Model-Based Probabilistic Reasoning for Electronics Troubleshooting

Richard R Cantone, Frank J. Pipitone, W. Brent Lander,
and Michael P. Marrone

Navy Center for Applied Research
in Artificial Intelligence
U.S. Naval Research Laboratory - Code 7510
Washington, DC 2037b

ABSTRACT

1N-ATE is an on-going project aimed at developing expert
consultant systems for guiding a novice technician through
each step of an electronics troubleshooting session. One
goal of the project is to automatically produce, given a set
of initial symptoms, a binary (pass/ffail) decision tree of
testpoints to be checked by the technician. This paper
discusses our initial approach using a modified game tree
search technique, the gamma miniaverage method. One of
the parameters which guides this search technique - the
cost of each test - is stored apriori The two other param-
eters that guide it - the conditional probability of test out-
comes and the proximity to a solution - are provided by a
dynamic model of an expert troubleshooter's beliefs about
what in the device is good and what is bad. This model of
beliefs is wupdated using probabilistic "tp.st-resulLt »
plausible-consequences” rules These rules are either pro-
vided by an expert technician, or approximated by a
model-guided Rule Generator The model that guides the
generation of rules is a simple block diagram of the Unit
Under Test (UUT) augmented with component failure
rates.

1. Introduction

IN-ATE is an on-going project aimed at developing
expert consultant systems for guiding novice technicians
through each step of an electronics trouble-shooting ses-
sion This paper describes the current, Mark | implemen-
tation of the IN-ATE system. The basic design of this imple-
mentation grew out of a series of preliminary conversa-
tions with our domain expert - a master technician. Using
a Tektronix Model 465 oscilloscope as a potential Unit
Under Test (UUT) for particular examples, these discus-
sions focused on the general types of information used in
troubleshooting electronic equipment. To achieve an
implementation in a reasonable amount of time, we chose
for inclusion a proper yet important subset, namely:

circuit topology

cost of individual tests

component failure rates

conditional probability of test results
proximity to a solution

In the remainder of this introduction (Section 1) we
describe their importance in electronics troubleshooting,
and briefly how they have been incorporated in the current
implementation. The final section (Section 4) of this paper
briefly discusses how other important types of information
(e.g., component function) could be added to the current
system. The body cf this paper (Sections 2 and 3)
describes in detail the current system - a novel application
of heuristic search guided by a rule-based reasoning com-
ponent that makes use of both traditional, expert-supplied
rules and rules approximated by a novel, model-guided
Rule Generator.

In principle, a technician can isolate the faulty com-
ponents of an electronic device with an exhaustive search
by testing every discrete, low level component (e.g., resis-
tor or transistor.) This simple linear search can find all
faults and in fact is often done when there are relatively
few components to test. When there are a great many
discrete components, the technician can take advantage of
the hierarchical organization that designers generally
impose upon complex and sophisticated circuits In this
tree-like organization the top-most branches represent the
major subsystems, such as the power supply, while the bot-
tom leaves represent the discrete components, such as the
individual resistors and transistors. This organization of
the search space permits the technician to consider, at
each level of abstraction, relatively few components. The
IN-ATE system, as well as others (e.g., [Davis, 1962b] and
[Genesereth, 1982]), attempts to mimic the troubleshooter
by starting the search for faults at the top of the com-
ponent hierarchy, and then slowly moving down to lower
and lower levels.

At each level in this abstraction hierarchy tree, the
troubleshooter must decide where to test first, and then
based on the outcome of that test, where to test next, etc.
In the computer programs that guide Automatic Test
Equipment (ATE) these decisions are storediin a binary
{pass/fail) decision tree. Each node in the decision tree
represents the best test to make next, given the test out-
comes represented by the arcs which lead to it from the
root node. The root node represents the initial symptoms.
This is similar to the decision trees produced by artificial
intelligence game tree search algorithms, such as the A*
algorithm and the alpha-beta minimax algorithm (see
[Nilsson, 1980] for an excellent discussion of these algo-
rithms.) In these decision trees each node represents the
best move for a player to make next The arcs which lead
to each node represent his opponent's responses to his
earlier moves.

The A* algorithm can find an solution tree which is
optimal (in cost) for and/or trees, but requires a depth-
first search to termination (eg., by looking ahead until a
faulty component is found.) When there are many possible
tests in a circuit (or many possible moves in a game) the
A* algorithm can be impractical* and a shallow, suboptimal
search strategy may be required. The Alpha-beta minimax
method can allow this to be done efficiently, yet the alpha-
beta method does not take into account the cost of each
test. While the cost of moves in a game may be inconse-
quential, the cost of a test in troubleshooting can be cru-
cial.

* Even in this case, where there are only two branches at
each "and" node (i.e ass/fal? it has in fact been shown
that the %eneral prob em of finding an optimal solution
tree is NP-hard (see [Hyafil and Rivest, 1976] and also
[Loveland, 1979].)

208 R. Cantone et al.

Still another problem with using any minimax method
for this application is the built-in assumption that the
"and" branches in the and/or search space are decided by
an opponent In physical systems, such as electronic dev-
ices, the "and" branches are governed by nature, or
chance, and can be estimated using probability. This
observation by Slagle and Lee motivated their creation of
the gamma miniaverage method [Slagle and Lee, 1971]. In
the miniaverage method, the backed-up value of an "and"
branch is not a maximum, but a weighted average -
weighted by the conditional probabilities associated with
each branch. It allows for efficient pruning of the search
space with cut-offs, similar to alpha-beta cut-ofls, called
gamma cut-offs. It also allows for termination of the
search when the cost of continuing the search exceeds the
cost of simply replacing the suspect components.

While the cost of each test can often be estimated a
priori, two other parameters that guide the gamma
miniaverage method - the conditional probability of a test
outcome, discussed above, and a static evaluation func-
tion, which estimates the proximity to a solution - are
based on the results of earlier tests. Even with only 2 pos-
sible outcomes (i.e., passffail for a test, for n possible
tests there may be as many as 3" possible combinations to
consider (since each test could either pass, fail, or not be
made.) Rather than require that values for these two
parameters be established a priori for all possible combi-
nations of test results, IN-ATE estimates these values
through rule-based simulation.

Figure 1 shows the overall structure of the rule-based
reasoning component, which is the heart of the IN-ATE sys-
tem. Test results, real or hypothetical, are introduced one
at a time to the Inference Engine Given a test result, the
Inference Engine uses a single, triggered rule to update a
dynamic, a posteriori model of an expert technician's
beliefs about what in the UUT could be bad and what
should be good.

rRae L1 4o
Eeirerator = I Model of UUT

. "4 Priori

—I Rule Base

N A Condition
Test Ya Inference rs A Posteriori ' + \Probabilit
Result) - Engine Mode! of Beliefs

Figure 1: Rule-Baged Reasoning in IN-ATE

In the traditional expert systems approach, the rules
used to update these beliefs would come from a stored, a
priori collection of expert-supplied symptom --> possible-
cause rules. Randall Davis [1982a. 1982b] has pointed out
that the task of extracting a separate rule from the expert
for every conceivable symptom that might arise in a
sophisticated piece of electronics equipment is unrealistic.
Because of this, Davis stresses the importance of an alter-
native means with which to reason - a model of the system
being diagnosed. Davis argues that expert systems should
have both compiled rules (which he calls "compiled experi-
ence") and the ability to reason from a model. IN-ATE
incorporates these two knowledge sources through its
small expert-supplied, device-specific a priori rulebase,
and a model-guided, device-independent Rule Generator.

The Rule Generator can dynamically produce rules,
with the same syntax as the compiled rules, by consulting
an a priori model of the UUT. The model of the UUT that
has been implemented, thus far, is an augmented block
diagram* - augmented in the sense that it contains such
non-traditional information as component failure rates
Although the rules that IN-ATE generates from its model
may be less accurate than expert-supplied rules, the gen-
erated rules can fill in whatever gaps exist in the expert-
supplied rulebase, and then only when needed. The
motivation for this design was a statement by our domain
expert that in troubleshooting any sophisticated piece of
electronic equipment, including equipment with which he
is very familiar, a set of block/schematic diagrams is
indispensible He also says that given a good set of such
diagrams he can troubleshoot essentially any piece of ana-
log electronics The Rule Generator tries to capture this
generality by producing approximations of the rules which
normally make up "compiled experience "

The rules in IN-ATE, both compiled and generated, are
probabilistic (or, more properly, evidential) rules of belief
Each rule is triggered by a single test result. The conse-
quences of each rule are probabilistic assignments of guilt
or innocence, given this one particular finding, to various
components and lines in the UUT. These probabilistic
assignments are used by the system's inference engine to
update the system's a posterioi model of beliefs about
what in the UUT is good and what is bad. Since the system
does not make use of a "single fault assumption" that at
most one of the UUT's components is faulty, for each com-
ponent and line the system gathers both evidence that is it
good and evidence that it is bad. And, because of the
uncertainty inherent with approximated probabilities, the
probabilities associated with these two mutually exclusive
possibilities may not necessarily sum to 1. The system
combines evidence from separate, independent sources
(i.e., test results) using Dempster's Rule [Shafer, 1976].
Dempster's Rule does allow for a sum less than 1, yet
reduces to the traditional Bayesian approach when the
sum is exactly 1.

Dempster's Rule works fine for combining evidence
from sources that are independent. But because of circuit
connectivity, test results are not always independent. In
IN-ATE, non-independent test results are defined as those
that are taken from a common path in the UUT circuitry.
The interpretation assigned by the inference engine given
two non-independent results depends upon whether the
tests passed or failed and upon which result is upstream or
downstream from the other. For example, if two non-
independent results are both bad (good), then only the
more useful - the upstream (downstream) result - is
retained and interpreted by the inference engine. As
another example, when one passed test result later clears
away the blame from some component - assigned as a
result of an earlier failed test result - that blame is
removed from the component and the original failed test
result is re-interpreted in light of this new information.
This form of non-monotonicity has been implemented
using the basic truth maintenance facility in the electron-
ics simulation system EL [Stallman and Sussman, 1979].

The current IN-ATE system is made up of two basic
components. Section 2 of this paper discusses the proba-
bilistic rule-based reasoning component that guides the
heuristic search component discussed in Section 3. Sec-
tion 4 is a discussion of future plans.

* Fault isolation and testability analysis based upon block
diagrams has come to be known as logic modeling or logic
model analysis. One notable example of this is the STAMP
system [Simpson and Balaban, 1982] which makes use of
Information theory to generate, in a proprietary manner,
binary decision trees or the type generated by the IN-ATE
system.

2. Probabilistic Rule-Baaed Reasoning

The rules in IN-ATE incorporate probabilistic meas-
ures of belief. Probabilistic measures of belief, or cer-
tainty factors, have played an important role in such suc-
cessful rule-based expert consultant systems as MYCIN
[Shortliffe, 1976] and PROSPECTOR [Duda et.al.. 1979]. The
expert consultant system for electronics fault isolation
ARBY [McDermott, D. and Brooks, R, 1982] totals
"amounts" of evidence for and against hypotheses, but
since these "amounts" are not related to probabilities, it
does so in a very ad hoc manner [Brooks, R, 1982].

Probabilistic measures of belief can play an important
role in troubleshooting electronic devices. For example,
consider the simple circuit depicted by Figure 2,

Bad
>~ Cp

GD!‘«‘ BQJ
4 C > Cz o>

Figure 2

where it is known, through testing, that the input is good
and that both outputs are bad. One explanation for these
test results could be that both components C, and C; are
faulty. While this is possible, and should not be ruled out,
the possibility that C, is broken is much more probable.

Also, consider the slightly different circuit depicted by
Figure 3, where it is known that the input of C, is good, the
output of C, is bad. and the output of C; is good. Since the
output of C; is good, its input must be good, which also

Bad
Good Goad
> o, > ¢, B~

Figure 3

means that one of the outputs of C, is good. This give
some evidence that C; is good. (If it were known that both
of the outputs of C; are good then we could be completely
certain that C; is good.) So, in this case, C; is slightly less
suspect than C, since there is some evidence that C; is
good while there is none at all that C; is good.

2.1. The Inference Rules

In expert consultant systems, relative measures of
belief, such as those discussed above, have been quantized
using antecedent -> plausible-consequences rules. In IN-
ATE there are two types of rules - rules for passed tests
and rules for Jailed tests. Also, each rule has two parts -
one suggests consequences about components, while the
other suggests consequences about other test-points in the
circuit. The basic syntax of the rules is described using
the following rule schemata:

Rule-la // there is evidence with probability z that an
output of a component is bad*, then if there are

* Here, a "bad" input or output line just means that the
signal on the line is not the same as when the entire UUT is
good.

R. Cantone et al. 209

n components which could have caused this bad
output, then for each such component there is

evidence (with probability fT) that this com-
ponent is broken.

Rule-1b For each input / of each of the n components
indicated by Rule-1a, if m of these n components
feed line I, then there is evidence {with probabil-

ity "‘n"’) thet [is bad.

Rule-2a Jf there is evidence with prebability z; thatl out-
put O, of a component with n outputs is good,
then lor each line that feeds thiz component,
through some path, there is evidence {(with pro-
bability ¥ -2-—3 that this line is good.

izln

Rule-2b Jf there is evidence with probability z, that cut-

put 0, of a component with n outputs is good.

P
then there is evidence (with probability ¥ =
that this component is good. i=in

These schemata have actually been used by our domain
expert as a guide for writing device-specific rules for the
Tektrenix 485 Dscilloscope, with the probabilities in
parentheses merely suggestions.

Rather than requiring Lthat a demain experi provide
the system with a complete and exhaustive met of such
rules for every test-peint in a specific UUT, the sysiem's
ftule CGemerator can approximate migsing rules using infor-
malticn stored in the system’s a priori model of the UUT. IT
infermaticn is missing from the modet, the Rule Generator
will use the probabilities within the parentheses in the
schemata above as delaults. The types ol information
presently stored in the a priori model of the UUT and used
by the Rule Generator are: the cireuit structure {e.g.
topology). sub-structure, and relative component failure
rates. For example, the Rule Generator can approximate a
Rule-1a rule by making use of information about:

o Topalogy: The grossest estimate of n is Lhe total
number of compenents in the entire circuit. This
can be cut down significantly, using simple signal
tracing. by considering only these components
that lie upstream from the bad output.

o Componsni Failure Kates: The probability :—i.s a

defaull probability. The failure rate of each com-
ponent is used as a weighting factor. For exam-
ple, if one of the n components has exactly twice
the feilure rate of each of the other n—1 com-
ponents then the probability of Lhe evidence

z
agsigned to it would be and for each
of the others. n+l n+l

The Rule Generator can custemn lador a Hule-2b rule using
information about.

o Component Sub-Struciure: Some of the cutputs
of a component could be more informative than
others. For example, output 1 may be affected by
807% of the component’s internal sub-components.
By making use of such information, the probabil-
ity masigned is a weighted average rather then a
simple average.

2.2. The Inference Engine

All the rules are triggered by a test result. When a
new test result is entered into the system, the inference
engine first locks in the amall rulebase, which comprises
compiled experience, for a rule that is appropriate. It
there s none, it will call upen the Rule Generator to gen-
erate one. With either the retrieved or generated rule, the

210 R. Cantone et al.

inference engine can then update the a posteriori model of
beliefs about what in the UUT is good and what is bad

In updating the model of beliefs, there are Lwo cases
that the inference engine must consider. The new lesi
result could either contribute new independent evidence
that should be combined with earlier evidence, or it could
provide new information upon which earlier plausible infer-
ences should be revised.

Combining New Independenl Evidence

At any point in time, we may have evidence, say for a
particular component £, that indicates with probability x,
that C is good and y, that C 18 bad. Since we allow that
£, = 1— (z,+y,) may be greater than D, these are not clas-
sical Bayesian probabilities.

When a new piece ol independent evidence is intro-
duced concerning €. the new evidence can be combined
with the old evidence using Dempster’s Rule [Schafer,
1876].* For exampie, suppose that new evidence suggests,
with probability 2z merely that C is good. The uncertainty
£ associated with this evidence is simply 1— ¢ (since, in
this case, y» =0.) According to Dempster's Rule, the
updated probabilities zy {good), ys {bad), and 23 {uncer-
tain} would then be computed as follows. Firsi, using a
eross product, let:

I'ySXpXT|+Tp2,+2TpI,y
¥a=2zey

'y = 2p2,

N ={z'aty'ste'y)

and then, through re-normalization:

Tg= Nz,
W= Ny,
Ia = N'z'a

(There are similar equations lor combining new evidence
that £ is bad.)

For example, suppose that at some moment the total
probability that component £ ig8 good is z, =1/3 end
¥,=1/3 that € is bad (with uncertainty ,=1/3.) [f new
evidence is introduced with certainty zp=1/3 that £ is
good (and with uncertainty 2,=2/ 3), then the updated pro-
babilitiea would be x3;=1/2 that is good and yg=1/ 4 that
C is bad (with uncerteainty zg=1/4.)

The associativity and commutativity of Dempster's
Rule are very important in this application since the
results of independent Lests should be independent of the
aorder in which the tests were made. The Rule's sgund
treatment of uncertainty ig also important here, since in
troubleshooting exact probabilities are often difficult or
impossible to calculate.

Revising Earfier Plausible Inferences ("Shifting Blame")

~ Inferences made earlier in & troubleshooting session
might rneed to be re-evaluated in light of new information.
For example, Rule-la rules distribute the blame for & fault
among n compenents. It m (for m=n) of these are later
cleared by a passed test result, then the blame assigned to
these m components should be removed from them and

* One notable use of Dempster's Rule has b
for integrating sensor 1nfoprmat.lon Enrv:y. efélﬂlllj. ﬁm’é

a0 uenced Friedman's Extended
Frredman 1981], ended Plausible Reasoning

re-distributed among the other n-m components. Simi-
larly, when the plausible blame attributed to some line L
(by an instance of Rule-lb) is later confirmed by a failed
test result, then the blame that had been assigned to the
m components that line L feeds (by the corresponding
instance of Rule-la) should be removed* and re-distributed
to the other n- m components using a new instance of
Rule-la - one triggered by the new test result.

This form of non-monotonicity has been implemented
using the basic truth maintenance system incorporated in
the electronics simulation system EL [Stallman and Suss-
man, 1979], Borrowing the terminology of Stall man and
Sussman. at each moment an assertion can be believed
with some certainty, and labeled in, if there is some well-
founded support behind it (i.e., a test result), otherwise it
LS labeled out An assertion that is less than completely
certain can move from in to out by the introduction of
contradictory evidence that is completely certain. To
implement this capability we store with each discrete
piece of evidence that is less than completely certain the
test result and rule that originally introduced it to in. This
LS the only information necessary for removing and re-
evaluating the plausible consequences of a rule in light of
new information

3. Deciding the Best Test

The a posteriori model of beliefs has two basic pur-
poses Firstly, the system can present to the user a list of
suspect components, ordered by their current probability
of being faulty This can either be done at any time, upon
request from the user, or automatically, when the max-
imum such probabability exceeds some user established
threshold Secondly, the system can use the model of
beliefs, in a hypothetical mode, to help decide the best test
for the user to make next If there are no initial symptoms
the best test model of beliefs can be used to construct, a
priori, a binary decision of best tests to be performed at
each step of such a troubleshooting session If there are
initial symptoms, a custom tailored binary decision tree
which takes these initial "test results" into account can be
computed at the beginning of the troubleshooting session
(or dynamically recomputed if the user later contributes,
through his own initiative, other test results)

The best test is basically that test which, for its cost,
will bring the system closest to isolating the fault to a sin-
gle component. Since there are two possible outcomes of
each test (i.e..pass or fail), the system must consider both
of them separately. It does this by simulating the effect
that each such outcome would have on its model of beliefs.
A heuristic static evaluation function is applied, in each
case, to the model of beliefs to estimate how far the sys-
tem would then be to having isolated the problem to one
faulty component.

We have applied the gamma miniaverage method in a
straight-forward manner (and refer the reader to [Slagle
and Lee, 1971] for a detailed discussion of the method
itself.) The nodes in the search tree represent, on alter-
nating levels, the possible tests that can be performed and
the potential outcomes o, of the possible tests. A static
evaluation function G applied to an outcome node on the
frontier of the search represents the loss, or cost, of ter-
minating at that point. The value of the static evaluation
function G which we have empirically chosen is the size of
the component ambiguity set (the still suspect com-
ponents.) G could also represent the total cost of replacing
all of the components in the ambiguity set, if this data
were known.

* Although that blame is removed from these components,
the components are not cleared since this test result pro-
vides no evidence that they are good, but merely that one
of their inputs is bad.

To calculate the backed-up value of the “and” node
which represents the cost R of terminating the search
efter performing test T}, the static values G([o,,T,.E]) for
each possible outcome o; of T, (where [0y, T, E] represents
the meodei of beliets after outcome o; of test T, is incor-
porated into the model of beliefs £) are combined with the
cost (7, of performing test T, end the conditional proba-
bilities Py, (o, |£) that test 7; will have outcome o, (given
the evidence £ that has been accumulated thus far} using
the formula

R(E.) =Cy, + E‘:Pr,(DHE)'G([Oi.TLE])

An approximalion of the a pesteriori probability Py, (o[£}
is maintained in the sysitem's o posteriori model of beliefs
(see, for example, rule schemata Rule-1b and Rule-2a.) The
value of G{[nt_;-‘ E1) is calculated by statically evaluating
the a posteriori model of beliefs. The risk K basically
repregents the tetal of the actual cost and the polential
cost if the troubleshooling session were to be terminated
at Lthat point.

Since we want to choose the Lest T, of mininum risk
R(E 7;). the backed-up value of the “or"' node which
representis Lhis decision is

R(E) = oun R(E.T,).

To allow for multiple levels of look-ahead, this
backing-up process can be repeated as many levels as
resources permit Not only can these backed-up miniaver-
age values be used for estimating the best test to make
next, but using gamma cut-offs, this search can be done
efficiently.

4. Future Work

The algorithms have been implemented in Franz LISP
on a VAX 11/780 computer and produces reasonably good
decision trees for block diagrams that include series,
parallel, and feedback circuits. For example, in the case
of a simple series circuit where all test costs are equal, the
system reduces to the standard half-split method (i.e.,
binary search.) In the more realistic case of a 2-
dimensional circuit, where there is a real ambiguity about
where the "middle" is, the system performs much better
than the half-split method. In the next few months this
basic system will first be applied to troubleshooting a stan-
dard oscilloscope, the Tektronix Model 465, and its perfor-
mance will be evaluated by our domain expert. To test the
generality of the system, it will then be applied to troub-
leshooting a sophisticated piece of military electronics,
such as the WLQ4 Intercept Receiver.

We will also be adding a learning component, in the
style of the Self-Improving Diagnostics system SID [Hughes
Aircraft Corp.. 1960], to retain and periodically refine gen-
erated rules. The probabilities within a rule, Initially
assigned by the Rule Generator, would be changed to
reflect the actual distribution encountered by the system
over time.

A more difficult improvement that we will be exploring
is a more informed Rule Generator. We will attempt to
incorporate an ability to reason with knowledge about
component function (in addition to circuit topology and
component failure rates.) Also the Rule Generator should
know when to use assumptions that narrow the set of pos-
sible faults (e.g., that faults are always upstream from a
bad line) but are not always correct (see [Davis, 1982b]).

R. Cantone et al. 211

ACKNOWLEDGEMENTS

We would like to thank our domain expert, master
technician Mr. Mark Hulbert, for his time and patience,
Prof. Kenneth De Jong. Prof. Michael Gaynor and Dr. James
Slagle for their advice; Dr. Randall Schumaker (NAVA1R) for
directing our attention toward the problem of automatic
test program generation (ATPG), and Dr. Jude Franklin,
especially, for introducing us to the general problem of
electronics troubleshooting

REFERENCES

[11 Brooks, Ruven, personal communication (June, 1982).

[2] Davis, Randall, "Expert Systems: Where are we? And
where do we go from here?", pgs. 3-22, The Al Maga-
zine, in, Number 2 (1982a).

[3] Davis, Randall, et. al ."Diagnosis Based on Description
of Structure and Function", in Proceedings of the 1962
National ~ Conference on Attificial Intelligence (AAA1-

82), (1982b)
[4] Duda. R.O, Hart, P.E., Konolige, K. and Reboh, R, "A

Computer-Based Consultant for Mineral Exploration,"”
Artificial Intelligence Center, SRI International. Menlo

Park, CA(Sept.. 1979).

[5] Friedman, Leonard, "Extended Plausible Inference,"
Proceedings, International Joint Conference on
Artifical Intelligence (IJCAI-81), (August, 1981)

[6] Garvey, Thomas D., et. ad., "An Inference Technique for
Integrating Knowledge from Disparate Sources." in
Proc. IJCAI-81., (August, 1981).

[7] Genesereth, Michael R, "Diagnosis Using Hierarchical
Design Models." in Proc. AAAI-82, (August, 19e2)

[8] Hughes Aircraft Corp., "Knowledge Based Systems
(KBS) Study for Advanced MATE Systems," HAC Report
No. FR80-75-869 (May, 1960).

[9] Hyafil, Laurent and Rivest, Ronald L., "Constructing
Optimal Binary Decision Trees is is NP-Complete," pgs.
15-17, Information Processing Letters, 5, 1 (May,

1976).
[10] Loveland. Donald W. "Selecting Optimal Test Pro-
cedures from Incomplete Test Sets," in Proc. First

Intern*. Symposium on Policy Analysis and Informa-
tion Science, Duke University, Durham, N.C., pgs.
228-235 (June, 1979)..

[II] McDermott, Drew and Brooks, Ruven, "ARBY: Diagnosis
with Shallow Causal Models", in Proc. AAAI-82, (August,
1982).

[12] Nilsson, Nils J., Principles of Atrtificial Intelligence,
Tioga Pub. Co., Palo Alto, CA (1980).

[13] Shafer. G., A
Evidence, ?rmce\.on
(1976).

[13] Shortiiffe, Edward H., computer-Based Medical Consul-
tations: MYCIN, American Elsevier Pub. Co., New York,
NY (1976).

[14] Simpson, William R. and Balaban, Harold S., "The
ARINC Research System Testability and Maintenance
Program (STAMP)", in Proc. 1982IEEE = AUTOTESTCON
Conference, Dayton, Ohio (October, 1982).

[15] Slagle, James R. and Lee, Richard C.T., "Application of
Game Tree Searching Techniques to Sequential Pat-
tern Recognition," p. 103-110, Communications of the
ACM, 14, 2 (February, 1971).

[16] Stallman, Richard M. and Sussman. Gerald J., "Prob-
lem Solving About Electrical Circuits," in Artificial
Intelligence: An MIT perspective, Winston, Patrick
Henry and Brown. Richard Henry (eds), The MIT
Press, pgs.33-91 (1979).

Mathematical Theory of
University Press, Princeton, NJ

