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ABSTRACT

The objective of this paper is to present a
method for the computer representation of empiri-
cally derived causal relationships (CR's). This
method draws on the theory of multivariate linear
models and path analysis. The method is contrasted
with the predicate calculus based methods used by
most researchers in artificial intelligence.

The representation presented here has been
used to store information on medical CR's derived
empirically from a large clinical database by a
computer program called RX. The principal empha-
sis in the representation is on capturing the
intensities and variances of effects and the
variation in the effects across a patient popula-
tion. Once incorporated into RX's knowledge base,
this information is subsequently used by RX in
determining the validity of other CR's.

The representation uses a directed graph
formalism in which the nodes are frames and the
arcs contain seven descriptive features of
individual CR's: intensity, distribution, direc-
tion, mathematical form, setting, validity, and
evidence.

Because natural systems (such as the human
body) are inherently probabilistic, linear models
are useful in representing causal flow in them.
Knowledge of natural systems is fundamentally pro-
babilistic because of 1) Irreducible indeterminism
in their component processes, 2) difficulties in
accurately measuring all relevant variables, 3)
variation among individuals in a population, and
4) inadequate scientific theory.

The principal objective of this paper 1s to
present a method for the computer representation
of causal relationships relevant to clinical med-
icine. The representation presented here is used
to store information on clinical causal relation-
ships in the medical knowledge base of a large
computer program called RX

In this brief report | will touch on the
following topics: 1) the objectives and methods
of the RX Project, 2) the characteristics of the
tasks that RX performs that Influence the admiss-
ible forms of representation for causal relation-
ships, 3) the method of representation, and 4)

a comparison of this method with the work of other
Al researchers.

. THE RX PROJECT: AUTOMATED STUDY AND
INCORPORATION OF CAUSAL RELATIONSHIPS

Before presenting our method for representing
causal relationships (CR's), it 1s helpful to know
the research context in which it was elaborated.
Our research project, called the RX Project, was
begun in 1978 and 1s a multidisciplinary research
effort whose purpose is to develop techniques for
deriving various types of medical knowledge from
clinical databases. To date we have been exclusi-
vely concerned with the detection and study of
causal relationships (CR's) in our databases and
with their subsequent Incorporation and use by the
program.

Specifically, the objects of the project are
1) to increase the validity of CR's derivable from
large time-oriented clinical databases, 2) to
develop methods for providing intelligent assist-
ance with the task of testing hypothesized CR's
against a database, and 3) to study methods for
automating the process of discovering CR's. The
RX Project is definitively described in [Blum
1982a] and is summarized in [Blum 1982b].

The RX methodology for deriving possible
causal relationships from a clinical database
employs the following components: a knowledge
base (KB), a Discovery Module, a Study Module, a
statistical package, and a clinical database. In
brief, the system works as follows. The Discovery
Module examines relevant subsets of the database
to generate an ordered list of causal hypotheses.
These hypotheses, of the form "A causes B," are
sequentially examined by the Study Module. The
Study Module uses the knowledge base to generate
a comprehensive epidemiological study design of the
hypothesis. This study design is then tested on
the statistical package using the entire database.
The results are passed back to the Study Module
for interpretation. If the results are medically
important as well as statistically significant,
they are written as a new, machine-readable causal
relationship Into the knowledge base. The process
of automated study design makes use of previously
"learned" causal relationships. The discovery,
confirmation, incorporation cycle of RX 1s shown
below* The clinical database we have used is a
1700 patient subset of the ARAMIS database [Fries
1979] [McShane 1979] occupying 15,000 pages. RX
is written in INTERLISP.
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I'l. DESIGN CRITERIA FOR THE REPRESENTATION OF
CAUSAL RELATIONSHIPS FOR RX

The form in which we have chosen to represent
CR's in RX has been strongly influenced both by the
necessity of capturing detailed information on them
and by the necessity of using that information for
the subsequent study and confirmation of other
CR's.

The principal objective of the RX Project is
to derive and incorporate detailed knowledge of
causal relationships from large time-oriented data-
bases. This knowledge is stored interchangeably
with knowledge entered into the medical KB from the
medical literature. It is necessary that the re-
presentation of CR's be sufficiently rich to enable
capturing information on magnitude, frequency, and
variability of effect, distribution in a patient
population, mathematical form, clinical setting,
validity or reliability, and evidential basis.

Although the representation we have designed
enables most of these aspects to be encoded in
machine-readable form, the most important motivat-
ing factor in designing an adequate representation
is the tasks for which the encoded information will
be used.

The only task we will describe here is the
Study Module's use of CR's in creating a study
design for a causal hypothesis. This task requires
information on the intensity of causal links, their
mathematical form, their distribution across
patients, and their clinical setting.

A critical step in the design of a study by
the-RX Study Module Involves the selection of the
set of known clinical events that may confound or
bias the results of a study. This set of events
1s known as the set of confounding variables. The
control of confounding variables is an essential
step in the design of studies using routine health
care data. A confounding variable is one that may
affect both the causal variable and the effect
variable of interest. The objective of control 1s
to attempt to isolate the relationship from spurious
causal Influence. For example, if A 1s a drug and
B is a side effect of Interest, we would like to
control for diseases that affect both A and B.
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The task of demonstrating that a causal rela-
tionship is nonspurious is by far the most difficult
task in deriving CR's from large clinical databases.
Unfortunately, the confounding variables may exert
their influence quite indirectly as shown below. In
the figure there are four confounding variables: F,
G, H, and D. |If we were, however, to examine only
the list of variables that directly affect B, we
would only find F and E. The node E is not a con-
founding variable, since it is known not to affect

-
Y%

To determine the set of confounding variables
for a hypothesis "A causes B," the Study Module
uses a function called Confounding-Variables to
traverse a directed graph whose arcs are CR's. The
function determines the set of all nodes that may
have medically significant effects (greater than
some magnitude) on both A and B for a given clinical
setting.

The Study Module actually controls for only a
subset of the confounding variables called the
causal dominators. This subset is defined as the
smallest subset through which all known causal in-
fluence on both A and B must flow. In the figure
this set = { F D }.

I'll. THE REPRESENTATION OF CAUSAL RELATIONSHIPS IN
THE RX KB

In brief, CR's are represented as labeled arcs
1n a directed graph 1n which the nodes are frames.
For the sake of this discussion we will assume that
X 1s a causal node and that Y is an effect node.
They are connected together by a CR whose components
will be described in detail. We specify both the X
and Y objects as having real-valued intensities. In
other words, in this discussion we will model them
as real-valued variables. We assume the following
relationship between their intensities:

Y(t + tau) = bf[X(t)] + e

That is, Y's value at time t + tau is linearly re-
lated to some function of X's value at time t ( + an
error term e). We further assume the relationship

is causal. That is, a change 1n X of one unit
induces a change 1n Y of bf[l] after tau times units.
X 1s assumed to cause Y 1n the probabilistic sense
that 1t accounts for some of its variance. |In the
usual path analysis or regression model, we could
estimate the parameters of the model by using a data-
base of pairs of measurements of X and Y. The
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estimate of greatest importance is the unstandard-
ized regression coefficient b. If b is signifi-
cantly different from zero, we then posit that X
causes Y.

The basic information conveyed by the model is
that an increase in X by one unit causes a change in
Y by b units, where b is the unstandardized regres-
sion coefficient of Y on X. Labeled with just these
regression coefficients, a simple directed graph
can be set up to represent chains of causality.

<intensity distribution direction functional-form

setting validity evidence>

A causal link in the RX knowledge base is com-
posed of seven components shown above. In what
follows we have assumed that both the causal vari-
able and the effect variable connected by this
causal relationship are real-valued. In our future
work we intend to generalize this formalism so that
binary and rank-valued variables may also be
arbitrarily connected.

The meaning of each of these seven components
is summarized below:

Intensity: the expected change in the effect given
a change in the cause, expressed as an unstan-
dardized regression coefficient.

Distribution: the distribution of the Intensity
of the effect across patients.

Direction: either increases or decreases.

Setting: the circumstances under which the causal

relationship was derived, encoded as a Boolean
expression with time-dependent predicates.

Functional Form: the complete mathematical model
relating Y to X, encoded in an algebraic lan-
guage.

Validity: the state of proof of the causal rela-
tionship on a 1 to 10 scale: 1 means highly
tentative, 10 means beyond reasonable doubt.

Evidence: a summary of the evidence on which the
relationship is based: either literature
citations or a summary of the study performed
by the Study Module.

In the RX Study Module the intensity and the
direction components are derived from the fitted
regression model that is stored in machine-readable
form as the functional-form component.

The distribution component records the density
function of the estimated regression coefficients
across patients. In otherwords, this component
enables us to record the varying intensities with
which a population of patients exhibits the effect
of interest. This capability for encoding unex-
plained variation in an effect 1s an Important
aspect of our representation scheme. This density
function 1s encoded by storing the mass under ten
contiguous regions of the curve. The choice of the

nine cut points 1s based on prior medical knowledge
of the effect variable.

The setting component allows the explicit in-
clusion of the setting 1n which the causal relation-
ship is believed to be true. For relationships
that have been empirically derived by the Study
Module, the setting component encodes the inclusion
and exclusion criteria that were used to select
time intervals from patient records for study. In
English a typical setting might read "between two
months and six months after myocardial infraction —
but not during an episode of congestive heart
failure." This is stored as a logical expression
with time-dependent functions: for example,
(Concurrent (After Myocardial-Infraction 2 months
6 months) (Not (During Congestive-Heart-Failure))).

The validity of a causal link depends on how
extensively and under what circumstances it has
been tested. Validity, as defined here, pertains
to the state of proof of a causal relationship, and
not to the relationship itself. Causal relation-
ships are widely regarded as valid if they have
been repeatedly confirmed, particularly 1n pro-
spective, randomized studies. At the opposite
extreme are relationships based on a single retro-
spective study of a small number of patients.

IV. LINEAR MODES VERSUS PREDICATE CALCULUS

The representation for CR's presented here was
strongly influenced by the methods of linear models,
multivariate analysis, and path analysis. This
body of theory has largely been developed and
applied by psychologists,economists, and biologists.
Excellent reviews appear in [Helse 19761, [Kenny
1979], and [Bentler 1980]. In contrast, the pre-
dicate calculus representations developed by Al
workers (for example, [Rieger 1977}, [Rieger 1978],
and [de Kleer 1981]) have largely been applied to
the simulation and understanding of mechanical and
electrical devices.

Why have multivariate linear models been used
for certain applications and predicate calculus
models for others? The answer is profound and
important: linear models capture crucial features
of natural systems, predicate calculus captures
crucial features of artifacts.

Natural systems are Inherently probabilistic.
Medical phenomena, at least at the clinical level,
are typically quite Indeterminate. This probabil-
istic character arises from at least four sources:
1) the Inherently probabilistic nature of the
component phenomena (at all levels of detail) that
comprise the working human body, 2) our Inability
as observers to accurately measure these phenomena
in a given patient, 3) the variability of effects
across patients, and 4) the Inadequacy of current
biological theory as a basis for explanation. The
role of probability In models of causality 1s
lucidly discussed in [Suppes 1970].

Capturing this variability of clinical phenom-
ena 1n a sufficiently detailed manner to allow Its
subsequent scientific analysis dictates that



detailed quantitative information on the intensi-
ties of effects and their variation be captured

in the representation. This is largely what has
motivated our adoption of multivariate linear
models and extensions to them. In RX we start with
detailed quantitative data in our database. We
have tried to preserve as much of that detail as
possible in the statistical summaries that com-
prise the data in the CP's.

In contrast, the predicate calculus represen-
tations developed by Al workers have largely been
applied to the simulation of mechanical devices
or to the modeling of human understanding of the
CR's that describe these devices. Rieger et al.
and de Kleer et al . share an interest in qualita-
tive models, which they (and 1) believe are used
by human beings in understanding machines, as
opposed to detailed mathematical models.

Central to the CSA Project of Rieger and
Grinberg is a collection of types of causal links,
which they feel provides a useful and comprehen-
sive set for modeling mechanical devices. There
are ten types of causal links in their set, and
they have used them to model a host of devices.
Their declarative representation may be trans-
formed into a procedural representation for
device simulation. The emphasis in [Rieger 1977]
is on providing a qualitative functional descrip-
tion that emulates human understanding of a device.

All of the various link types proposed in
[Rieger 1977], including one-shot enablement,
threshold, antagonism, and rate confluence, may be
simply represented using linear models. For
binary-valued dependent variables logistic re-
gression models may be used that allow for time-
dependent independent variables.

To conclude, the CSA representation of Rieger
and Grinberg and the tabular representations of
de Kleer and Brown were designed to model mechani-
cal devices with discrete states. The objective
of these researchers has been the qualitative
simulation or "envislonment" of the operation of
physical devices. The RX representation, employ-
ing linear models and the methods of multivariate
analysis, has been designed for real-valued,
multivariate, probabilistic domains. The objective
has been the detailed analysis and quantification
of individual causal links.

V.  CONCLUSION

| presented a simple representation for CR's
appropriate for modeling clinical medicine. The
principal emphasis in the model 1s on capturing
intensities of effects across a patient population.
The representation arose from the methods of multi-
variate linear models and path analysis.

Given that detailed quantitative Information
is occasionally needed in medical Al programs, how
does the user or the program avoid being bogged
down in needless complexity? The solution is to
maintain detailed Information in the KB, but to
translate it, as needed, to appropriately simpli-
fied levels. Linear models, in particular, may be
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automatically simplified into predicate calculus
forms (but not vice versa). A method for perform-
ing this transformation will be included in a
forthcoming paper.
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