HPRL:A Language For Building Expert Systems

Steven Rosenberg

Computer Research Laboratory
Hewlett-Packard
1501 Page Mill Road

Palo Alto,

Abstract

This paper describes an extension of FRL
(Frame Representation Language) which supports
the encoding of reasoning knowledge within a
frame-based formalism. The extension is called
HPRL (Heuristic Programming and Representation
Language). The declarative representation of
reasoning knowledge in the same formalism that is
used to represent domain knowledge results in a
powerful tool for the construction of expert
systems. Reasoning knowledge is easy to describe,
examine and modify. Rules can be reflexive,
allowing the construction of powerful meta-rules.
HPRL runs on a Vax 11/780, and on the HP-9836.
It has been used for various exploratory projects
at Hewlett-Packard, including a program to

diagnose faults during IC manufacturing, a
program for analyzing dual-channel ECG
information to diagnose arrhythmias, and a

program for analyzing spectra from infrared and
mass spectrometers.

1. INTRODUCTION

The Applications Technology Department of the
Computer Research Laboratory of Hewlett-Packard
has been pursuing the development of "heuristic
programming languages". As part of this effort,
we have built an integrated language for the
representation of knowledge and for reasoning
about that knowledge. The language wuses a
single decarative formalism for representing
domain and reasoning knowledge, including
knowledge about the reasoning process itself (rule
interpreters, agendas, decision trees, etc.).

Different representation languages emphasize
different features. In HPRL we have tried to build
a language that is a good tool for building expert
systems. To do so, we embodied such design
criteria as a uniform declarative representation, a
particular syntax for grouping related information
in frames, and so on. Other Ilanguages have
emphasized different features. KL-ONE
(Brachman, 1977), for example, emphasizes the
epistomological significance of the particular
features which its representation tools provide the
user. HPRL, by contrast, emphasizes the tools
themselves. HPRL does not claim to embody the
"right" theory of how to represent knowledge.
Instead, HPRL is presented as a tool within which
the user can construct his own model.

Ca. 94304

Aside from this difference in emphasis, KL-ONE
and HPRL contain a similar set of representation
tools. The initial representation components were
both developed at approximately the same time -
1977. Currently KL-ONE is being extended to
allow for the expression of logical relations among
elements in a separate syntax (Brachman and
Levesque, 1982). HPRL has gone the route
described in this paper of integrating reasoning
and representation within a declarative semantics.

There are at least two other languages with
similar goals to HPRL: RLL (Greiner and Lenat,
1980) and AGE (Nii and Aiello, 1979). RLL is a
frame-based representation-language language
whose goal is to allow the user to modify the basic
representation capabilities. HPRL does not provide
this degree of freedom. However, HPRL allows
reasoning knowledge to be expressed in the
representation language, and provides methods for
extending and modifying . the reasoning
capabilities. AGE is a language whose goal is to

provide tools that allow a user to emulate different
problem solving architectures such as EMYCIN, or
HEARSAY-III. In this respect it contains a well
developed set of tools. However, HPRL allows a
user to design and build his own tools, as well as
use existing ones.

MRS (Gensereth, Greiner and Smith, 1981) is a
knowledge representation system designed to
provide a single language for stating facts, while
storing those facts in a variety of different
representations. Unlike MRS, HPRL does not give
the user control over the primitive datatypes and
processes that underlie the language. Thus a user
stores information in frames, but does not know
how frames are implemented. He does not have
the option, as in MRS, of defining how classes of
information should actually be implemented (i.e. in
arrays, lists, etc.).

HPRL can be compared to older reasoning
languages like EMYCIN (VanMelle, 1980). HPRL is
at least as powerful as these languages, since it
contains the ability to do forward and backward

chaining, as well as use meta-rules. In addition,
HPRL separates out the notion of reasoning
contexts from the semantics. EMYCIN makes
contexts do double duty, as a separate

representation component does not exist. As a
result the ability to represent knowledge is
compromised.

216 S. Rosenberg

2. THE LANGUAGE

HPRL is an extension of FRL (Frame
Representation Language (Goldstein and Roberts,
1977)), which provides the basis for the

representation tools in HPRL. FRL, in turn, s
based on Minsky's (1975) notion of frames. In
various incarnations it is still in use as a

representation language (Winston, 1980; Engelman,
1980). FRL provides a hierarchically organized,
frames-based semantics with inheritance,
procedural attachment and slot descriptions. The
frame representation in HPRL (adopted from FRL)
allows the wuser to organize domain knowledge
according to user-selected semantic and ontological
relations.

HPRL extends FRL by using frames to represent
reasoning as well as domain knowledge. A core set
of Lisp functions provide functionality by
executing rules according to the directions in a
frame-based rule interpreter. This results in a
uniform knowledge representation for data, rules,
the rule interpreter and the interpretation
process. The first three are represented directly
as frames. The interpretation process, which
involves the manipulation of agendas, the creation
of portions of various decision trees, the
recording of sufficient information to enable
backtracking, etc. is done primarily (but not
entirely, for reasons of efficiency) through
frames.

The use of a declarative representation means that
reasoning knowledge is explicit, and can be
examined and modified by other reasoning
knowledge. This makes the reasoning knowledge
more easily understood and built than if a
procedural format were employed. Reasoning
knowledge can be augmented with additional facts.
For instance, a rule can have, besides a condition
and action, an arbitrary amount of additional
information, such as caveats and suggested uses.

Rules are represented as frames in HPRL. To be

useful, a rule must be interpreted in an
environment called a Rule Domain (which is itself
a frame). This rule domain indicates how to
interpret the rule frame. HPRL provides an

initial set of tools for the interpretation of rules.
These include a capacity for forward chaining,
backward chaining, meta-rules, and
meta-interpretation.

More powerful reasoning strategies can be
constructed through the use of meta-rules. One
typical way in which meta-rules are used in an
expert system for the diagnosis of IC wafer flaws
is the following: heuristic rules exist which
examine what is known at any given time, and
when possible generate hypotheses. A meta-rule
exists which, whenever it notices that a
hypothesis is applicable, changes the agenda to
cause evaluation of that hypothesis first. Such a
meta-rule allows the user to do best-first search
in cases where he has heuristics that can generate
good hypotheses. This use of meta-rules allows
local optimization of the reasoning whenever
sufficient evidence is accumulated.

Meta-rules in HPRL consist of a condition
composed of a logical conjunction of (a) domain
knowledge and (b) reasoning knowledge. The
most important reasoning knowledge is that which
reflects on the reasoning process itself, such as
(i) when a goal gets placed on the agenda, (ii)
when a goal succeeds, and (iii) when a goal fails.
Other reasoning knowledge can be used, such as
which rules are being considered, or are
available, and whether a particular rule has
succeeded. A small set of primitives allow
meta-rules to alter the agenda. A meta-rule can
examine the interpreter itself, and change its
composition. For instance, given the failure of a
goal representing a given strategy, a meta-rule
might change the component of the rule
interpreter that applies rules, going from one
best-first search method to another.

Meta-reasoning can occur by having reasoning
about the current rule domain go on in a separate
rule domain. For instance, given evidence for a
bad component of an IC wafer, it is possible to
use the knowledge of the structural relations and
manufacturing processes embodied in the domain
knowledge to decide what goals to pursue next.
Such reasoning occurs in a separate meta-domain.
The rule interpreter can be set to always choose
its next goal based on the outcome in the
meta-domain. In fact, this would be very
wasteful, since only some cases benefit from this
kind of reasoning. Instead, we use meta-rules to
notice when such situations exist. These
meta-rules then directly invoke the meta-domain.

To use rules which are represented declaratively,
it is necessary to provide a procedural invocation.
In HPRL, this is done by creating a Rule Domain.
A rule domain contains a set of rules (although
rules can be part of more than one domain), and
a set of instructions for interpreting the rules.
The default case for the rule set is the entire
rule database. The rule domain is itself
represented as a frame.

HPRL provides two pre-defined domains

backward chaining, and forward chaining. The
user can construct others, either from scratch, or
as sub-domains of these two. If a new domain is
constructed which is subordinate to one of the
existing domains, it will inherit the rule
interpretation of its parent domain, if new
instructions are not specified. The rules used
would be those specified in this new domain,
together with any rules specified in the parent
domain. Rule domains which are subordinate to
the basic domains have the effect of partitioning
the rule set. This means that rule domains can be
used to partition problems into sub-problems and
associated rules. This is useful when
sub-problems can be identified and a restricted
set of rules is known to be sufficient. Within each
domain, the rules will be highly relevant to the
problem. This avoids excessive search through a
large set of rules. It also facilitates the
structuring of problems in terms of psychologically
meaningful contexts. In an expert system under
development at Hewlett-Packard which attempts to
diagnose dual-channel ECG's, an initial

categorization of the beat is used to partition the
solution process into fifteen separate domains. In
this case all domains had identical rule
interpreters. The division into separate domains
preserved a conceptual partitioning, and allowed
small sets of rules to be applied in relevent cases.

Alternatively, rule domains can be used to
represent distinctions in control. A user can
customize a domain by examining the rule
interpretation instructions, and then writing or
choosing a special function for the component
which defines the appropriate feature of the
interpretation process. Modifying a rule
interpreter is not a trivial task. However, it is
made easier through the wuse of a declarative
format for the rule interpretation features,
inheritance of shared features, which localizes and
minimizes the changes required, and the use of
"canned" or predefined components and tools for
modifying features.

3. WHAT CURRENTLY EXISTS

HPRL runs in PSL (Griss, Benson and Maguire,
1982) on the VAX and the HP-9836, a 68000-based
machine. However, all new development work is
occuring in PSL on the 9836, and the other
versions are becoming obsolete. The PSL version

has been recoded for speed and efficiency. It
takes advantage of the PSL capability to write
machine level code to optimize frequently

performed operations.
4. APPLICATIONS
HPRL has been developed in the context of

multiple application domains. These include
expert systems for fault diagnosis in IC

manufacturing, for the analysis of ECG
arrhythmias, and for the analysis of spectra from
infrared and mass spectrometers. HPRL is also

being used as part of a natural language
processing system. None of these applications is
"complete", although some of them demonstrate
substantial ability. Each exercises different

aspects of HPRL.

We plan to continue to test and develop HPRL in
an environment of multiple applications. The
applications drive the development by showing us
shortcomings in the current version. At the same
time, multiple applications ensure that HPRL is not
optimized for just one type of task. Multiple
application domains are more likely to result in
good representation and reasoning principles.

5. CONCLUSIONS

Although several expert systems are in various

stages of development in HPRL, it is still too
early to tell if this approach will provide
significant advantages in very difficult tasks. We
do not yet know if this declarative approach to
interpretation will prove to be inefficient or
clumsy for implementing some desirable control
architectures. In addition, there are quest.ons of

size and efficiency when HPRL is used to

which we cannot

S. Rosenberg 217

yet answer. However, initial results with the
current applications are encouraging enough that
we plan to continue development of HPRL.

ACKNOWLEDGMENTS

I would like to thank Douglas Lanam, who has
been responsible for the current implementation,
and the members of our application groups (Reed
Letsinger, Jan Aikins, Enrique Ruspini, Chris
Clare, and Elaine Heron).

REFERENCES

Brachman, R. J. "A Structural Paradigm for
Representing Knowledge," Ph.D. dissertation.
Harvard University, Cambridge, Mass. 1977.
Brachman, R. J. and Levesque, Hector J.
"Competence in Knowedge Representation,” proc.
Second National Conference on Artificial
intelligence, Carnegie-Mellon University,
Pittsburgh, Pa. 1982.

En gel man, Carl, Scarl, Ethan A., and Berg,
Charles H. "Interactive Frame | nstantiateion,"
Proc. First National Conference on Artificial
Intelligence, Stanford University, Palo Alto, Ca.

1980, pp. 184-186.

Cenesereth, Michael R, Creiner, R. and Smith, D.

E. "MRS Manual," Stanford University Heuristic
Programming Project Memo HPP-81-6, December
1981.
Goldstein, . P. and Roberts, R. B. "NUDGE, A
Knowledge-Based Scheduling Program,” Proc. of
IJCAI-S, 1977, pp. 257-263
Greiner, Russel, and Lenat, Douglas B. "A
Representation Language Language,” Proc. First
National Conference on Artificial Intelligence,
Stanford University, Palo Alto, Ca. 1980, pp.
165-169.

Griss, M. L., Benson, E., and Maguire, G. Q.

"PSL: A Portable LISP System," Proc. ACM
Symposium on LISP and Functional Programming,
Pittsburgh, Pa. 1982.

Minsky, M. "A Framework for Representing
Knowledge," in P. H. Winston (Ed.) The
Psychology of Computer Vision, McGraw-Hill, N.Y.
1975.

Nii, H. P. and Aiello, N. "AGE: A
Knowledge-based program for building

knowledge-based programs,” Proc. of
1979, pp. 645-655.

IJCAI-6,

VanMelle, Ww. "A Domain-Independent
Production-rule System that Aids in Constructing
Know/edge- based Consultation Programs,” Ph.D.
Dissertation, Heuristic Programming Project, Dept.
of Computer Science, Stanford University, Memo

HPP-80-22, June 1980.

Winston, Patrick H. "Learning and Reasoning by
Analogy/' Communications of the ACM, 23, 12
(Dor. 1980]. nn 689-703

