
PROCEDURAL EXPERT SYSTEMS

Michael Georgeff,
Artificial Intelligence Center,

SRI International,
333 Ravenswood Ave.,

Menlo Park, Co., 94025.

A b s t r a c t

A scheme for explicit ly representing and using expert
knowledge of a procedural k ind is described. The scheme al­
lows the explicit representation of both declarative and proce­
dural knowledge wi th in a unified framework, yet retains all the
desirable properties of expert systems such as modular i ty , ex­
planatory capabil i ty, and extendabil i ty. It thus bridges the gap
between the procedural and declarative languages, and allows
formal algorithmic knowledge to be uni formly integrated w i th
heuristic declarative knowledge. A version of the scheme has
been ful ly implemented and applied to the domain of automobile
engine fault, diagnosis.

§1 Introduction

Expert systems have been very successful in a wide
variety of applications [Michie 1980]. The purpose of these
systems is to acquire the formal and heuristic knowledge of
specialists in some part icular domain, and then to use this know­
ledge to solve problems that the specialists would normally tackle.
The domains in which expert systems have proved most suc­
cessful are those where heuristic knowledge is important , either
because the related problems are ill-defined or are too complex
for purely formal methods to be tractable [Buchanan and Duda
1982).

Some of this specialist or expert knowledge is best
expressed as a set of facts and axioms or rules about those
facts. Tor example, here is some declarative knowledge from
the automotive domain [Sully and Unstead 1978]:

What faults reduce gasoline flow f rom the pump?
A choked suction line or d i r ty filter.
A cracked diaphragm.
D i r t under a valve.
Leakage from the pump or discharge line.

Rule-based expert systems seem to model this aspect
of expert knowledge quite well. Here is a typical rule for one of
the above faults :

IF there is reduced gasoline flow in the fuel pump
T H E N C O N C L U D E that the suction line may be
choked.

The success of these rule-based expert systems stems
largely f rom the fact tha t the knowledge representation is ap­
propriate to the problem domains that they address. Indeed, the
authors usually stress the importance of choosing the "r ight"
domain [Buchanan and Duda 1982].

Umberto Donollo,
Department of Computer Science,

Monash University,
Clayton, Victoria, 3168,

Australia.

On the other hand, some of our knowledge about solv­
ing problems may be viewed as procedural knowledge that desc­
ribes sequence* of things to do or goals to be achieved. This k ind
of knowledge is often diff icult and cumbersome to describe in a
declarative manner [Winograd 1975]. In fact, even though some
procedural knowledge can be incorporated in pure rule-based
systems, it is there only because the rule interpreter executes the
rules procedurally in some specified order. This means that pro-
cedural knowledge and the establishment of contexts in which
a part icular inference is valid can only be represented impl ic i t ly
in the system (e.g., by ordering the clauses of a premise and
thus ensuring a part icular sequence of evaluation).

This can create dependencies and interrelationships
that tend to make the knowledge base not quite as modular
or flexible as perhaps was originally intended. Because of the
homogeneity of the rule representation, it is not possible to
distinguish between those rules for which the order of invocation
is important and those for which it is not. This is not only bad
methodology, but it impairs the explanatory capabil i ty of the
system and reduces the possibilities for efficient implementation
on multiprocessor machines.

Note that we are not saying that such knowledge can-
not be represented declaratively — all we are saying is that in
some domains it cannot easily or naturally be so represented,
which complicates the construction of the expert system and
reduces thr explanatory capabil i ty of the system (see [Clancey
1981] for a more detailed discussion of these points).

These problems have encouraged some researchers to
investigate ways of representing procedural knowledge explici t ly.
In the simplest cases, special mechanisms are introduced, such
as heterogeneous sets of rules that are dissimilar in nature f rom
the rest of t he knowledge base (e.g., the therapy rules in M Y C I N
[Shortliffe 1970]), or precedence relations, which require that
certain rules be invoked before others (e.g., "contexts" in Prospec­
tor [Reboh 1981]). Al ternat ively, specialist procedures may be
used for certain sections of the problem-solving process. However,
these approaches are either not sufficiently general to express
much procedural knowledge, or tend to destroy many of the
desirable properties of the system, such as explanatory capabi l i ty,
modular i ty, and, most impor tant ly , the ease w i th which know­
ledge can be integrated incrementally into the existing store of
knowledge.

Another problem w i th many rule-based expert systems
is that one of the pr imary reasons for the rule representation
— that is, being able to use and examine such knowledge in
different ways in different situations — is rarely realised. For
example, many rule-based systems are restr icted to either in ­
voking rules on the basis of facts becoming known (data-driven

152 M. Georgeff and U. Bonollo

invocation), or invoking them on the basis of certain goals be­
coming impor tant (goal-directed invocation). Furthermore, the
facts and goals that give rise to the invocation are required
to occur expl ici t ly w i th in the rule itself, i.e., as rule antece-
dents or consequents, respectively. Whi le this simplifies the
representation, it is a very restrictive assumption and does not
readily permit the kind of hypothetico-deductive reasoning used
by most problem-solving experts [Clancey 1981].

For example, the system should be able to be goal-
directed, yet also be able to alter its line of reasoning and set
up different hypotheses (goals) if a part icular ly unusual fact is
observed. One might also want a certain rule to be invoked
only when a certain goal was (or was not) being at tempted, yet
sti l l want it to be data dr iven (in the context of this goal) if a
part icular ly significant fact was observed. For example, a lump
in some tissue should perhaps invoke a rule to investigate the
possibility of cancer, but not when the current hypothesis is a
viral infection (where such lumps are usually caused by reacting
glands).

In this paper we describe a scheme for explicitly repre-
senting procedural knowledge while st i l l retaining the benefits
of rule-based systems. T h " basis of the scheme is to use a repre-
sentation that is sufficiently r ich to describe arb i t rary sequences
of actions in a simple and natural way, while at the same t ime
avoiding explicit procedure "cal l ing" (see [Georgeff 1982]). The
scheme also allows a wider class of invocation cr i ter ia than is
available in most rule-based, expert systems. We shall call sys­
tems that are based on this scheme procedural expert systems.

To evaluate the scheme, we have implemented a system
called Peritus,* a knowledge engineering tool which allows the
creation of procedural expert systems specific to any chosen
problem domain [Bonollo and Georgeff 1983]. Al though we shall
not discuss this system in any detai l , for most of our examples
we shall use an actual run f rom the domain of automobile engine
faul t diagnosis.

§2 The Knowledge Representat ion

The basic structure of a procedural expert system (PES)
is similar to tha t of most rule-based expert systems. Tha t is, it
consists of (1) a knowledge base for storing informat ion about
both the problem domain and the specific problem being ex­
amined, and (2) an inference mechanism for manipulat ing this
knowledge [Buchanan and Duda 1932].

The knowledge base itself comprises a data base con­
ta in ing facts about the problem and a set of specialized inference
procedures called knowledge areas (KA) .

A knowledge area consists of an invocation part and a
body. The invocation part is an arb i t rary logical expression that
may include conditions on both current ly known facts and cur­
rent ly active goals. A KA can only be invoked if this expression
evaluates to " t r ue " , in which case the KA is considered to be
potential ly useful in solving the problem at hand.

The body of a KA can be viewed as a specialized in­
ference procedure. In essence, it is simply a procedure that
establishes sequences of subgoals to be achieved (facts to be dis-

* "Peri tus" is the La t in word meaning ' 'sk i l l fu l " or "expert" .

covered) and draws conclusions (establishes other facts) on the
basis of achieving (or not achieving) these subgoals.

Despite the procedural nature of the KAs , the system
is deductive in the sense that once a fact has been added to
the data base, it cannot be subsequently deleted. Judgmental
reasoning is accomplished by associating probabil i t ies or cer­
tainties w i th both the facts and the inference procedures, in
much the same way as for the more usual rule-based systems.

2 .1 Representing Procedural Knowledge

Procedural control is specified by using a recursive
transit ion network (RTN) . The arcs of the R T N are labeled wi th
predicates (tests) and functions (actions), in much the same way
as for an augmented transit ion network (A T N) [Woods 1970].*

A given arc of the network can be traversed only if
the predicate labeling that arc evaluates to " t rue" . A l l possible
paths in the R T N are explored, beginning at a specified start
state and ending at a specified final state. (Of course, only
those paths w i th arcs whose associated predicate evaluates to
" t rue" may be followed.) This is unlike the procedure adopted
for ATNs, which exit as soon as one path has been traversed to
the final state. The order in which the paths are explored should
be considered as undeGned (i.e., the val idi ty of the inference
procedure should not depend on this ordering). However, in the
implementat ion described in this paper, paths are explored in a
depth-f irst manner.

A typical KA body is shown in Figure 1. "Start" is the
start state and "end" the final state of the network; the tests
on arcs are indicated by a ''?". Now if, for example, all the arc
tests evaluated to " t rue" , the transit ions tr1, tr2, tr2, tr4 and
tr5 would all be made, and the actions a2, a3, a4 and a5 all
executed, in that order, before the KA exited. If, on the other
hand, test t2 fails, then only the transit ions tr\ and tr5 would
be effected, and only action a5 would be executed.

The functions and predicates labeling the arcs of the
RTN can be any computable functions or predicates. In the
Peritus system, these are specified in LISP and can make use of
variables local to the KA. Free variables are not allowed.

There is also a special class of functions and predicates
that access the data base and add new facts to i t . Some of
these predicates ask whether certain facts are t rue or not, and
wi l l set up subgoals to ascertain these facts if they are not
current ly known (i.e., not current ly in the data base). We shall
call these predicates goal-invoking predicates. As in most goal-
directed systems, goal-invoking predicates can be viewed as a
form of impl ic i t subroutine call. Simi lar ly, some of the functions
labeling the arcs may draw conclusions that add facts to the data
base, thus making it possible for previously requested subgoals
to be achieved.

In essence, the R T N is used to define a language over the
predicates and functions that label the arcs of the network
(see [Georgeff 1982]). This language determines the allow­
able sequences of predicate and funct ion evaluation, but not
necessarily determinist ical ly. Instead of an R T N , i t may be
preferable to use some other [sufficiently expressive] means of
describing sequences (such as, for example, temporal logic).

M. Georgeff and U. Bonollo 153

For example, consider the fol lowing procedure for isolat­
ing an electrical-system faul t in an automobile engine that wi l l
not start [Gregory 1980]:

spark-plug test: Disconnect a spark plug lead and see if a spark
jumps to the cylinder head on attempted engine
start . If the spark is satisfactory or blue, then
the spark plug may be faul ty. If the spark is
absent, weak, or yellow, proceed to the next
test.

coil-lead test: (Instructions on how to test the spark from the
coil) If the spark is satisfactory or blue, proceed
to the next test. If the spark is absent, weak, or
yellow, then the low-tension circui t is suspect;
proceed to the low-tension test.

d is t r ibutor test: If there is evidence to suggest that the high-
tension leads from the d is t r ibutor are not operat-
ing properly, conclude that they may be faul ty.
If the high-tension leads appear to be in order,
conclude that the d is t r ibutor may be at fault .

low-tension test:(Instruct ions about how to perform this test) If
a test lamp lights on the ignit ion side of the coil
but not on the d ist r ibutor side, conclude that
the coil and/or the coil lead may be faul ty. If
the test lamp doesn't l ight on the ignit ion side
of the coil, conclude that the low-tension circuit
may be faulty.

A KA corresponding to this procedure is shown in
diagrammatic form in Figure 2. There are a number of things to
note about the body of this KA (we shall consider the invocation
part later). First., when facts are required to be established
(e.g., as in "spark is satisfactory or blue") other KAs may be
invoked to ascertain this informat ion. In this case, an "ask-user"
KA might be invoked, but in general many KAs might respond
before the fact is established (as might be the case, for instance,
in checking the status of the high-tension leads).

Second, note how very important is the order in which
the facts are ascertained. The conclusions to be made at any
stage are context-de.pendent, i.e., they depend cri t ical ly on the
knowledge that certain alternatives have already been ruled out
(or in). In general, the conclusions may also depend on the tests
and actions being carried out in a part icular t ime order (such as
listening for a scraping noise after applying the brakes in order
to establish the condit ion of the disc pads). Note also just how
much heuristic in format ion is contained in this ordering, how
we start off w i th the spark plugs rather than the coil (part ly
because they are easy to rect i fy, part ly because they are the
more common faul t) and then proceed from one end of the
c i rcui t to the other. To discard this informat ion (or to represent
it impl ic i t ly) , leads not only to inefficient problem-solving, but
also to a behaviour tha t is diff icult to explain and diff icult to
follow (Clancey 1981].

The R T N formalism can also represent other control
constructs, including i terat ion and recursion. Such control con­

structs are needed when it is desired to examine different in­
stances of a given object type. For example, we might have a
KA (or KA "schema") for determining whether or not a single
spark plug is faul ty. This KA would be invoked whenever a goal
was set up to determine the status of some particular spark plug.
However, by using i terat ion (represented as a loop in an RTN) ,
we can also set up this goal for any arb i t ra ry number of spark
plugs in the engine, thus creating mult ip le instances of the spark
plug KA . The abi l i ty to explicit ly establish goals in this way can
be very useful when one wishes to examine different instances
of a given object type in a specified order (e.g., such as test ing
the spark plugs in f ir ing order) or when a certain conclusion
depends on interactions among instances.

We can thus view the R T N as specifying sequences of
subgoals to be achieved and, depending on the conditions ob-
taining, as drawing conclusions about the current problem. This
is similar to the way in which, for example, rules in goal-directed
systems (e.g., E M Y C I N [van Melle 1980]) are used to set up sub-
goals to be achieved, and then make conclusions on the basis of
these subgoals having been achieved. The scheme described in
this paper differs in that the achievement of subgoals may be
explicit ly sequenced in quite complex ways, and the conclusions
reached may be valid only if this sequencing is maintained.

2.2 Representing Ut i l i tar ian Knowledge

The invocation part of a KA is any arb i t rary expression
that evaluates to " t rue" or "false". A KA can be invoked
only if this expression evaluates to " t rue" , in which case the
KA is considered to be useful in solving the current problem.
One can thus view invocation expressions as domain-specific
meta level rules [Davis 1980] that constrain the application of
KAs to situations in which they are likely to be useful.*

An invocation expression can include functions that
examine the current goals and functions that respond to new
data. The current system uses a goal stack to keep track of all
current goals and uses a goal function to test whether a given
goal (or generalization) is present on the goal stack. The goals
on the goal stack form an inference chain whereby for each goal
gi, the goal , (which is closer to the " top") may be viewed as
a subgoal to be determined as part of the process of establishing
0i- A fact function is also provided to ascertain whether or not
a given fact occurs in the data base.**

An invocation expression consisting solely of the goal
function results in standard goal-directed invocation, whereas
an expression consisting solely of the fact funct ion results in
standard data-driven invocation. For example, two simple KAs
f rom the automotive domain are shown in Figure 3. In Figure
3(a), the KA is goal-directed, and corresponds to a standard

*As in MYClN- l i ke systems [Shortliffe 1976], a request for a fact
establishes a goal that is a generalization of the fact. Thus, any
subsequent test for an instance of tha t generalization wi l l f ind
the necessary in format ion already in the data base and wi l l not
need to reinvoke KAs to determine i t .

* Invocation expressions serve solely to determine the set of use­
ful KAs, not to order them. In this sense they are a more
l imi ted form of metarule than discussed by Davis. On the other
hand, they are more general in tha t they can "rule i n " some
alternatives tha t under a purely goal dr iven or data dr iven
system would not be considered.

* *Thc implemented system uses judgmenta l cr i ter ia and a min­
imum certainty factor can be required of the requested fact.
This allows KAs to be invoked on the basis of incomplete or
uncertain knowledge.

154 M. Georgeff and U. Bonollo

MYC IN-l ike rule. This KA wi l l be invoked only if some current
goal is to identify a fuel system problem, and the required infor­
mation is not currently known (i.e., in the data base). Invocation
of the KA wi l l then test whether there is reduced fuel flow in
the fuel pump, possibly invoking other KAs to ascertain this. If
reduced fuel flow is concluded, the [single] arc of the network
can bo traversed and the fuel system problem identified (w i th
some degree of certainty) as being a choked suction line.

An example of a data-driven KA is given in Figure
3(b). Note that the test in the body of the KA seems redundant
in this case, as the KA would not have been invoked if it had not
already been known that the oil was contaminated w i th water.
However, it is important f rom a methodological point of view
to require that the body of a KA be valid irrespective of the
invocation condit ion. Under these conditions, if the inference
procedures forming the bodies of all the KAs in the knowledge
base are consistent, the system wi l l be consistent. A l terat ion
of the invocation conditions to improve performance wi l l not
affect the validity of any conclusions made, thus allowing the
system to be " tuned" in safety. (Of course, completeness is
not guaranteed; because of inappropriate invocation cr i ter ia a
certain KA may never be invoked and thus a valid inference
never made.) The apparent inefficiency of having to check the
data base twice for (in this case) the condit ion of the oil could
be el iminated dur ing a compilat ion stage.

KAs can also be par t ly goal-directed and part ly data-
dr iven, as is the case for the KA shown in Figure 2. It wi l l be
invoked if one of the current goals is to identify an igni t ion fault
and it is noticed that one of the trouble symptoms is tha t the
engiue does not start . The system can thus be opportunist ic in
the sense that KAs might be invoked because certain facts are
noticed dur ing an at tempt to establish part icular goals.

In general, any arb i t rary expression can be used in the
invocation part of a K A . Such expressions can include negation,
conjunct ion, and disjunct ion of both goals and facts. Universal
and existential quanti f icat ion over existing object instances are
also allowed.

§3 The Inference Mechanism

The system's main task, at a part icular point in t ime,
is to discover all it can about the current goals by executing
relevant KAs. To do this, an invocation mechanism is called im­
plicit ly by the current ly executing KA when some current ly un­
known fact is requested or when some new conclusion is drawn.
The mechanism evaluates the invocation part of all instances
of the KAs occurring in the knowledge base to decide which
ones are "relevant" (i.e., for which of them the invocation par t
evaluates to " t rue") . These relevant KAs are then executed or
invoked in tu rn unt i l either they have all been executed or a
definite conclusion has been reached about one of the current
goals on the goal stack.

The invocation mechanism is out l ined in Figure 4. The
set S is init ial ized to contain all relevant instances of the KAs oc­
curr ing in the knowledge base. The funct ion eclect(S) [destruct-
ively] selects an element p f rom the set of applicable instances
of KAs 5, and execute(p) executes the body of p.

Of course, for efficiency purposes (and to prevent ask­
ing the same question more than once) we do not want to rein-
voke instances of KAs tha t have already been traversed. We

therefore mark these instances as "used", which effectively deletes
them from the knowledge base.

Execution of a KA body consists simply of traversing
the body of the K A , as described in Section 2.1. In fact, Peritus
actually compiles the networks into LISP code, in a manner
similar to A T N com pilers (see [Bonollo and Georgeff 1983]).
This makes the system much more efficient than if KAs were
evaluated interpret ively.

It is very impor tant to note that although the body of
a KA sets up sequences of goals to be achieved, it may be that
dur ing its execution some data invoked KA suggests an alterna­
tive hypothesis and thus changes the course of events. Progress
through the original KA is then suspended, and wi l l only be
resumed when the alternative hypothesis has been ful ly inves­
t igated. If we had more control over the selection of tasks (say,
by using metalevel KAs) , the current ly executing KA could also
be suspended simply because other goals (hypotheses) became
more interesting. Thus, it is preferable to view KA bodies as
placing constraints on the sequencing of goals, while not preclud­
ing the possibility that certain observations may (at least tem­
porari ly) in terrupt this sequencing.

3 .1 Definite Conclusions about Goals

Elements on the goal stack represent hypotheses that
the system is t r y ing to establish. Once a hypothesis that occurs
on the goal stack is confirmed with certainty, it is pointless
to continue considering alternative paths in the current K A .
Furthermore, if this hypothesis is not on top of the goal stack, it
is also desirable to terminate all KAs that are t ry ing to establish
addit ional support ing hypotheses (i.e., all subgoals of the just-
concluded goal).

The current implementat ion achieves this by "tagging"
calls to KAs wi th the goal that was the top goal at the t ime
a part icular instance of the invocation mechanism was called.
A conclusion as to this goal can then cause immediate exit of
the current KA being explored. This results in an explicit al­
terat ion of the normal funct ion re turn sequence by " throwing" *
to the instance of the invocation mechanism whose " tag" is the
hypothesis that has just been confirmed. Any intermediate calls
to this mechanism are discarded and the goal stack is automat i ­
cally restored to a state in which the just-concluded goal is the
top goal.

However, this can present difficulties when it comes to
deciding which instances of KAs should be marked as "used"
and hence not available for reinvocation. The problem is tha t a
" throw" to some previous state in the goal stack can pre-empt
complete traversal of some KAs (i.e those that were work ing on
subgoals of the just-concluded goal), and we might be throwing
away the knowledge needed to reach other conclusions (about
other goals) if these KAs were not able to be reinvoked.

The solution current ly adopted is to mark these part ly
used KAs as fu l ly used, thus possibly jeopardizing the complete-
ness of the system but not its consistency. This is not entirely

*Th is is implemented v ia the catch and throw pr imit ives present
in most LISP implementations (e.g., F R A N Z LISP [Foderaro
1980]).

M. Georgeff and U. Bonollo 155

satisfactory, however, and other alternatives need to be inves­
t igated. Tor example, it might be better if par t ly used KAs were
left unmarked (i.e., unused), al lowing for possible reinvocation.
It would then be important to ensure that mult ip le re-use of an
instance of a KA would not affect the val idi ty of any conclusions
made, and that i /o operations were encased in KAs that always
exited natural ly (i.e w i thout " throwing") .

3.2 Incorporation of Judgmental Knowledge

The scheme described above can readily be extended
to include judgmental mechanisms for application in domains
where facts and inference rules (or inference procedures) ex­
hibit some degree of uncertainty. In the Peritus system, the
judgmental scheme is based on certainty theory [Shortliffc and
Buchanan 1975]. However, procedural expert systems are not
tied irrevocably to this philosophy and there is no reason not to
apply other cr i ter ia in dealing w i th judgmental knowledge.

To implement, the judgmental mechanism, each arc
test in the body of a KA is enclosed in an interface funct ion.
The purpose of this interface funct ion is to provide judgmental
cr i ter ia for deciding whether the result of a test is " t rue enough"
to continue progress along the are. In the current system, the
cr i ter ia used are as follows :

i. Any test that returns nil is mapped to a certainty factor of
0.

i i . Any test return ing a non nil value that is not a certainty
factor is mapped to a certainty factor of 1.

i i i . Any test that returns a certainty factor is left unchanged.

The interface funct ion then returns " t rue" if this new
certainty factor is greater than an arb i t rary threshold of 0.2.

As the functions which add new facts to the data base
need to know the certainties associated w i th each of the tests
(or premises) that precede them, a stack of the certainties as-
sociated wi th the tests on the current path is maintained and
can be accessed by these conclude functions. When an arc test
evaluates to " t rue" , the certainty factor associated w i t h tha t
test is pushed onto the stack as a side effect of the interface
funct ion. The stack is popped at the end of a path or after the
last transit ion from a state has been at tempted.

3.3 A Sample Consultat ion

Portions of a sample consultation in the domain of
automobile engine faul t diagnosis are given opposite. The proced­
ural expert system that produced this dialogue was constructed
by using Peritus, the pert inent knowledge being extracted more
or less direct ly f rom various automobile l i terature (e.g., [Sully
and Unstead 1978], [Gregory 1980]). Typical examples of the
KAs used by the system are shown in Figures 2 and 3.

[Various in i t ia l data is first entered]

>Does the engine start? no

[At this point, a data driven KA is invoked on the basis
of the engine not start ing]

F U E L C H E C K ! !
> I s there adequate fuel in the tank? yes

[and now the KA shown in Figure 2. is invoked]

I g n i t i o n S y s t e m T r o u b l e S h o o t P r o c e d u r e :
(1) Disconnect a spark plug lead and position the terminal

wi th in 3 mm of the cylinder head.
(2) Have an assistant switch on the ignit ion and at tempt

to start the engine
(3) Observe the spark, if any, that jumps the gap to the

cylinder head
Press the < r e t u r n > key when you are ready —»

> I l o w would you describe the spark? why?
[The user wants to know why the system needs this
informat ion]

I was t r y ing to determine one of the ignit ion system faults,
and I noticed that the engine does not start .

[The user now continues w i th the trouble shoot]
> weak

(4) Disconnect the coil lead f rom the d ist r ibutor cap and
carry out the procedure previously described for the
spark plug lead in points (1) to (3).

Press the < r e t u r n > key when you are ready —►

> I I o w would you describe the spark from the coil lead?
weak

(5) We wi l l now check whether the low tension current is
reaching the ignit ion coil. Use a test lamp between
the coil low tension terminals and a good earth.
Ensure that the contact breaker points are open or
insulated when making the test.

Press the < r e t u r n > key when you are ready —►

>Does the lamp l ight on the ignit ion side of the coil? yes
>Does the lamp l ight on the d ist r ibutor side? no

[The system has now discovered all it can and gives its
report]

A u t o m o b i l e Suspec ted
There is evidence (0.8) to
coil is faul ty.
There is evidence (0.5) to
is faul ty.

F a u l t s R e p o r t :
suggest tha t the igni t ion

suggest tha t the coil lead

156 M. Georgeff and U. Bonollo

§1 Conclusions

Procedural expert systems appear to provide a means
for representing a specialist's declarative and procedural know­
ledge of some problem domain w i thout sacrificing any of the
desirable properties of standard rule-based expert systems.

There are a number of impor tant features of the system
that are cri t ical to achieving this. F i rs t , KAs are not direct ly
"cal led", but are invoked only when they can contr ibute to
f inding some current goal or when some part icular ly relevant
fact is observed. As KAs cannot be direct ly called, neither can
they directly call any other K A . They thus serve only to specify
what goals are to be achieved and in what order. Second, the
system is, in general, nondeterminist ic, and any number of KAs
may be relevant at any one t ime. These properties enable the
knowledge base of the system to be modified and augmented
without forcing substantial revision.

Furthermore, the representation of the inference proce-
dures in the form of an augmented R T N is simple and homogen­
eous, which aids both in the acquisition of knowledge and in
veri fying correctness. This simplici ty also aids the system in ex­
plaining its reasoning. In the simplest case, the goal stack can be
traversed to answer "how'' and "why" questions (as in M Y C I N -
like systems). Hut, by tracing the bodies of the KAs as well, the
system can also describe the context in which hypotheses are
being explored. This k ind of explanation is of course not deep,
but the formalism itself does not preclude the development of a
richer explanation system. Indeed, the fact tha t at least some of
the procedural knowledge of the expert is expl ici t ly represented
can only lead to better explanatory capabilit ies.

The procedural control component is also very general,
allowing at one extreme the construct ion of purely declarative
programs, while, at the other extreme, it allows purely deter­
ministic procedural programs. Thus, procedural expert systems
bridge the gap between the declarative languages and the proce­
dural languages. Indeed, one way of viewing these systems is as
a generalization of the usual procedural languages to include a
deductive data base and a more general invocation mechanism.

The fact that the knowledge representation allows the
specification of procedures means that the inference mechanism
of the system can itself be wr i t ten by using the same repre-
sentation. For example, the description of the current invoca­
t ion mechanism given in Figure 4 is already in this fo rm.

The generality of the invocation scheme makes it pos­
sible for the system to pursue a diagnosis in a goal-directed way,
yet react opportunist ical ly and change the direct ion of the con­
sultat ion if an event occurs that suggests an alternative diag­
nosis. In fact, after using pr imar i ly goal-directed systems like
M Y C I N , the way in which data invoked KAs suddenly wake
up and begin exploring alternative diagnoses was a constant
surprise to the authors (not always pleasant!). As invocation
expressions can be arb i t rar i ly complex logical expressions, they
can represent quite complex knowledge about the use of KAs .
For example, although we have not explored it here, the scheme
allows invocation based on observed differences between goals
and facts, and KAs can thereby be invoked in a means-ends
fashion.

There are a number of questions tha t st i l l remain to
be answered, and this w i l l require fur ther experimentation w i t h
the system. For example, it may be tha t the class of invocation

expressions used by the present system is too broad. When ar­
bi t rary expressions are allowed, knowledge about the use of KAs
can be very diff icult to reason about. This might create prob-
lems if more detailed explanations were required or if metalevcl
KAs were to t r y to manage invocation. Furthermore, there
would then be fewer possibilities for compiler opt imizat ions,
which could result in unacceptable real-t ime performance.

Bonollo, U. and Georgeff, M.P. "Peritus: A System that
Aids the Construct ion of Procedural Expert Systems",
to appear as Computer Science Tech. Report, Monash
University, Melbourne, Austral ia, 1983.

Buchanan, B.C., and Duda, R.O., "Principles of Rule-
Based Expert Systems", to appear in M. Yovits (ed.) Ad­
vances in Computers, Vol 22, Academic Press, New York.

Clancey, W.J . , "The Epistemology of a Rule-Based Expert
System: A Framework for Explanat ion" , to appear in
A r t i f i c ia l Intelligence.

Davis, R., "Metarules: Reasoning about Con t ro l " , Memo
A I M 576, M I T AI Lab, M I T . Mass., March 1980.

Foderaro, John K., The F R A N Z L ISP Manual , University
of Cal i fornia at Berkeley. 1980.

Georgeff, Michael P., "Procedural Control in Product ion
Systems", A r t i f i c ia l Intell igence, Vol 18, pp. 175-201,
1982.

Gregory's SP Manua l No. 165: Falcon Fai rmont XD
Series 6 Cylinder Service and Repair Manual , Gregory's
Pub. Co., Sydney, 1980.

Michie, D., "Expert Systems", The Computer Journal ,
Vol 23, pp 369-376, 1980.

Reboh, R. "Knowledge Engineering Techniques and Tools
in the Prospector Envi ronment" , Tech Note 243, Art i f ic ia l
Intelligence Center, SRI Internat ional, Menlo Park, Ca.,
1981.

Shortl iffe, E.I I. Computer Based Medieal Consultat ions:
M Y C I N , American Elsevier, New York, 1976.

Shortl iffe, E.H. and Buchanan, B.C., "A Model of Inexact
Reasoning in Medicine", Mathemat ica l Bioscicnces, Vol
23, pp 351-379, 1975.

Sully, F. K. and P. J. Unatead., Automobile Engines
Questions and Answers, 3rd . Ed. , Newnes Technical Books,
Bu t t c rwor th and Co. (Publishers) L t d , London, 1978.

van Melle, W. "A Domain-Independent System Tha t Aids
in Construct ing Know ledge-Based Consultat ion Programs"
Memo HPP-80-1, Report No. STAN-CS-80-814, Computer
Science Department, Stanford University. June 1980.

Winograd, T . , "Frame Representations and the Declarative
Procedural Controversy", in Bobrow, D. and Coll ins, A.
(Eds.). Representation and Understanding , Academic
Press, New York, 1975.

Woods, W. A. , "Transi t ion Network Grammars for Nat­
ural Language Analysis'*, Comm. A C M . , Vol 13, 1970.

M. Georgeff and U. Bonollo 157

