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ABSTRACT 

1N-ATE is an on-going project aimed at developing expert 
consultant systems for guiding a novice technician through 
each step of an electronics troubleshooting session. One 
goal of the project is to automatically produce, given a set 
of initial symptoms, a binary (pass/fail) decision tree of 
testpoints to be checked by the technician. This paper 
discusses our initial approach using a modified game tree 
search technique, the gamma miniaverage method. One of 
the parameters which guides this search technique - the 
cost of each test - is stored a priori The two other param­
eters that guide it - the conditional probability of test out­
comes and the proximity to a solution - are provided by a 
dynamic model of an expert troubleshooter's beliefs about 
what in the device is good and what is bad. This model of 
beliefs is updated using probabilistic "tp.st-resuLt ► 
plausible-consequences" rules These rules are either pro­
vided by an expert technician, or approximated by a 
model-guided Rule Generator The model that guides the 
generation of rules is a simple block diagram of the Unit 
Under Test (UUT) augmented with component failure 
rates. 

1. Introduction 
IN-ATE is an on-going project aimed at developing 

expert consultant systems for guiding novice technicians 
through each step of an electronics trouble-shooting ses­
sion This paper describes the current, Mark I implemen­
tation of the IN-ATE system. The basic design of this imple­
mentation grew out of a series of preliminary conversa­
tions with our domain expert - a master technician. Using 
a Tektronix Model 465 oscilloscope as a potential Unit 
Under Test (UUT) for particular examples, these discus­
sions focused on the general types of information used in 
troubleshooting electronic equipment. To achieve an 
implementation in a reasonable amount of time, we chose 
for inclusion a proper yet important subset, namely: 

circuit topology 
cost of individual tests 
component failure rates 
conditional probability of test results 
proximity to a solution 

In the remainder of this introduction (Section 1) we 
describe their importance in electronics troubleshooting, 
and briefly how they have been incorporated in the current 
implementation. The final section (Section 4) of this paper 
briefly discusses how other important types of information 
(e.g., component function) could be added to the current 
system. The body cf this paper (Sections 2 and 3) 
describes in detail the current system - a novel application 
of heuristic search guided by a rule-based reasoning com­
ponent that makes use of both traditional, expert-supplied 
rules and rules approximated by a novel, model-guided 
Rule Generator. 

In principle, a technician can isolate the faulty com­
ponents of an electronic device with an exhaustive search 
by testing every discrete, low level component (e.g., resis­
tor or transistor.) This simple linear search can find all 
faults and in fact is often done when there are relatively 
few components to test. When there are a great many 
discrete components, the technician can take advantage of 
the hierarchical organization that designers generally 
impose upon complex and sophisticated circuits In this 
tree-like organization the top-most branches represent the 
major subsystems, such as the power supply, while the bot­
tom leaves represent the discrete components, such as the 
individual resistors and transistors. This organization of 
the search space permits the technician to consider, at 
each level of abstraction, relatively few components. The 
IN-ATE system, as well as others (e.g., [Davis, 1962b] and 
[Genesereth, 1982]), attempts to mimic the troubleshooter 
by starting the search for faults at the top of the com­
ponent hierarchy, and then slowly moving down to lower 
and lower levels. 

At each level in this abstraction hierarchy tree, the 
troubleshooter must decide where to test first, and then 
based on the outcome of that test, where to test next, etc. 
In the computer programs that guide Automatic Test 
Equipment (ATE) these decisions are stored t in a binary 
{pass/fail) decision tree. Each node in the decision tree 
represents the best test to make next, given the test out­
comes represented by the arcs which lead to it from the 
root node. The root node represents the initial symptoms. 
This is similar to the decision trees produced by artificial 
intelligence game tree search algorithms, such as the A* 
algorithm and the alpha-beta minimax algorithm (see 
[Nilsson, 1980] for an excellent discussion of these algo­
rithms.) In these decision trees each node represents the 
best move for a player to make next The arcs which lead 
to each node represent his opponent's responses to his 
earlier moves. 

The A* algorithm can find an solution tree which is 
optimal (in cost) for and/or trees, but requires a depth-
first search to termination (eg., by looking ahead until a 
faulty component is found.) When there are many possible 
tests in a circuit (or many possible moves in a game) the 
A* algorithm can be impractical* and a shallow, suboptimal 
search strategy may be required. The Alpha-beta minimax 
method can allow this to be done efficiently, yet the alpha-
beta method does not take into account the cost of each 
test. While the cost of moves in a game may be inconse­
quential, the cost of a test in troubleshooting can be cru­
cial. 

* Even in this case, where there are only two branches at 
each "and" node (i.e., pass /fail), it has in fact been shown 
that the general problem of finding an optimal solution 
tree is NP-hard (see [Hyafil and Rivest, 1976] and also 
[Loveland, 1979].) 
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St i l l ano the r p rob lem w i t h using any m i n i m a x me thod 
for th is app l i ca t ion is the bu i l t - i n assumpt ion tha t the 
" a n d " branches in the a n d / o r search space are dec ided by 
an opponent In phys ica l systems, such as e lec t ron ic dev­
ices, the " a n d " branches are governed by na tu re , or 
chance, and can be es t ima ted using p robab i l i t y . This 
observat ion by Slagle and Lee mot i va ted the i r c rea t ion of 
the gamma miniaverage method [Slagle and Lee, 1971]. In 
the min iaverage m e t h o d , the backed-up value of an " a n d " 
b ranch is not a m a x i m u m , bu t a weighted average -
weighted by the cond i t iona l p robab i l i t ies associated w i th 
each b ranch . I t allows for ef f ic ient p run ing of the search 
space w i t h cut-of fs, s im i la r to alpha-beta cut-of ls , cal led 
gamma cut-offs. I t also allows for t e r m i n a t i o n of the 
search when the cost of con t inu ing the search exceeds the 
cost of s imp ly rep lac ing the suspect components . 

While the cost of each tes t can o f ten be es t ima ted a 
priori, two o the r pa rame te r s tha t guide the g a m m a 
min iaverage m e t h o d - the cond i t i ona l p robab i l i t y of a tes t 
ou tcome, discussed above, and a stat ic evaluat ion func­
t i on , wh ich es t imates the p r o x i m i t y to a so lu t ion - are 
based on the resu l ts of ear l ie r tests. Even w i t h only 2 pos­
sible ou tcomes (i.e., pass/fail) for a test , for n possible 
tests t he re may be as many as 3n possible combina t ions to 
cons ider (since each test cou ld e i ther pass, fail, or no t be 
made.) Rather t h a n requ i re tha t values for these two 
p a r a m e t e r s be establ ished a priori f o r al l possible comb i ­
nat ions of tes t resu l ts , IN-ATE est imates these values 
t h r o u g h ru le-based simulation. 

Figure 1 shows the overa l l s t r u c t u r e of the rule-based 
reasoning componen t , wh ich is the hear t of the IN-ATE sys­
t e m . Test resu l ts , rea l or hypo the t i ca l , are i n t r oduced one 
at a t i m e to the In ference Engine Given a test resu l t , the 
In ference Engine uses a single, t r i gge red ru le to update a 
dynamic , a posteriori mode l of an expe r t techn ic ian 's 
beliefs about wha t in the UUT cou ld be bad and what 
should be good. 

In the t r ad i t i ona l expert systems approach, the ru les 
used to update these bel iefs would come f r o m a s to red , a 
priori co l l ec t ion of exper t -supp l ied symptom --> possible-
cause ru les. Randal l Davis [1982a. 1982b] has po in ted ou t 
t ha t the task of ex t rac t i ng a separate ru le f r o m the expe r t 
for every conceivable s y m p t o m t h a t m i g h t ar ise in a 
sophis t icated piece of e lec t ron ics equ ipmen t is unrea l is t i c . 
Because of th is , Davis stresses the i m p o r t a n c e of an a l te r ­
nat ive means w i t h wh ich to reason - a model of the sys tem 
being diagnosed. Davis argues t h a t e x p e r t systems should 
have both comp i l ed ru les (wh ich he calls " c o m p i l e d exper i ­
ence") and the ab i l i t y to reason f r o m a mode l . IN-ATE 
inco rpo ra tes these two knowledge sources t h r o u g h i ts 
sma l l exper t -supp l ied , device-specif ic a priori ru lebase, 
and a mode l -gu ided, dev ice- independent Rule Generator. 

The Rule Generator can dynamica l l y p roduce ru les, 
w i t h the same syntax as the comp i led ru les , by consu l t ing 
an a priori mode l of the UUT. The mode l of the UUT t h a t 
has been i m p l e m e n t e d , thus far, is an augmented block 
diagram* - augmented in the sense t ha t i t conta ins such 
non- t rad i t i ona l i n f o r m a t i o n as componen t fa i lu re ra tes 
A l though the ru les t ha t IN-ATE generates f r o m its model 
may be less accura te than exper t -supp l ied rules, the gen­
e r a t e d ru les can f i l l in whatever gaps exist in the exper t -
suppl ied ru lebase, and t hen only when needed. The 
mo t i va t i on for th is design was a s ta temen t by our domain 
expe r t t ha t in t roub leshoo t ing any soph is t i ca ted piece of 
e lec t ron ic equ ipment , inc lud ing equ ipment w i t h wh ich he 
is very fami l ia r , a set of b l o c k / s c h e m a t i c d iagrams is 
ind ispensib le He also says t ha t g iven a good set of such 
d iagrams he can t roub leshoot essent ia l ly any piece of ana­
log e lec t ron ics The Rule Generator t r ies to cap tu re th is 
genera l i t y by p roduc ing approximations of the ru les which 
n o r m a l l y make up "comp i led exper ience " 

The ru les in IN-ATE, bo th comp i led and genera ted , are 
p robab i l i s t i c (or, mo re p roper ly , ev ident ia l ) ru les of bel ief 
Each ru le is t r i gge red by a single tes t resu l t . The conse-
quences of each ru le are probab i l i s t i c ass ignments of gu i l t 
or innocence, g iven th is one p a r t i c u l a r f ind ing, to var ious 
componen ts and l ines in the UUT. These probab i l i s t i c 
ass ignments are used by the system's in ference engine to 
update the system's a posteriori mode l of beliefs about 
what in the UUT is good and what is bad. Since the sys tem 
does not make use of a "single fau l t assumpt ion " tha t at 
mos t one of the UUT's components is fau l ty , for each c o m ­
ponent and l ine the sys tem ga thers both evidence that is i t 
good and evidence tha t i t is bad. And, because of the 
u n c e r t a i n t y i nheren t w i t h app rox ima ted probab i l i t ies , the 
p robab i l i t i es associated w i t h these two mu tua l l y exclusive 
possib i l i t ies m ay not necessar i ly sum to 1. The sys tem 
combines evidence f r o m separate, independent sources 
(i .e., tes t resu l ts ) using Dempster ' s Rule [Shafer, 1976]. 
Dempster ' s Rule does allow for a sum less t h a n 1, ye t 
reduces to the t r ad i t i ona l Bayesian approach when the 
s u m is exac t l y 1. 

Dempster ' s Rule works f ine for comb in ing evidence 
f r o m sources tha t are independent. Bu t because of c i r c u i t 
connec t i v i t y , tes t resu l ts are not always independent . In 
IN-ATE, non- independent tes t resu l ts are def ined as those 
tha t are t a k e n f r o m a c o m m o n pa th in the UUT c i r cu i t r y . 
The i n t e r p r e t a t i o n assigned by the in fe rence engine g iven 
two non- independent resu l ts depends upon whether the 
tests passed or fa i led and upon wh ich resu l t is ups t ream or 
downs t ream f r o m the other . For example , i f two non-
independent resu l ts are b o t h bad (good), t h e n only the 
m o r e usefu l - t he u p s t r e a m (downst ream) resu l t - is 
r e ta ined and i n t e r p r e t e d by the in fe rence engine. As 
ano ther example , when one passed tes t resu l t l a te r c lears 
away the b lame f r o m some componen t - assigned as a 
resu l t of an ear l i e r failed tes t r esu l t - t ha t b lame is 
removed f r o m the component and t h e or ig ina l failed t es t 
resu l t is r e - i n t e r p r e t e d in l i gh t of th i s new in fo rma t i on . 
This f o r m of non -mono ton i c i t y has been i m p l e m e n t e d 
using the basic t r u t h ma in tenance fac i l i t y i n the e lec t ron ­
ics s imu la t i on sys tem EL [ S t a l l m a n and Sussman, 1979]. 

The c u r r e n t IN-ATE sys tem is made up of two basic 
components . Sect ion 2 of th is paper discusses the p roba­
b i l i s t i c ru le -based reasoning componen t t h a t guides the 
heur i s t i c sea rch componen t d iscussed in Sec t ion 3. Sec­
t i o n 4 is a d iscuss ion of f u t u r e plans. 
* Fau l t i so la t ion and tes tab i l i t y analysis based upon b lock 
d iagrams has come to be known as logic modeling or logic 
model analysis. One notab le example of th is is the STAMP 
sys tem [S impson and Balaban, 1982] wh i ch makes use of 
I n f o r m a t i o n t heo ry to genera te , in a p r o p r i e t a r y manner , 
b i n a r y dec is ion t rees or t he t ype gene ra ted by the IN-ATE 
sys tem. 



R. Cantone et al. 209 

2. Probabilistic Rule-Baaed Reasoning 
The rules in 1N-ATE incorporate probabilistic meas­

ures of belief. Probabilistic measures of belief, or cer­
tainty factors, have played an important role in such suc­
cessful rule-based expert consultant systems as MYCIN 
[Shortliffe, 1976] and PROSPECTOR [Duda et.al.. 1979]. The 
expert consultant system for electronics fault isolation 
ARBY [McDermott, D. and Brooks, R., 1982] totals 
"amounts" of evidence for and against hypotheses, but 
since these "amounts" are not related to probabilities, it 
does so in a very ad hoc manner [Brooks, R., 1982]. 

Probabilistic measures of belief can play an important 
role in troubleshooting electronic devices. For example, 
consider the simple circuit depicted by Figure 2, 

Figure 2 

where i t is known, th rough test ing, tha t the input is good 
and tha t bo th ou tpu ts are bad. One exp lanat ion for these 
tes t resu l ts cou ld be t ha t bo th components C2 and C3 are 
fau l ty . While th is is possible, and should not be ru led out , 
the poss ib i l i ty t ha t C1 is b r o k e n is m u c h more probable. 

Also, cons ider the s l ight ly d i f fe ren t c i r c u i t dep ic ted by 
F igure 3, where it is known t h a t the inpu t of Cx is good, the 
ou tpu t of C2 is bad. and the ou tpu t of C3 is good. Since the 
ou tpu t of C3 is good, i ts i npu t mus t be good, wh i ch also 

means that one of the outputs of Cx is good. This give 
some evidence that C1 is good. (If it were known that both 
of the outputs of C1 are good then we could be completely 
certain that C1 is good.) So, in this case, C1 is slightly less 
suspect than C2, since there is some evidence that C1 is 
good while there is none at all that C2 is good. 

2.1. The Inference Rules 
In expert consultant systems, relative measures of 

belief, such as those discussed above, have been quantized 
using antecedent -> plausible-consequences rules. In IN-
ATE there are two types of rules - rules for passed tests 
and rules for Jailed tests. Also, each rule has two parts -
one suggests consequences about components, while the 
other suggests consequences about other test-points in the 
circuit. The basic syntax of the rules is described using 
the following rule schemata: 
Rule-la // there is evidence with probability z that an 

output of a component is bad*, then if there are 

• Here, a " b a d " i npu t or ou tpu t l ine j u s t means t h a t the 
signal on the l ine is no t the same as when the en t i re UUT is 
good. 
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re-distributed among the other n-m components. Simi­
larly, when the plausible blame attributed to some line L 
(by an instance of Rule-lb) is later confirmed by a failed 
test result, then the blame that had been assigned to the 
m components that line L feeds (by the corresponding 
instance of Rule-la) should be removed* and re-distributed 
to the other n- m components using a new instance of 
Rule-la - one triggered by the new test result. 

This form of non-monotonicity has been implemented 
using the basic truth maintenance system incorporated in 
the electronics simulation system EL [Stallman and Suss-
man, 1979], Borrowing the terminology of Stall man and 
Sussman. at each moment an assertion can be believed 
with some certainty, and labeled in, if there is some well-
founded support behind it (i.e., a test result), otherwise it 
LS labeled out An assertion that is less than completely 
certain can move from in to out by the introduction of 
contradictory evidence that is completely certain. To 
implement this capability we store with each discrete 
piece of evidence that is less than completely certain the 
test result and rule that originally introduced it to in. This 
LS the only information necessary for removing and re­
evaluating the plausible consequences of a rule in light of 
new information 

3. Deciding the Best Test 
The a posteriori model of beliefs has two basic pur­

poses Firstly, the system can present to the user a list of 
suspect components, ordered by their current probability 
of being faulty This can either be done at any time, upon 
request from the user, or automatically, when the max­
imum such probabability exceeds some user established 
threshold Secondly, the system can use the model of 
beliefs, in a hypothetical mode, to help decide the best test 
for the user to make next If there are no initial symptoms 
the best test model of beliefs can be used to construct, a 
priori, a binary decision of best tests to be performed at 
each step of such a troubleshooting session If there are 
initial symptoms, a custom tailored binary decision tree 
which takes these initial "test results" into account can be 
computed at the beginning of the troubleshooting session 
(or dynamically recomputed if the user later contributes, 
through his own initiative, other test results) 

The best test is basically that test which, for its cost, 
will bring the system closest to isolating the fault to a sin­
gle component. Since there are two possible outcomes of 
each test (i.e..pass or fail), the system must consider both 
of them separately. It does this by simulating the effect 
that each such outcome would have on its model of beliefs. 
A heuristic static evaluation function is applied, in each 
case, to the model of beliefs to estimate how far the sys­
tem would then be to having isolated the problem to one 
faulty component. 

We have applied the gamma miniaverage method in a 
straight-forward manner (and refer the reader to [Slagle 
and Lee, 1971] for a detailed discussion of the method 
itself.) The nodes in the search tree represent, on alter­
nating levels, the possible tests that can be performed and 
the potential outcomes o4 of the possible tests. A static 
evaluation function G applied to an outcome node on the 
frontier of the search represents the loss, or cost, of ter­
minating at that point. The value of the static evaluation 
function G which we have empirically chosen is the size of 
the component ambiguity set (the stil l suspect com­
ponents.) G could also represent the total cost of replacing 
all of the components in the ambiguity set, if this data 
were known. 
* Although that blame is removed from these components, 
the components are not cleared since this test result pro­
vides no evidence that they are good, but merely that one 
of their inputs is bad. 
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To allow for multiple levels of look-ahead, this 
backing-up process can be repeated as many levels as 
resources permit Not only can these backed-up miniaver-
age values be used for estimating the best test to make 
next, but using gamma cut-offs, this search can be done 
efficiently. 

4. Future Work 

The algorithms have been implemented in Franz LISP 
on a VAX 11/780 computer and produces reasonably good 
decision trees for block diagrams that include series, 
parallel, and feedback circuits. For example, in the case 
of a simple series circuit where all test costs are equal, the 
system reduces to the standard half-split method (i.e., 
binary search.) In the more realistic case of a 2-
dimensional circuit, where there is a real ambiguity about 
where the "middle" is, the system performs much better 
than the half-split method. In the next few months this 
basic system will first be applied to troubleshooting a stan­
dard oscilloscope, the Tektronix Model 465, and its perfor­
mance will be evaluated by our domain expert. To test the 
generality of the system, it will then be applied to troub­
leshooting a sophisticated piece of mil itary electronics, 
such as the WLQ-4 Intercept Receiver. 

We will also be adding a learning component, in the 
style of the Self-Improving Diagnostics system SID [Hughes 
Aircraft Corp.. I960], to retain and periodically refine gen­
erated rules. The probabilities within a rule, Initially 
assigned by the Rule Generator, would be changed to 
reflect the actual distribution encountered by the system 
over time. 

A more difficult improvement that we will be exploring 
is a more informed Rule Generator. We will attempt to 
incorporate an ability to reason with knowledge about 
component function (in addition to circuit topology and 
component failure rates.) Also the Rule Generator should 
know when to use assumptions that narrow the set of pos­
sible faults (e.g., that faults are always upstream from a 
bad line) but are not always correct (see [Davis, 1982b]). 
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