DETECTING AMBIGUITY: AN EXAMPLE IN KNOWLEDGE EVALUATION

DW. Loveland and M. Valtorta

Computer Science Department
Duke University
Durham, North Carolina 27706. USA

ABSTRACT

Expert systems have been developed around
one expert partly because the expert has been totally
responsible for the soundness of the knowledge base.
Without strong aids to help ensure soundness in
building expert systems, we must rely on the soundness
of the mature cohesiveness of a human expert. As
knowledge bases grow this mature expertise will not be
adequate. We propose a new method (for expert
systems) to aid the expert in knowledge evaluation
within the rule-based system setting. We consider the
problem of ambiguity within a classification system as
an example of the proposed technique.

Introduction.

Expert systems have depended upon the
knowledge base of the collaborating expert for
soundness and richness. However, as knowledge bases
grow and try to remain current in a changing world,
incremental knowledge needs to be added, and one
does not have the filter of usage over time that makes
an expert's knowledge so generally reliable. One is led
to considering means of aiding the expert as he
evaluates new information and attempts to update the
knowledge base with this information. Many different
types of aids will be useful; we suggest a useful
approach and give a specific example within this
approach.

There has been some realization of the
importance of aiding knowledge acquisition. TEIRES1AS
(see [Davis, 1982]) not only provided convenience tools
for rule input but helped with rule integrity by use of
"rule models." Michalski and Chilauski [Michalski and
Chilauski, 1980] investigated inductive learning as a
means of automating knowledge acquisition. Recently.
Suwa, Scott, and Shortliffe [Suwa, Scott, and Shortliffe,
1982] have directly addressed the problems of verifying
"completeness and consistency” in the context of the
ONCOCIN system. Also see this last paper for a good
iummary of the need for and present status of
knowledge acquisition aids.

Our general concern is also with the quality of
the knowledge in a knowledge base. Our immediate
ooncern is to aid the expert with feedback regarding
unintended interactions with other rules in a rule-
based system when a new rule is added. In this paper
we assume reasoning with certainty. Extending the
approach considered here to weighted evidence
reasoning is an obvious next step.

This work Is supported in part by the Air Force Office
of Scientific Research under grant AFOSR-81-0221.

The approach we suggest is supplemental to
those previously studied. We suggest discovering
properties for significant classes of problems and then
defining procedures for quickly detecting violations of
the properties. This puts semantic information into the
evaluation process directly. As was learned in
automated theorem proving, if the problem class you
model is broad or important enough, and your device
sufficiently effort-saving (here over standard testing),
then the device will be useful. In the example we give,
the property is important to many expert systems
existing today and the procedure we suggest saves
much effort.

To illustrate the modeling of a property we
choose the ambiguity property within classification
systems. Classification, or diagnostic, systems map
certain inputs into their appropriate classes, such as
certain symptom sets into the appropriate disease. Let
us define an atomic meaningful input vector (atomic
vector) as a set of attribute-value pairs that elicits a
single output, called a class. Intuitively, these are
usually the most important input vectors. If no
inhibitor rules exist, then two or more atomic
meaningful input vectors can combine to form a
(general) meaningful input vector with output the
union of the classes defined by the constituent atomic
vectors. This superposition property is common: if one
has ail the symptoms of a cold and a broken leg, one
probably has a cold and a broken leg. We assume the
property of superposition holds. (This can be
softened.)

When the expert adds a rule to a rule-based
system, he would like to know what changes he has
caused. However, in a large system, testing every
possible input vector may be impossible. He might well
settle for knowing what attribute-value pairs are
elements of vectors of each specific class, and if any
previously atomic meaningful input vector now is a
member of two or more classes. The latter problem we
call the ambiguity problem," we give an efficient means
of testing which returns attribute-value pair
associations and helps the expert with the ambiguity
problem.

We note that we have selected a specific
property, or problem, to check within systems where
exhaustive testing is too time-consuming. For large
domains, there is a tremendous number of possible
attribute-value combinations, most of them
meaningless. We focus on analyzing the meaningful
vectors, here taken to be those that belong to at least
one (output) class. We have chosen one (important)
problem over that class to illustrate that effective
testing procedures can exist.

Along with natural devices we will exploit the
following observation. By superposition, there will be

many ambiguous meaningful input vectors (any union
of meaningful vectors of different classes). If we could
obtain the minimally ambiguous (min- ambiguous)
vectors, we need only display these to the expert; a
now-ambiguous ex-atomic meaningful vector will be
caught.

We model the inference system here by an
"and-or" graph. (See Figure 1) An Input node is a
single attribute-value pair. An attribute may have
several values. To represent this we partition the nodes
into sections, each section denoting one attribute.
Therefore, an input vector can list only one node per
section. A pseudovector is any collection of input
nodes, perhaps several per attribute. We assume that
we can process pseudovectors; the classification of a
pseudovector is all classes inferred by activating all
nodes of the pseudovector. A rule is depicted by a dark
node with conjoined input (cut by a curved arc) and
one or more outputs. Output nodes are labelled CI, etc.

For simplicity, we lirnil ourselves i{o Ltwo
classes. A Oi-vector is en input veclor of cless (i, for
i=1,2. A i2-node (read "one-two node”) is an input node
in both a Cl-vector and a C2-veclor. V.., is the sel of
all 12-nodes. We eliminate most superposition
ambigucus vectors by demanding thal lhe ambiguous
vector be composed of V,, nodes. {This is overly
restrictive; we deal with some of this later. and must
forego other possibilities here.) Figure 2 shows a min-
ambiguous vector from V., thal is (probably} faulty.
Figure 3 shows thal min-ambiguous veclors from V.,
need not be faulty. Veclor <a b c> is a C1-veclor and' §
C2-vector, which 1s probably intended. We simply have
<a b>»eCl, <c d>eCl, <a ¢>»eC2 and <b d>eC2.

Finding unintended ambiguities.

Our concern is to locate unintended
classifications for meaningful input vectors. Besides
possibly using unusual input "vectors" (pseudovectors)
for input, we need only to augment our inference
system to execute "backflooding" in order to use the

Output
nodes nodea nodex

Input Rule

Figure 1

D. Loveland and M. Valtorta 183

procedure discussed here. By backflood from Ci we
mean to follow all backchaining paths and mark every
Ci-vector input node by "i". This is amenable to parallel
computation.

a b
oalQloloo
C1 cz
Figure 2
u b ¢ 4

C1 Ce

Figure 3

We consider the interaction between classes
Cl and C2. One would check interactions between every
pair of classes in turn. Of course, the backflooding
need be done only once per class rather than being
repeated for every pair of classes.

We proceed as follows:

Step J. Backflood from node CIl. Mark with a
"1 " all input nodes reached by backflooding. These are
called Cl-nodes.

Step 2 Backflood from node C2. Mark with a
"2" all input nodes reached by backflooding. These are
C2-nodes. The 12-nodes are now determined and
printed for reviewing by the expert. It then may be
clear by inspection that no meaningful input vector is a
subset of the set V4, of 12-nodes; one could input V4,
as a vector (or pseudovector) to doublecheck that no
class is identified with this (pseudo)vector. (See Step
3.)

Step 8 I V¥ 2 is not obviously wvoid of
meaningful input vecéors. then input as A
{pseudo)vector. There are three possible autcomes.

{2} V12 is neither a Cl-vector or s C2-vector.
Go to Step 4,

{b) Vm is in one class but not the other.

Go to Step &.
{c) ¥, o is both a C1-vector and a C2-vector.
Go to Step B.

Step 4. There is no ambiguity between classes
C1 and 02,

184 D. Loveland and M. Valtorta

Step 5 Suppose V4, is classified Cl but not
C2. V4, could contain a Cl-vector which is part of a
C2-vector not contained within V,3; thus the minimal
Cl-vectors within V4, should be isolated so this can be
checked. This can be done either by the Critical Set
algorithm (see below) or by explicit testing. Space
limitation prevents further details. The symmetric case
of V4, classified C2 but not Cl is processed similarly.

Step 6. Since both classes Cl and C2 are
reached by Vi, we need to check for meaningful
ambiguous vectors within V. If V4, is small then one
reasonable way is to input directly the atomic
meaningful vectors within V 42, checking that they each
are uniquely classified. If some are not, one can
directly print out the inference steps of the ambiguous
rule or seek min-ambiguous subvectors. This can be
done bottom-up from singleton nodes or top-down via
the Critical Set algorithm (see below). The advantage of
finding min-ambiguous subvectors is to ease the
Inspection of the inference steps since one knows the
critical input nodes yielding the ambiguity. Finally, if
too many meaningful subvectors of V4, exist to process
them directly the Critical Set algorithm may be used.

This ends the procedure description.

We briefly outline the Critical Set algorithm
purpose and form and then give a small example.

Space prohibits a full presentation of the
Critical Set algorithm, which is presented in [Loveland,
1982]. The algorithm is -a divide-and-conquer algorithm
to solve the following problem. We are given a universe
U whose power set is the domain of a monotonic set
function f, f binary valued, with f()=0, f(U)=I and ScT
=> f(S) <. f(T). With f so defined, there exist critical sets
B such that f(B)=I but for every proper subset S of B,
f(S)=0. Thus, B is a "minimal I-set" under f. In Step 5
we use this algorithm where the universe U is the set of
12-nodes and f is defined as f(S)=1 if S as a
pseudovector yields class Cl, f(S)=0 if S yields no class
at all. In Step 6, the universe is the same and f(S)=I if
S as a pseudovector yields classes Cl and C2, f(S)=0 if S
is not ambiguously classified. Note that if there are no
inhibitor rules then f is monotonic in both cases since
the superposition property holds.

The algorithm finds some one critical set,
element by element. To find an element it splits
successive sets in two until a singleton set is reached,
whereupon the isolated element is added to the critical
set. To split a pseudovector, divide the values of one
attribute in half, add a different half to each set S; and
S, and add all other nodes (from other attributes) to
both S; and S,- To split a legal vector (one node per
attribute) simply split the nodes evenly between S; and

S,-

The algorithm is very efficient (in a suitable
sense) in finding some critical set, but finding many
critical sets can occasionally lead to high
computational cost. For a full discussion see [Loveland,
1982].

We conclude with a very brief illustration
regarding the process of finding unintended
ambiguities.

Suppose a,b,c,d,e are attribute-value pairs
with (only) a and b representing different values for the
same attribute. Suppose vectors <acd>eCl,
<b c>eC2, and <cde>eC2 are the only meaningful
vectors. Then V4, = (c.d}, learned from backflooding.
<c d> is not of either class. <a c d e> is an ambiguous

vector since it is in both classes, for good reason as it is
a superset of two distinct and differently classed
vectors. It is both meaningful and a min-ambiguous
vector. <a b c d> is an ambiguous pseudovector, but
not a vector since a and b have the same attribute.

Suppose in addition that <b cd>eCl is
created in error by a new rule. Then V;, = [b.c.d}, and
<b ¢ d> is min-ambiguous as can be found by the
Critical Set algorithm applied at Step 6. The algorithm
gives a suggested sequence of input pseudovectors to
be submitted by the expert (or perhaps automatically)
to determine the min-ambiguous vector. The algorithm
would have one evaluate input vectors <b c>, <d>,
<bd> and <cd> (and we know the <bcd>
classification as Step 6 was reached). Here the expert
on his own might have tried <b c> first, then <c d>, and
<b d>, and, getting the expected results, realized the
same conclusion slightly more efficiently. We stress
that we do not want to oversell the Critical Set
algorithm; it is the general approach we emphasize.
Most important, we stress the value of testing
procedures to catch violations of key properties of
dynamic inference systems.

References

[Davis, 1982] Davis, R. "TEIRESIAS: Applications of meta-
level knowledge." Part 2 of Expert Knowledge Sys-
tems in Artificial Intelligence, by Randall Davis and
Douglas B Lenat. McGraw-Hill. 1982.

[Loveland, 1982] Loveland, DW. "Finding critical sets." C.S.
Report CS-1982-23, Department of Computer Sci-
ence, Duke University. Durham. NC, 1982.

[Michalski and Chilauski, 1980] Michalski, RT. and RL. Chi-
lauski. "An experimental comparison of the two
methods of knowledge acquisition in the context of
developing an expert system for soybean disease di-
agnosis." fnternational Journal of Policy Analysis
and Information Systems, 4, 2(1980), 125-161.

[Suwa, Scott, and Shortliffe, 1982] Suwa, M., A.C. Scott, and
E.H. Shortliffe. "An approach to verifying complete-
ness and consistency in a rule-based expert sys-
tem." Al Magazine 3, Fall 1982, 16-21.

