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ABSTRACT 

Expertise in fault diagnosis often depends on recog­
nizing particular patterns in observed data correspond­
ing to situations that have previously been 6een and 
correctly interpreted This approach can result in 
significant efficiencies by avoiding a costly and detailed 
analysis based on the causal relationships between 
faults and observable data Recognition-based reason­
ing requires highly focused search strategies in order to 
extract relevant information from a knowledge base 
that contains a large number of prototypes for various 
possible faults This paper describes a model of 
recognition-based reasoning and describes an imple­
mentation of the model. designed to solve diagnostic 
problems in pediatric cardiology The model first 
analyzes portions of the patient data to hypothesize a 
small set of potential diseases Knowledge specific to 
each selected hypothesis is then used to refine these 
initial choices The model has been validated against 
actual hospital cases and performs in a manner compar­
able to expert physicians 

1. Introduction. 

Expertise in many diagnostic problem domains 
depends on both an extensive, detailed knowledge base 
about potential faults and their manifestations and on 
control structures capable of selecting only those pur-
tions of the knowledge base likely to be relevant to the 
current problem We have developed a model of diag­
nostic reasoning for such problems which performs at 
expert levels through the use of three components. An 
initial recognition component triggers a small set of 
working hypotheses about a fault Refinement rules, 
specific to each triggered hypothesis, work to accept, 
reject, or modify the hypothesis, or to suggest alternate 
hypotheses for consideration A causal model com­
ponent generates precise expectations about each fault 
for use by the refinement rules Successful diagnosis 
results from good first hypotheses about possible 
defects, efficient mechanisms for refining these 
hypotheses, and accurate techniques for determining 
the plausibility of possible defects 

In fault diagnosis, expertise often consists of the 
recognition of specific situations as instances of ones 
that have been seen and successfully corrected in the 
past [1,2,3]. Such recognition-driven expertise is baaed 
upon a large repertoire of domain specific knowledge in 
the form of rules that trigger models of possible faults. 
These models in turn contain expectations for testing 
whether a proposed model fits the conditions of an 
observed situation. The complexity and level of detail of 
this knowledge leads to serious problems with the com­
putational complexity of search processes. Our model 
focuses computational resources so that this detailed. 

prototypical knowledge can be utilized in an efficient 
manner 

Not all fault based task environments lend them­
selves to this treatment, of course. The complexity of 
possible defects may be such that predefined fault 
models cannot be constructed In such cases, more 
complex causal reasoning is often required 

2. Problem Domain. 

The above approach to diagnostic problem solving 
has been demonstrated in a program we call GALEN 
GALEN diagnoses cases of congenital heart disease in 
children In this domain, GALEN is presented with some 
observable data about a circulatory system that con­
tains one or more faults or defects. All possible defects 
that can occur within the circulatory system are 
assumed to be known in advance, as are the immediate 
effects they have on the rest of the system Some sets 
of defects uniquely correspond to named diseases It is 
GALENs task to identify what disease is present (and 
therefore what defects are present) given this patient 
data. The disease whose expectations best match the 
observed data is selected as the final diagnosis 

3. Knowledge base. 

The knowledge base in GALEN consists primarily of 
an organized collection of hypotheses The hypotheses 
specify potential defects, expectations associated with 
these defects, and rules for refining the hypotheses or 
suggesting other possible hypotheses 

3.1. Hypotheses. 

Each hypothesis has two main parts The first part 
is a model of the hypothesized phenomena themselves. 
In congenital heart disease, this is a partial model of a 
diseased circulatory system The models provide expec­
tations about what should be observed if the hypothesis 
is true The second part is a group of production rules 
that describe how to investigate the t ru th or falsity of 
the hypothesis. These rules describe conditions under 
which a hypothesis should be accepted, rejected, or 
modified. They also describe when to temporarily aban­
don a hypothesis in favor of another 

Three different forms of hypothesis have proven 
useful in diagnosing faults in the domain of congenital 
heart disease. Category hypotheses describe groups of 
diseases that have some important features in common. 
For example, the category hypothesis 
'diseases_with_increased _PBF' includes all diseases that 
involve increased pulmonary blood flow. The category 
hypothesis 'cyanotic_heart_disease' includes hypotheses 
that could explain why the patient is cyanotic. The 
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models of a category hypothesis describe important 
expectations that are common to all its member 
hypotheses. The production rules in a category 
hypothesis deal primarily with choosing the most 
appropriate member hypotheses for the given situation. 

Disease hypotheses describe individual diseases. 
Disease hypotheses typically contain several models 
that represent the state of the circulatory system under 
several variants of the disease. These variants describe 
differences in severity (e.g mild aortic stenosis, 
moderate aortic stenosis) or the presence of significant 
co-occurring defects (e.g. aortic stenosis with mitral 
insufficiency). The production rules in a disease 
hypothesis act to select an appropriate variant model of 
the disease, in much the same way that the rules in a 
category hypothesis act to select an appropriate 
disease. 

Pathophysiological hypotheses describe individual 
faults within the circulatory system. They contain a sin 
gle model of the portion of the system that contains the 
fault. Pathophysiological hypotheses contain rules that 
trigger diseases (or categories of diseases) which result 
from the faults they describe 

3.2. Hierarchical structure. 

An important reason for the success of our model is 
the use of a hierarchically organized knowledge base 
which allows the program to consider possible diagnoses 
at appropriate levels of abstraction These levels range 
from very general (categories of diseases), to mid-range 
(specific diseases), to very specific (defects within 
diseases) 

Describing hypotheses at different levels of 
abstraction is important in achieving efficiency during 
diagnosis Category hypotheses are included because 
some data cues suggest broad classes of hypotheses 
without necessarily suggesting any specific disease 
within the class Further specification of the exact 
defect can then be postponed until analysis of additional 
data have been completed, rather than hypothesizing a 
disease that might have to be rejected later. We can 
also prune away large areas of the problem space with a 
minimum of effort if we can reject an entire category of 
hypotheses, instead of having to reject hypotheses one 
at a time At the other end of the spectrum, pathophy­
siological hypotheses are included primarily as a way to 
organize patient data into meaningful chunks We can 
use a pathophysiological hypothesis as a short form for 
the complex of data that led to its proposal 

The set of all hypotheses known to GALEN forms a 
search graph, in which the graph's vertices arc the 
hypotheses themselves and the graph's edges are pro­
duction rules. A given hypothesis is "connected" to 
another one if the first hypothesis has a rule whose con­
sequent specifies an operation on the second Trigger­
ing a hypothesis activates its production rules, which in 
effect starts a search of the graph at the corresponding 
point. 

4. Control. 

GALEN contains two major procedures for recogniz­
ing defects: propose and review. Together, these two 
procedures implement a highly focused search strategy 
for moving through the hierarchy of hypotheses. GALEN 
operates primarily by alternating cycles of propose and 
review: propose to suggest an initial place to begin 
searching the hypothesis graph, and review to continue 
the search until more data is needed. 

4.1. Propose. 

The propose procedure allows initial attention to be 
focused into the graph of hypotheses at some appropri­
ate point. This is done by applying rules which look for 
specific features of the incoming data and trigger one or 
more hypotheses if they are successful When a 
hypothesis is triggered, a specialized set of rules within 
the hypothesis are applied which specify the most 
appropriate model for the hypothesis based on an exam­
ination of the data and of other hypotheses For exam­
ple, the disease hypothesis 'tetralogy_of_allot' will 
choose a model reflecting a 'severe' form of the disease 
if the patient is less than two months old: 

The level of abstraction of triggered hypotheses 
may vary due to differences in the usefulness and 
specificity of data cues. For example, clubbing of the 
fingertips can indicate cyanosis, which would result in 
'cyanotic_heart_disease' being triggered This is a 
category hypothesis that represents some six possible 
diseases; the cyanosis data cue alone is not powerful 
enough to select among them. An early diastolic mur­
mur heard near the pulmonary valve, however, would 
result in the more specific hypothesis 
'insufficient_pulmonary_valve' being directly triggered: 

4.2. Review. 

Once the propose procedure has identified plausi­
ble places to begin searching the graph of hypotheses, 
the review procedure can carry out a search from 
there. The review procedure compares a hypothesis' 
models against accumulated data, then applies rules 
within the hypothesis that examine the results of the 
comparison. These rules typically look for violated 
expectations in the patient data and specify new models 
of the original hypothesis that do not give rise to the 
same violations. (The rules can also accept or reject 
current hypotheses or trigger new ones). For example, 
if the disease hypothesis 'tetralogy-oLiallot' detected 
that its model 'severe__tetraiogy' expected increased 
vascularity on X-ray but none was observed, a new 
model, 'mild_tetralogy' would be specified as an alterna­
tive: 
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(unobtained 
(X-ray (vascularity))) 

then (specify rnild_tetralogy)) 

Under some conditions, a hypothesis may have its 
models compared against other hypothesis' models in 
addition to being compared against data The decision 
to make this extra comparison is made by rules in the 
affected hypotheses themselves. Such additional com­
parisons can be useful if there is overwhelming evidence 
in favor of one or more hypotheses, or if there is some 
important pathophysiological hypothesis that should be 
taken into account whenever a new hypothesis is tr ig­
gered 

5. Expectations 

A third procedure is also critical to Galen's perfor­
mance. The modeler uses two types of causal rules to 
precompile models of the circulatory system that are 
associated with hypotheses in the knowledge base One 
type of rule determines the hemodynamic results of a 
defect or abnormality in the circulatory system 
Another type of rule determines the observable results 
of a defect or abnormality For example, a leaky valve 
can cause changes in flow and pressure in its vicinity 
hemodynamic results) as well as an audible murmur 
observable results). 

The modeler starts with a model of the normal cir­
culatory system and adds a set of defects corresponding 
to those present in a specific disease. Next, all relevant 
rules are applied to the defects, yielding a circulatory 
system containing new hemodynamic and observable 
abnormalities. Rules are then applied in turn to the 
resulting abnormalities, until no new rules are applica­
ble. The result is a model of how a real circulatory sys­
tem would appear in the specific disease. 

6. Performance. 

GALEN's knowledge base contains information 
sufficient to diagnose 70 congenital cardiac diseases and 
disease variants. It is able to respond to cases covering 
approximately 95% of the diseases found in the flies of 
the Pediatric Cardiology Clinic at the University of Min­
nesota heart hospital. In a typical run, GALEN inspects 
30-30 pieces of patient data, distributed in the 
categories of history, physical examinatioa X-ray. and 
EIKG. Hypotheses are proposed as each item of data is 
examined. In such a run, 10-20 specific disease models 
are usually considered. Following the last item of data, 
a priority rating of these models is established, based 
upon the degree of fit between GALEN's expectations for 
each disease and the actual patient data values. Results 
of validation studies carried out using patient cases 
from the hospital files Indicate that: 1) GALEN is able to 
reach the same diagnosis as medical staff on the most 
common forms of congenital heart disease, 2) GALEN is 
also able to reach a correct diagnosis on selected cases 
of congenital heart disease that were initially misdiag­
nosed by medical staff, and 3) the reasoning steps 
employed by the program and the expert diagnosticians 
are similar [4,5]. 
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