REPRESENTATION AND ANALYSIS OF ELECTRICAL CIRCUITS
IN A DEDUCTIVE SYSTEM

Takushi

Tanaka

Artificial Intelligence Project

Department of Computer

Science, Yale University

Box 2158 Yale Station New Haven, CT06520 U.S.A.

The National Language Research Institute
3-9-14 Nishigaoka Kita-ku, Tokyo 115 Japan*

ABSTRACT

We have developed representations and
analysis methods for electrical circuits in a
deductive system called DUCK.** Circuits are
represented as conjunctions of logical predicates.
Circuit analysis is done as an iteration of proofs
which determine the basic structures in the
circuit. Electrical constraints for the ~circuit
are produced from the results of the proofs. The
constraints are then solved wusing propagation
methods.

1 INTRODUCTION

When an expert first looks at a circuit
schematic, he tries to partition the circuit into
familiar sub-circuits with known goals. He then
tries to pursue the causality of electrical events
through those sub-circuits to determine if and how
it achieves the overall goal of the circuit. This
is based on his assumption that every electronic
circuit is designed as a goal oriented composition
of basic circuits with known goals. Even in the
analysis of an electrical circuit with an unknown
goal, although we could perform a formal numerical
analysis of the full circuit equations, we try to
discover specific sub-structures, such as series
or parallel circuits, in order to rewrite the
circuit into a simpler one. In many cases we can

analyze circuits without formal numerical analysis.

Using a deductive system, we have implemented
the process which determines these specific
structures in a «circuit. Circuit elements and
devices are represented as logical predicates
which have element names and connecting nodes as
terms. A circuit is represented as a conjunction
of propositions which represent each electrical
element or device. The process of determining a

specific structure in the object ~circuit s
realized as a proof of a predicate bound by
existential quantifiers representing the existence
of the specific structure. Since the trans-

formation of a circuit into an equivalent one
involves changing the axioms which represent the

*

present address

** DUCK is a set of LISP routines which implement
a relational database similar to those found
in Al language such as PLANNER and Prolog. [8]

object circuit, it is executed as a meta procedure
outside of the deductive system. If a specific
structure is found in the object circuit, local
electrical constraints for the specific structure
are translated into global constraints on the
object circuit using the results of the proof.
The constraints are solved by means of propagation
methods. [12]

Il REPRESENTATION OF CIRCUITS

A. Predicates for elements and circuits

The circuit CA12 of Figure 1 is represented
as follows (1) in the DUCK system. [8] The
proposition "(TERMINAL TI #1)" states that Tl is a
terminal at node #1. The proposition "(RESISTOR RI
#1 #2)" states RI is a resistor connecting node #1
and node #2. The node order is important for
elements or devices which have polarity, such as
diodes. So we define the predicate "DIODE" such
that "(DIODE DI #2 #3)" states DI is a diode with
the cathode connected to node #2 and the anode to

node #3. Now we can also define the predicate
"TRANSISTOR" like "DIODE". "CA12" is a predicate
without arguments. "(CA12)" as a propositional
constant states that there is a circuit called
CA12. "->" is the forward chaining symbol. It
means logical implication, but procedurally, it

means that when " (CA12)" is added to the database
of axioms, then "(TERMINAL TI #1)", "(TERMINAL T2
#2)", ... , "(DIODE DI #2 #3)" are to be asserted
(added to the database) immediately. [8], [9]

Figure 1l: Circuit CAl2

(RULE CIRCUIT-LIBRARY~CA12
{CA12) -> {AND (TERMINAL T1 #1})
(TERMINAL T2 #2)
(TERMINAL T3 #3)
(RESISTOR RL #1 #2)
(DIODE DL #2 #3))) ===—~——{1}

264 T. Tanaka

B. Rules for non-polar elements

If the proposition "{CR12)" is asserted, we
can prove the proposition " (RESISTOR RL #1 #2}",
but we cannot prove the proposition "(RESISTOR RI1
¥2 #13". Since we want to have "{RESISTOR Rl #1 #2
}" imply "{RESISTOR R1 #2 #1)", we will assert the
following rule {2).

"PX", "?#A", and "?#B" means that wvariables
"X", "#A", and "#B" are bound by universal gquan-
tifiers {(skolemization). If "[RESISTOR Rl #1 #2)"
is asserted, then "(RESISTOR Rl #2 #11" will be
asserted immediately. Similar rules are written
for the predicates "CAPACITOR"™ and "INDUCTGR",

(RULE RESISTOR-IMAGE
(RESISTOR ?X 7#A 74B) ->
(RESISTOR ?X ?#B ?#A)) —— (2

C. Predicates for abstract elements

We can define predicates for abstract
elements from atomic formulae representing circuit
elements and devices using logical connectives and
quantifiers. These predicates correspond to the
conceptual hierarchy of <circuit elements and
devices. First we will define the predicate "Z-
ELEMENT", so that we can call resistors, capaci-
tors, and inductors impedance elements (3). The
backward chaining symbol "<-" is wused insted of
the forward chaining symbol. It also means logical
implication, but differs proceduraly from forward
chaining. The rule (3) is applied when the system
tries to prove "(Z-ELEMENT DI #2 #3)" correspond-
ing to the question "Does there exist DI an imped-
ance element connecting node #2 and #37?7". In order
to prove the proposition, the system tries to
prove either "(RESISTOR DI #2 #3)" or "(CAPACITOR
DI #2 #3)" or "(INDUCTOR DI #2 #3)". We can also
define predicates such as "ACTIVE-ELEMENT", "LINE-
AR-ELEMENT", ... , "ANY-ELEMENT" so that we can
refer to these classes of elements and devices.

{RULE IMPEDANCE-ELEMENT
{2-ELEMENT ?X 2#A ?#B) «<-
{OR (RESISTOR 7X 7#A 7#B)
[CAPACITOR 2X 28A 24B)
(INDUCTOR 2X 78A 2#BY1) —-(3)

D. Predicates for circuit identification

In order to decide which kind of analysis can
apply to the object circuit, several predicates
for circuit identification are defined. They iden-
tify the global properties of the object circuit.
By proving the proposition "(EXIST(X #A)(TERMINAL
X #A))", we can decide whether the object circuit
is an open circuit with terminals which are con-
nected to other circuits or not. So we can define
the predicate "OPEN-CIRCUIT" as follows (4).

"IMPEDANCE-CIRCUIT" (section 1V) is defined
to prove that all the elements in the circuit
are impedance elements. Predicates such as "TWO-
TERMINAL-CIRCUIT" which count the number of termi-
nals are defined wusing the built-in predicate
"TOTAL" (section II1).

(RULE CT-IDENTIFIER-OPEN-CIRCUIT
(OPEN-CIRCUIT) <- (TERMINAL ?X ?#A)) "(4)

Il FINDING A SPECIFIC STRUCTURE IN A CIRCUIT

A. Representation of a specific structure

Let us consider the slightly more complicated
circuit CA39 in Figure 2. In order to show the
existence of a series circuit, we attempt to prove
the following formula:

(EXIST(X Y #A #B #C)(AND(RESISTOR X #A #B)
(RESISTOR Y #B #C))) —(5)

When " (CA39)" is asserted, proposition (5)
becomes true, because we can substitute constants
(RI' R2 #1 #2 #3) into variables (X Y #A #B #C) re-
spectively, corresponding to the actual existence
of a series circuit in CA39. But we can also sub-
stitute constants (RI RI #1 #2 #1) or (Rl R3 #2 #1
#3) to the variables which do not correspond to
series circuits. In order to reject the former
incorrect substitution, the predicate "(NOT(= #A
#C)" is added to (5).

Rejection of the latter incorrect substitu-
tion is rather difficult. A series circuit demands
that the central node "#B" in (5) should not be
connected to elements other than those in the
formula. In order to represent this constraint the
predicates "DEGREE" and "CONNECTED" are introduced.

T1
A
X
#B
Y
aC

Figure 2: Circuit CA39 Figure 3: R-SERIES

B. Rules for node degree

We will use the backward chaining rule "CON-
NECTED" to enumerate the terminals, impedance
elements and diodes X connected to node #A.

{RULE CT-STRUCTURE-CONNECTED
{CONNECTED ?7X 7#A) <-
{OR (TERMINAL ?7X ?#A)
(Z-ELEMENT ?X ?#A ?4B)
(DICDE X ?#A P¥B)
(DIODE ?X THB 7HA))} ——=(6)

The predicate "DEGREE" has two arguments. It
becomes true if the first one is a node and the
second one is its degree in the object circuit
represented in the database of axioms. "LEGREE" is
defined as follows using "CONNECTED" and "TOTAL".

(RULE CT-STRUCTURE-DEGREE
(DEGREE 7#A 7#DEG) <-
(TOTAL 7#DEG 1(CONNECTED ?X ?#A))) -(7)

"TOTAL" is a special built-in predicate which
states that the first term is a sum of the second
term according to all known instances of the third
term. Now we can define the predicate "R-SERIES"
which states the existence of a series-resistor
circuit in the object circuit as follows.

{RULE CT-STRUCTURE-R-SERIES
{R~SERIES 7X 7Y ?1A 74B 24C}
<{- (AND (RESISTOR ?X 2#A 24B)
[RESISTOR 7Y Z#B ?#C)
(NOT {= 7#A 24C)})
{DEGREE 2#B 2)}] ——-mm—m—m (8]

Circuit structures for AC-analysis

We can define predicates for a schematic AC-
analysis wusing series, parallel, star, and delta
circuit transformations. The predicate "Z-SERIES"
for a series circuit of impedance elements s
defined by replacing "RESISTOR" with "Z-ELEMENT"
in (8). Using the predicate "Z-ELEMENT", predi-
cates "Z-PARALLEL", "Z-STAR", and "Z-DELTA" are
also defined.

X Y
R D o B

s ¥B ¥ v
0

Figure 4: Z-SERIES Figure &: Z-5ThR

% Y
— 1]
L TSI 1] #A #C
e | >— Z
14! Y 154 151
L
%¢ ¥B #B

Fiqure 5: Z-PARALLEL Figure 7: Z-DELTA

IV META PROCEDURES FOR THE DEDUCTIVE SYSTEM

A. Procedurally defined predicates

There are some circuit predicates which can
not be adequately represented by the methods dis-
cussed so far. One such class is the procedurally
defined circuits such as "SERIES-PARALLEL-CIRCUIT"
or "MULTIPLE-RECTIFIER-CIRCUIT" which refer to an
infinite, recursive set of circuits. Another class
is composed of electronic circuits with specific
goals, such as "FM-RECEIVER". In the definition of
a predicate, the way in which an FM-receiver cir-
cuit is constructed from sub-circuits (i.e. RF-

amplifier , ... , discriminator) to achieve the
final goal of the circuit must be included. The
former predicates will be developed in the follow-

ing paragraphs, but the latter predicates have not
yet been developed.

The procedure to determine whether a circuit
is a series-parallel circuit of impedance elements
or not is as follows. First the <circuit is iden-
tified as a two terminal circuit and an impedance
circuit. Then the circuit is rewritten iteratively
into simpler equivalent forms each time a series
or a parallel circuit is found in it. If the cir-
cuit can wultimately be rewritten into a single
element, then we have shown that the original one

T. Tanaka 265

was a series-parallel circuit. The first and last
steps are realized wusing the predicates "TWO-
TERMINAL-CIRCUIT", "IMPEDANCE-CIRCUIT" and "HAS-
ONE-ELEMENT" in section HI. But the middle step
is not so easy to implement in a deductive system,
because rewriting a circuit into an equivalent
one means changing the set of axioms representing
the circuit. This can be done by introducing a
state term into each predicate, [10] But it s
easier to consider the procedure in a total system
consisting of the deductive system and a meta
procedure.

B. Rewriting a circuit

In order to control the deductive system pro-
cedurally, several mechanisms are provided for
calling DUCK from LISP. If (9) is evaluated in
LISP, the proposition " (CA39)" is added to the
DUCK database. Then by the forward chaining rule
of CIRCUIT-LIBRARY-CA39, "(TERMINAL TI #1)", B
"(RESISTOR R3 #1 #3)" are added into the database.
Then by the forward chaining rule of RESISTOR-
IMAGE, "(RESISTOR RI #2 #1)", ... , "(RESISTOR R3
#3 #1)" are also added.

(ADD ' (CA39)) (9)

Under this condition let us consider a proce-
dure "R-SERIES-TRANSFORM" which finds a series-
resistor circuit and then rewrites that part of
the circuit into an equivalent element. At first,
corresponding to a proof of the proposition
"(EXIST (X Y #A #B #C) (R-SERIES X Y #A #B #C))",
the following (10) is evaluated in LISP. If
series circuits are found, it returns a stream of
instances for the variables (X Y #A #B #C).

(FETCH '(R-SERIES ?X ?Y 7#A 7#B ?#C)) =(10)

In order to rewrite a series part, we have
to remove the set of axioms corresponding to the

series circuit. If the first instance is (Rl R2
#1 #2 #3), (11) and (12) are evaluated.

(ERASE '(RESISTOR RI #1 #2)) (11)
(ERASE '(RESISTOR R2 #2 #3)) (12)

When (11) is evaluated, not only "(RESISTOR
Rl #1 #2)" but also its deduced image "(RESISTOR
Rl #2 #1)" is erased from the database by a data
dependency mechanism. [5]

(ERASE '(RESISTOR RI #2 #1)) (13)

If (13) is evaluated insted of (11) when the
first instance is (R2 RI #3 #2 #1), then "(RE-
SISTOR RI #2 #1)" will be erased but its original
"(RESISTOR RI #1 #2)" can not be erased. As we
want to erase the original when the image is
erased, we can set up "IF-ERASED-DEMON" in DUCK as
a forward chaining from the erasure. The rule is
written as follows (14). According to the rule,
"(RESISTOR RI #1 #2)" is to be erased by (13).

(LISPRULE R-IMAGE-DELETE
(RESISTOR ?X 7?#B 7#A) ->
(IF-ERASED '(RESISTOR 72X 7#B 7#A)
(ERASE '(RESISTOR ?X ?#A ?#B)))) —(14)

The proposition representing an equivalent
resistor is to be added as follows.

(ADD '(RESISTOR ERI #1 #3)) u(15)

266 T. Tanaka

c. LISP functions for AC-analysis

Now we can define the LISP function "z-5P-
CIRCUIT" which can determinc whether the object
circuit is a series-parallel circuit of impedance
elements or not as follows.

{DE Z-SP=CIRCUIT (CBJ-CT)

{AND (PROVE ' [TWO-TERMINAL-CIRCUIT} OBJ-CT)
(PROVE ' {IMPEDANCE~CIRCUIT] OBJ-CT)

(2-5P-CIRCUIT] OBJ=CT})} —=--—w—w—c=x {16)
(DE 2-5P~CIRCUITL (OBJ-CT)
{AND OBJ-CT

(OR(PROVE * [HAS-ONE-ELEMENT}0BJ—CT)
{(Z-SP-CIRCUIT1 (Z-SERIES-TRANSFORM OBJ-CT))
{2-SP-CIRCUITL (2-PARALLEL-TRANSFORM OBJ-CT]

———————————— (17)

As we can define multiple databases of axiom
sets (data pools) in DUCK, the original circuit
and all the rewritten circuits for working are
stored in separate data pools (see DUCK manual).
The variable "OBJ-CT" in (16) and (17) is the name
of the data pool which contains the circuit being
processing. The LISP function "PROVE" corresponds
to "FETCH" in a data pool. The LISP functions
"Z-SERIES-TRANSFORM" and "Z-PARALLEL-TRANSFORM"
return the name of the new data pool which
contains the rewritten circuit, if they succeed in
transforming the circuit, otherwise NIL. Finally
we have defined the predicate "Z-SERIES-PARALLEL-
CIRCUIT" by calling the LISP function " (Z-SP-
CIRCUIT 'POOL1)" from DUCK

The electrical constraints on the object
circuit are produced as a side effect of "Z-
SERIES-TRANSFORM" and "Z-PARALLEL-TRANSFORM".

We can define a more convenient predicate "Z-
SERIES-PARALLEL-STAR-DELTA-ANALYTICAL-CIRCUIT" for
actual AC-analysis adding "(Z-STAR-TRANSFORM OBJ-
CT)" and "(Z-DELTA-TRANSFORM OBJ-CT)" to (17). It
can analyze most two-terminal impedance circuits
which electrical engineers meet daily.

VvV SCHEMATIC CIRCUIT ANALYSIS

If we assert " (CA55)" in Figure 8 as the
object circuit, when we try to prove the proposi-

tion " (Z-SERIES-PARALLEL-STAR-DELTA-ANALYTICAL-
CIRCUIT)", the LISP function "Z-SPYD-CIRCUIT"
associated with the proposition is evaluated.

Figure 8: Circuit CASS

After identifing the circuit as a "TWO-
TERMINAL=CIRCUIT" and an "IMPEDANCE-CIRCUIT", the
LISF functions "Z-SERIES-TRANSFORM", ... , "&-
DELTA-TRANSFORM" are evaluated iteratively. Those
functions try to prove the propositions " {Z-S5ERIES
X ?Y CHA 4B PRC)Y, ... , "({Z-DELTA ?X 7Y 7?2 7T#A
-)" respectively. At the end of this proccdure,
the following list (18) is acyuired.

$PREDICATE -VARIABLL -VAL UEY

=((2-SERIES (N® EZ1)(HC HZI(HD HUICHA ALICY C23X R2Y)
(Z-PARALLEL C(NX FZZ3CHB BIIUHR BLICY L2X6X R}
(2-STAR (NX EZIHCNY EFUICNS EZSICHD HSICHC 83

CHE HZOCHA RL1XCZ L13(Y EZ12(X EZ21)
(7-PARALLEL CNX EZ0)CHE HZICHA HIXY RVICX Bfary
(Z-PNRALLEL (K% EZ7)CHE HAICHA BIDXCY [1)CX T7U3)
(Z7-SENIES (NX EZBYCKD BZIXOHRR BIDCHA UTICY EZ6ICN F77))
(Z-PARALLEL (WX [78)088 HI30HA R13¢Y §253¢X E2ZB))
- - U

The first line shows, at first the proposi-
tion "(Z-SERIES ?X ?Y 7#A 7B ?#C)" was satisfied
by the bindings in the following association list.
"(NX EZI)" shows that the new name "EZI" was
assigned to the equivalent element NX

The following electrical constraints (19) are
provided for a series-impedance circuit. "X" and
"Y" represent impedances of elements X and Y
respectively. "NX" represents the equivalent im-
pedance of a series circuit. "#A", "#B", and "#C"
represent electrical potentials of node #A, #B,
and #C (see Figure 4). The symbols representing
elements in the constraints mean their impedances.
The symbols representing nodes mean their elec-
trical potentials. "C+", "C-", "C*", and "C//"
are defined as arithematic operators on complex
numbers.

CCL- NX (CH » V)2
(C- "B CU/#004CCH HA Y3000 B0 X¥M04 ¥ W22 (19

According to the list {18), vach leocal con-
straint provided for the basic structures are
trancglated into global congstraints on the object
circuit, and the following list (20) is acquired.

001 JECT -CIRCUIT-TIUNSTRATINTSS
= ({0= EZ1 {0+ R2 £21)
(C= Ry (C//CCHCCH MBS CZ(0C® U2 RUINMLE RD L2230
€C= ET2 (LA240% RI L2p(CH RI LAY
(C- EZ3 (CrsCCH0e EZ2 [Z1240% EZt L10GT® LY LZZIILTRY
(0= FEZ4 (CrsCL44Cx £12 EMV 2008 B2 L1200 LY EFAIME AT
(L EZ% (CA#{CHC0 £22 F2Y2008 B2 L1XCe 11 ESO22LD
(C= S (C//C0H40Cs E21 LY M0k LV EZ22 Ry
(Cx E72 F21 U2

(CHCCs EZ2 E2Vv200 EZV LAXE* L1 EZ2)) 00
{C= E26 (C/viCe £Z3 1200 L7 R13)Y
(0 EZ? (C/2f(Cx FZU C12C0CH+ FIH L13))
(L= €28 ([+ EZ7 EZG))
(Cc B3 (L7/CCH(Cs WY FIRI(OH MZ EZ7))(C+ EI7 EIOYYX}
(C= EZ9 {Cs/C(C% EJA EIS)(Ct E4B BZBIIIY ———--------(2B}

The LISP function "PROPAGATE" solves these
constraints. Here "C+" is analogus to "SETQ" in
LISP. At each constraint, if all the variables in
the right hand side become defined, it is evalu-
ated and the left hand variable is assigned that
value and the constraint is then removed from the
list. This procedure is iterated until the right
hand sides cease to fire. Suppose each element of
CA55 has following value (21). Units are ohm,
farad, and henry respectively. If 10 (volt) 60
(hertz) AC voltage is applied between terminal TI
and T2, potentials of node #1 and #2 are set as
(22), and impedance of each element at 60 (hertz)
is also computed and set as (23).

After the evaluation of <the LISP function
"PROPAGATE", the following answers (24} are ac-
quired,

AELEMENT -VALLUE*
= {{R! 18.¥X(R2 28.92(R] 3R.BI<C) 2.8881)
(C2 B.OAB2Y{L1 1.BY(LZ 2.B)}) - moem oo e 2}

SPOTENTIALS® = ({H? ¢18.8 B.A)(H1 (B.D B.B>)) ----(22)

*E{LEMENT-IMPEDANCES#
= ({RY ¢18.0 B.B))(R2 (2.8 B.PYX(RI (3B.9 P.B>>
(C1 (B.9 -26G.5P570>3L2Z (V. @ -13.76288))
(L1 (8.9 376.922)){L2 (@.A 793.96B4))) —=-o---——- 23y

sLOMPUTED-IMPEDNANCES-POTENTIALSS

= (CEZT (20.8 -13.202BH)¥EZ? (29.95250 11917733
(EZ3 ¢(196.60GL7 RAE. U257)(EZ4 (-245.6907 756.9014))
(EZ5 (48.96285 -13.7B287))KEZb (9.9499uU7 . 1U7356HY)
(EZ7 (-.208935%8 -27.30829)>(E28 (9.661811 -27,24835))
(EZ9 (12.80425 -16.81124)>(#3 (B, 09739 -3.26153137
(U5 (5.4@2148 1. 524807) (88 (9.297949 2.503U771)}

———————————— (247

VI CONCLUSION

We have developed a representation for elec-
trical circuits using conjunctions of predicates,
and realized the procedure of determining circuit
structures as proofs. AC and multiple-rectifier
analysis were done to confirm the effectiveness
of this method. The structures to be found in the
analysis were rather simple ones, and the object
circuits were restricted to iterations of those
structures.

We plan to develop this method to analyze
more complicated electronic circuits with specific
goals. For those circuits we have to introduce
many predicates referring to ~circuit goals and
device-element goals such as "RF-AMPLIFY", "FRE-
QUENCY-CONVERT", "RF-BYPASS", "DC-BLOCK". The rep-
resentation of a goal structure for the circuit is
as important as the representation of the circuit

itself. Predicates defining electrical potentials
and currents and their changes will also be
introduced, e.g. "CURRENT", "SIGNAL", "FLOW",

"INCREASE", "DECREASE". Predicates such as "OPEN",
"SHORT", "SATURATE", "CUTOFF" will be introduced
to represent the electrical states of circuits and
devices. Using those predicates, causality of
electrical events in the circuit can be repre-
sented. This in turn permits the definition of
functional predicates which can be wused to clas-
sify circuits on the basis of their behavior.

The process for determining structures in a
circuit must be improved. The approach illus-
trated in this paper is applicable only to simple
circuits, for the time required to identify a
circuit increases combinatorially with the number
of components. To handle more complex circuits,
the system must restrict the search space in an
intelligent manner. For example, if it is known
that the goal of the object circuit is "receive
FM broadcast", then we have many hints to help in
determining the structure. |If a loud speaker is
found in the circuit, the system can use the
expectation that the adjacent circuit must be a

power amplifier. These expectations will not only
decide which structure should be looked for next,
but will also decrease the search space for that

structure in the circuit. The proof "(COMPLEMEN-
TARY-POWER-AMPLIFIER ?X ?Y ?#A ?#B...)" is slower

T. Tanaka 267

than proof of the "(COMPLEMENTARY-POWER-AMPLIFIER
Q8 Q9 7?#A ?#B...)" as the number of transistors

in the circuit increases. For this purpose we may
introduce predicates such as "ADJACENT-ELEMENT",
"NEAREST-TRANSISTOR". We are now developing

various predicates for the qualitative
of electronic circuits.

analysis

ACKNOWLEDGMENTS

| would like to thank: Prof. Roger Schank for
the opportunity to study at Yale Al-project, Prof.
Drew McDermott for DUCK, and David Littleboy,
Stanley Letovsky, and Jay Bolter for their helpful
advice.

REFERENCES

[T Brown,A. "Qualitative Knowledge, Causal Rea-
soning, and the Localization of Failures" M.I.T.
Al-TR-362, 1977

[2] Charniak,E., Riesbeck,C., McDermott,D. "Artifi-
cial Intelligence Programming" Lawrence Erlbaum
Association, 1980, NJ.

[3] DeKleer,J. "Causal and Teleological Reasoning
in Circuit Recognition" M.I.T. AI-TR-529, 1979
[4] DeKleer,J. "The origin and Resolution of Ambi-
guities in Causal Arguments" [JCAI-79, 1979

[6] Doyle,J. "A Truth Maintenance System" Artifi-
cial Intelligence, vol.12, 1979

[6] McDermott,D. "Circuit Design as Problem
solving”" Artificial Intelligence and Pattern
Recognition in Computer Aided Design, Latombe ed.
IFIP, North-Holland, 1978

[7] McDermott,D. "Non Monotonic Logic Il : Non-
Monotonic Modal Theories" Research Report #174,
Dept. of Computer Science, Yale Univ. , 1980

[8] McDermott,D. "DUCK: A Lisp-based Deductive
System" Dept. of Computer Science, Yale Univ. 1982
[9] McDermott,D., Charniak,E. "Introduction to
Artificial Intelligence" unpublished manuscript
[10] Nilsson,N.J. "Problem-solving Methods in Ar-
tificial Intelligence" McGRAW-Hill, 1971

[11] Nilsson,N.J. "Principles of Artificial In-
telligence" Tioga Pub., Palo Alto, 1980

[12] Stallman,R.M.,Sussman,G.J. "Forward Reasoning
and Dependency-Directed Back-tracking in a System
for Computer Aided Circuit Analysis" Artificial
Intelligence, vol.9, 1977

[13] Sussman,G.J., Stallman,R.M. "Heuristic Tech-
niqgue in Computer-Aided Circuit Analysis" I|EEE
Trans. Circuit and Systems, vol.CAS-22,No.ll,1975
[14] Sussman,G.J. "SLICES At the Boundary Between
Analysis and Synthesis" Artificial Intelligence
and Pattern Recognition in Computer Aided Design,
Latombe ed., IFIP, North-Holland, 1978

[15] Sussman,G.J.,Steele,G.Jr "Constraints: A Lan-
guage for Expressing Almost-Hierachical Descrip-
tions" Artificial Intelligence, vol.14, 1980

[16] Tanaka,T. "Simulation of Thinking Process on
Electronic Circuits in Natural Language |I,II,I11",
Technology Report of Kyushu Univ. vol.44,45, 1971,
1972 (Japanese)

[17] Tanaka,T. "Pattern Directed Circuit Recogni-
tion I,11" 23rd & 24th Covention of Information
Processing Society in Japan, 1981,1982 (Japanese)

