha t generalization wi l l f ind 
the necessary in format ion already in the data base and wi l l not 
need to reinvoke KAs to determine i t . 

* Invocation expressions serve solely to determine the set of use­
ful KAs, not to order them. In this sense they are a more 
l imi ted form of metarule than discussed by Davis. On the other 
hand, they are more general in tha t they can "rule i n " some 
alternatives tha t under a purely goal dr iven or data dr iven 
system would not be considered. 

* *Thc implemented system uses judgmenta l cr i ter ia and a min­
imum certainty factor can be required of the requested fact. 
This allows KAs to be invoked on the basis of incomplete or 
uncertain knowledge. 
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MYC IN-l ike rule. This KA wi l l be invoked only if some current 
goal is to identify a fuel system problem, and the required infor­
mation is not currently known (i.e., in the data base). Invocation 
of the KA wi l l then test whether there is reduced fuel flow in 
the fuel pump, possibly invoking other KAs to ascertain this. If 
reduced fuel flow is concluded, the [single] arc of the network 
can bo traversed and the fuel system problem identified (w i th 
some degree of certainty) as being a choked suction line. 

An example of a data-driven KA is given in Figure 
3(b). Note that the test in the body of the KA seems redundant 
in this case, as the KA would not have been invoked if it had not 
already been known that the oil was contaminated w i th water. 
However, it is important f rom a methodological point of view 
to require that the body of a KA be valid irrespective of the 
invocation condit ion. Under these conditions, if the inference 
procedures forming the bodies of all the KAs in the knowledge 
base are consistent, the system wi l l be consistent. A l terat ion 
of the invocation conditions to improve performance wi l l not 
affect the validity of any conclusions made, thus allowing the 
system to be " tuned" in safety. (Of course, completeness is 
not guaranteed; because of inappropriate invocation cr i ter ia a 
certain KA may never be invoked and thus a valid inference 
never made.) The apparent inefficiency of having to check the 
data base twice for ( in this case) the condit ion of the oil could 
be el iminated dur ing a compilat ion stage. 

KAs can also be par t ly goal-directed and part ly data-
dr iven, as is the case for the KA shown in Figure 2. It wi l l be 
invoked if one of the current goals is to identify an igni t ion fault 
and it is noticed that one of the trouble symptoms is tha t the 
engiue does not start . The system can thus be opportunist ic in 
the sense that KAs might be invoked because certain facts are 
noticed dur ing an at tempt to establish part icular goals. 

In general, any arb i t rary expression can be used in the 
invocation part of a K A . Such expressions can include negation, 
conjunct ion, and disjunct ion of both goals and facts. Universal 
and existential quanti f icat ion over existing object instances are 
also allowed. 

§3 The Inference Mechanism 

The system's main task, at a part icular point in t ime, 
is to discover all it can about the current goals by executing 
relevant KAs. To do this, an invocation mechanism is called im­
plicit ly by the current ly executing KA when some current ly un­
known fact is requested or when some new conclusion is drawn. 
The mechanism evaluates the invocation part of all instances 
of the KAs occurring in the knowledge base to decide which 
ones are "relevant" (i.e., for which of them the invocation par t 
evaluates to " t rue" ) . These relevant KAs are then executed or 
invoked in tu rn unt i l either they have all been executed or a 
definite conclusion has been reached about one of the current 
goals on the goal stack. 

The invocation mechanism is out l ined in Figure 4. The 
set S is init ial ized to contain all relevant instances of the KAs oc­
curr ing in the knowledge base. The funct ion eclect(S) [destruct-
ively] selects an element p f rom the set of applicable instances 
of KAs 5, and execute(p) executes the body of p. 

Of course, for efficiency purposes (and to prevent ask­
ing the same question more than once) we do not want to rein-
voke instances of KAs tha t have already been traversed. We 

therefore mark these instances as "used", which effectively deletes 
them from the knowledge base. 

Execution of a KA body consists simply of traversing 
the body of the K A , as described in Section 2.1. In fact, Peritus 
actually compiles the networks into LISP code, in a manner 
similar to A T N com pilers (see [Bonollo and Georgeff 1983]). 
This makes the system much more efficient than if KAs were 
evaluated interpret ively. 

It is very impor tant to note that although the body of 
a KA sets up sequences of goals to be achieved, it may be that 
dur ing its execution some data invoked KA suggests an alterna­
tive hypothesis and thus changes the course of events. Progress 
through the original KA is then suspended, and wi l l only be 
resumed when the alternative hypothesis has been ful ly inves­
t igated. If we had more control over the selection of tasks (say, 
by using metalevel KAs) , the current ly executing KA could also 
be suspended simply because other goals (hypotheses) became 
more interesting. Thus, it is preferable to view KA bodies as 
placing constraints on the sequencing of goals, while not preclud­
ing the possibility that certain observations may (at least tem­
porari ly) in terrupt this sequencing. 

3 .1 Definite Conclusions about Goals 

Elements on the goal stack represent hypotheses that 
the system is t r y ing to establish. Once a hypothesis that occurs 
on the goal stack is confirmed with certainty, it is pointless 
to continue considering alternative paths in the current K A . 
Furthermore, if this hypothesis is not on top of the goal stack, it 
is also desirable to terminate all KAs that are t ry ing to establish 
addit ional support ing hypotheses (i.e., all subgoals of the just-
concluded goal). 

The current implementat ion achieves this by "tagging" 
calls to KAs wi th the goal that was the top goal at the t ime 
a part icular instance of the invocation mechanism was called. 
A conclusion as to this goal can then cause immediate exit of 
the current KA being explored. This results in an explicit al­
terat ion of the normal funct ion re turn sequence by " throwing" * 
to the instance of the invocation mechanism whose " tag" is the 
hypothesis that has just been confirmed. Any intermediate calls 
to this mechanism are discarded and the goal stack is automat i ­
cally restored to a state in which the just-concluded goal is the 
top goal. 

However, this can present difficulties when it comes to 
deciding which instances of KAs should be marked as "used" 
and hence not available for reinvocation. The problem is tha t a 
" throw" to some previous state in the goal stack can pre-empt 
complete traversal of some KAs (i.e those that were work ing on 
subgoals of the just-concluded goal), and we might be throwing 
away the knowledge needed to reach other conclusions (about 
other goals) if these KAs were not able to be reinvoked. 

The solution current ly adopted is to mark these part ly 
used KAs as fu l ly used, thus possibly jeopardizing the complete-
ness of the system but not its consistency. This is not entirely 

*Th is is implemented v ia the catch and throw pr imit ives present 
in most LISP implementations (e.g., F R A N Z LISP [Foderaro 
1980]). 
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satisfactory, however, and other alternatives need to be inves­
t igated. Tor example, it might be better if par t ly used KAs were 
left unmarked (i.e., unused), al lowing for possible reinvocation. 
It would then be important to ensure that mult ip le re-use of an 
instance of a KA would not affect the val idi ty of any conclusions 
made, and that i /o operations were encased in KAs that always 
exited natural ly (i.e w i thout " throwing") . 

3.2 Incorporation of Judgmental Knowledge 

The scheme described above can readily be extended 
to include judgmental mechanisms for application in domains 
where facts and inference rules (or inference procedures) ex­
hibit some degree of uncertainty. In the Peritus system, the 
judgmental scheme is based on certainty theory [Shortliffc and 
Buchanan 1975]. However, procedural expert systems are not 
tied irrevocably to this philosophy and there is no reason not to 
apply other cr i ter ia in dealing w i th judgmental knowledge. 

To implement, the judgmental mechanism, each arc 
test in the body of a KA is enclosed in an interface funct ion. 
The purpose of this interface funct ion is to provide judgmental 
cr i ter ia for deciding whether the result of a test is " t rue enough" 
to continue progress along the are. In the current system, the 
cr i ter ia used are as follows : 

i. Any test that returns nil is mapped to a certainty factor of 
0. 

i i . Any test return ing a non nil value that is not a certainty 
factor is mapped to a certainty factor of 1. 

i i i . Any test that returns a certainty factor is left unchanged. 

The interface funct ion then returns " t rue" if this new 
certainty factor is greater than an arb i t rary threshold of 0.2. 

As the functions which add new facts to the data base 
need to know the certainties associated w i th each of the tests 
(or premises) that precede them, a stack of the certainties as-
sociated wi th the tests on the current path is maintained and 
can be accessed by these conclude functions. When an arc test 
evaluates to " t rue" , the certainty factor associated w i t h tha t 
test is pushed onto the stack as a side effect of the interface 
funct ion. The stack is popped at the end of a path or after the 
last transit ion from a state has been at tempted. 

3.3 A Sample Consultat ion 

Portions of a sample consultation in the domain of 
automobile engine faul t diagnosis are given opposite. The proced­
ural expert system that produced this dialogue was constructed 
by using Peritus, the pert inent knowledge being extracted more 
or less direct ly f rom various automobile l i terature (e.g., [Sully 
and Unstead 1978], [Gregory 1980]). Typical examples of the 
KAs used by the system are shown in Figures 2 and 3. 

[Various in i t ia l data is first entered] 

>Does the engine start? no 

[At this point, a data driven KA is invoked on the basis 
of the engine not start ing] 

F U E L C H E C K ! ! 
> I s there adequate fuel in the tank? yes 

[and now the KA shown in Figure 2. is invoked] 

I g n i t i o n S y s t e m T r o u b l e S h o o t P r o c e d u r e : 
(1) Disconnect a spark plug lead and position the terminal 

wi th in 3 mm of the cylinder head. 
(2) Have an assistant switch on the ignit ion and at tempt 

to start the engine 
(3) Observe the spark, if any, that jumps the gap to the 

cylinder head 
Press the < r e t u r n > key when you are ready —» 

> I l o w would you describe the spark? why? 
[The user wants to know why the system needs this 
informat ion] 

I was t r y ing to determine one of the ignit ion system faults, 
and I noticed that the engine does not start . 

[The user now continues w i th the trouble shoot] 
> weak 

(4) Disconnect the coil lead f rom the d ist r ibutor cap and 
carry out the procedure previously described for the 
spark plug lead in points (1) to (3). 

Press the < r e t u r n > key when you are ready —► 

> I I o w would you describe the spark from the coil lead? 
weak 

(5) We wi l l now check whether the low tension current is 
reaching the ignit ion coil. Use a test lamp between 
the coil low tension terminals and a good earth. 
Ensure that the contact breaker points are open or 
insulated when making the test. 

Press the < r e t u r n > key when you are ready —► 

>Does the lamp l ight on the ignit ion side of the coil? yes 
>Does the lamp l ight on the d ist r ibutor side? no 

[The system has now discovered all it can and gives its 
report] 

A u t o m o b i l e Suspec ted 
There is evidence (0.8) to 
coil is faul ty. 
There is evidence (0.5) to 
is faul ty. 

F a u l t s R e p o r t : 
suggest tha t the igni t ion 

suggest tha t the coil lead 
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§1 Conclusions 

Procedural expert systems appear to provide a means 
for representing a specialist's declarative and procedural know­
ledge of some problem domain w i thout sacrificing any of the 
desirable properties of standard rule-based expert systems. 

There are a number of impor tant features of the system 
that are cri t ical to achieving this. F i rs t , KAs are not direct ly 
"cal led", but are invoked only when they can contr ibute to 
f inding some current goal or when some part icular ly relevant 
fact is observed. As KAs cannot be direct ly called, neither can 
they directly call any other K A . They thus serve only to specify 
what goals are to be achieved and in what order. Second, the 
system is, in general, nondeterminist ic, and any number of KAs 
may be relevant at any one t ime. These properties enable the 
knowledge base of the system to be modified and augmented 
without forcing substantial revision. 

Furthermore, the representation of the inference proce-
dures in the form of an augmented R T N is simple and homogen­
eous, which aids both in the acquisition of knowledge and in 
veri fying correctness. This simplici ty also aids the system in ex­
plaining its reasoning. In the simplest case, the goal stack can be 
traversed to answer "how'' and "why" questions (as in M Y C I N -
like systems). Hut, by tracing the bodies of the KAs as well, the 
system can also describe the context in which hypotheses are 
being explored. This k ind of explanation is of course not deep, 
but the formalism itself does not preclude the development of a 
richer explanation system. Indeed, the fact tha t at least some of 
the procedural knowledge of the expert is expl ici t ly represented 
can only lead to better explanatory capabilit ies. 

The procedural control component is also very general, 
allowing at one extreme the construct ion of purely declarative 
programs, while, at the other extreme, it allows purely deter­
ministic procedural programs. Thus, procedural expert systems 
bridge the gap between the declarative languages and the proce­
dural languages. Indeed, one way of viewing these systems is as 
a generalization of the usual procedural languages to include a 
deductive data base and a more general invocation mechanism. 

The fact that the knowledge representation allows the 
specification of procedures means that the inference mechanism 
of the system can itself be wr i t ten by using the same repre-
sentation. For example, the description of the current invoca­
t ion mechanism given in Figure 4 is already in this fo rm. 

The generality of the invocation scheme makes it pos­
sible for the system to pursue a diagnosis in a goal-directed way, 
yet react opportunist ical ly and change the direct ion of the con­
sultat ion if an event occurs that suggests an alternative diag­
nosis. In fact, after using pr imar i ly goal-directed systems like 
M Y C I N , the way in which data invoked KAs suddenly wake 
up and begin exploring alternative diagnoses was a constant 
surprise to the authors (not always pleasant!). As invocation 
expressions can be arb i t rar i ly complex logical expressions, they 
can represent quite complex knowledge about the use of KAs . 
For example, although we have not explored it here, the scheme 
allows invocation based on observed differences between goals 
and facts, and KAs can thereby be invoked in a means-ends 
fashion. 

There are a number of questions tha t st i l l remain to 
be answered, and this w i l l require fur ther experimentation w i t h 
the system. For example, it may be tha t the class of invocation 

expressions used by the present system is too broad. When ar­
bi t rary expressions are allowed, knowledge about the use of KAs 
can be very diff icult to reason about. This might create prob-
lems if more detailed explanations were required or if metalevcl 
KAs were to t r y to manage invocation. Furthermore, there 
would then be fewer possibilities for compiler opt imizat ions, 
which could result in unacceptable real-t ime performance. 
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