SEMANTIC NETWORKS AS ABSTRACT DATA TYPES

Werner Dilger
Universitat

Fachbereich

and Wolfgang Womann
Kaiserslautern

Informatik

Postfach 3049

D-6750

Kaiserslautern

FR Germany

ABSTRACT

A meta-description of semantic networks
as abstract data types 1is given by a set
of 35 production schemata.

With this schemata it is possible to
specify all types of semantic networks as
abstract data types. By instantiation of
concrete types for nodes and edges as
semantic primitives we get from the meta-
description axiomatic definitions of arbi-
trary types of semantic networks as ab-
stract data types.

The production schemata of the meta-
description can be shown to be noetherian
and confluent. Each term describing a
semantic network can be reduced to an
equivalent minimal generating expression.

| INTRODUCTION

Semantic networks are frequently used in
NL-systems as a means for knowledge re-
presentation. There is a great number of
different types of semantic networks which
demonstrates their qualification for the
purpose of knowledge representation. I'n
(Barr and Feigenbaum, 1981), knowledge re-
presentation is conceived as data struc-
tures together with interpretative opera-
tions. We adopt this interpretation for se-
mantic networks and describe them by
means of the theory of abstract data types
(Goguen, Thatcher and Wagner, 1976).

We start from a very general and multi-
purpose type of semantic net: the metanet.
In the description of the metanet we ab-
stract from the semantic primitives re-
presenting them by variables.

The metanet consists of a set N of
nodes and a set E of edges. Every node
(edge) belongs to a subset of N (E), which
is a representation of a node (edge) type
NT; (ETe). The number of node and edge
types is finite.

We give an axiomatic definition of the
metanet using general operations on net-
works. The set of 35 axioms is a rewrite

system which is shown to be noetherian and
confluent. The metanet is correct, in the
sense that terms built of operations and
individuals from the domain of semantic
networks,i.e. describing networks can be
reduced into an equivalent minimal genera-
ting expression which is not further reduc-
ible and which contains only constructors.

I SPECIFICATION OF A METANET

Because of the abstraction from con-
crete types for nodes and edges, we can
define operations on nodes and edges inde-
pendently from their types. So we are able
to examine general characteristics of se-
mantic networks. This leads to production
schemata instead of productions of the re-
write system, i.e. the axiomatic definition
can be conceived as a meta-description of
a semantic net, from which the axiomatiza-
tion of concrete nets can be derived by in-
stantiation of concrete types for all oc-
currences of type variables. For example
node types could be "concept" and "instance
edge types could be "isa", "subset-of",
"object-of", "agent".By means of this ab-
straction we get an axiomatic definition
of the abstract data type "metanet" by 35
axioms which are easy to surrey. Some of
the axioms are provided with conditions,
enclosed in {...}, wich restrict the ap-
plicability of the productions.

We now present the specification of
the abstract data type "metanet". This
specification is based on the abstract
data types "boolean" and "set", "set" con-
sists of the operations: EMPTYSET, ISEMPTY-
SET, INSERT, DELETE, ISIN.

Abbreviat.uns:

NT = {NTy,NT3,...,NT,} set of node types.
ET = {ETy,....,ET} set of edge types.
nl_} represents a node named nl with

type Nj.

[nt_1,n2_3] represents an edge between the
nodee nl and n2.

ADDNODE.1 represants the operation of ad-
ding a node with type NT; to the metanet.
DELETEDGE.e represents the operatiocn of
dalation of an edge of type ET.-



322 W. Dilger and W. Womann

METANET =

SET +

Tyree
operationsynbols:

sorts: .,NTn, ETI' .,ETm

¥ i € NT,¥v e € ET

EMPTYNET: - metanet
ADDNCODE.i: metanet NTi ~ metanet
INSERTEDGE .e: metanet ETe ~ metanet
DELETENODE .i: metanet NTi -~ metanet
DELETEEDGE .e: metanet ETa ~ metanet
ISEMPTY: metanet + boolean
ISNODE: metanet NT =+ boolean
ISEDGE.e: metanet ETe + boolean
NODES: metanet « SBET{NT}
EDGES . e : metanet ~ SET(ET )
NEIGHBOURNODES: metanet + SET{NT

axioms: ¥

1}

3)

4)

5)
6}

7)

a3

9)

10)

12

13

¥ e, f € ET
¥ 1,] € NT
¥ n_i,nl_1,n2_i € N;

¥ nl_j,n2_3 €N

v n27k,n3 k € N2
W k

nd4_ 1 € Nl

m € metanet

(#axioms concerning the hboolean opera-
tion "ISEMPTY"#)
ISEMPTY (EMPTYNET}! - TRUE
ISEMPTY(ADDNODE.i{m.nLi)) - FALSE
ISEMPTY ( INSERTEDGE.e(m,[nl_i,n2_j]l)) &
{ISNODE(m,nl_1)AISNODE(m,n2_j)}~ FALSE
(#if an edge will be inserted and one
or both nodes are not in the net,
this is an error#%)
INSERTEDGE.e({m,[nl1_i,n2_j]}&{NOT ISNODE
{(m,nl_i)}VNOT ISNODE(m.n2 _3j¥= Error
metanet
{taxioms concerning the operation
"NODES" which provides the set of all
nodes in the net#)
NODES (EMFTYNET) = EMPTYSET
NODES(ADDNODE.i(m,n_i)) o
INSERT{NODES(m).n i)
HODES{INSERTEDGE. e(m [nl 1,n2 J})) &
{ISNODE (m,nl_i)AISNODE {m,n2_j) }+NODES (m)
(#axioms concerning the deletlion of
nodes®}
DELETENODE .1 {EMPTYNET,n i) - EMPTYNET
DELETENODE . i (ADDNODE ., L(m,n i)yn_i}) &
{ISEMPTYSET(NEIGHBOURNODES(m.n i))} -
DELETENODE.L (m, nHL)
DELETENODE.i{m.n_i)&{NOT ISEMPTYSET

NEIGEBOURNODE(m,n_1)}} + Error
metanet

DELETENODE.i (ADDNODE.j(m,n2_j},nl_4i} &
{n2_j*¥ni_i}+ADDNOBE. 3} (DELETENODE.L

{m, nl_i},n?_j)

DELETENQDE. i {INSERTEDGE.a(m,[nl_j,n2_k]}
n_1i}a{n_i#nl_JjAn_i#nZ kAISNODE(m nl_jla
ISNODE (m,n2 k) }+INSERTEDGE.e (DELETE—
NODE.i(m,n_1),[nl1_3,n2 k])

DELETENODE. 1 (INSERTEDGE.e(m,(n1_1,n2_3])
n1_1)&{ISNGDE(m,nl_i}AISNODE{m,n2_3)}

-
Errormetanet

14) DELETRNODE. i (INSERTEDGE.e(m,[n2_3,n1_1])

nl 1)&{ISNODE(m.n2 _31AISNODE(m,nl_4) T
- Error

metanet

15)
l16)
17)

18)

19}

20)

23}

24)

25)

26)

2

28}

29)
3o)

i1l
32)

33

14)

15)

(*axioms concerning the existence of a
node in the net#)

ISNODE (EMPTYNET,n_i) + FALSE

ISNODE {(ADDNODE.i{m,n_1i),n_i} = TRUE

ISNODE (ADDNODE.i (m,nl _i},n2_j} &

{n1_i#n2 j} + ISNODE(m,n2_j}

(#axicms concerning the operation

"EDGES.e" which provides the set of all

edges of typec e®)

EDGES.e (EMPTYRET) - EMPTYSET

EDGES.f (INSERTEDGE.e(m,[nt i,n2 3i})le&

{ISNODE(m,nl_i)AISNODE(m,n2_j}}

~ EDGES.f(m)

EDGES.e (INSERTEDGE.e(m,[nl_1,n2_3i))s

{ISNODE(m,nl_i)AISNODE (m, nzZ _int

- INSERT(EDGES.e(m),[nl_i,n2_j]}

EDGES.e(RDDNODE.x(m,n_i)}*EDGES e{m)

(#axioms concerning the deletion of
edges#)

DELETEEDGE.e (EMPTYNET.[ n)

+ EMPTYNET

DELETEEDGE.e (INSERTEDGE.e {(m,[ nl i,

n2_3]1,[n1_1,n2_3]16{ISNODE(m,n]1_1} A

ISNODE(m,n2_3))} -~ m

DELETEEDGE.e [INSERTEDGE.f (m,| nl_i,

n2_j]),[n3_k,n4_l]) &

{(n1_i#¥n3_kvnl2_j+nd_lve+f)AISNODE

{m,n)_i)AISNODE (m.n2_3j) } ~INSERTEDGE. f

{DELETEEDGE.e{m,[ nl_k.na_11},

(ni_i,n2_3D

DELETEEDGE.e (ADDNCODE.i (m,nl_1iJ,

{r2_3j.n3_k]})~ADDNODE.i (DELETEEDGE.e

tm,[n2_3.,n3 x}i.nl_1i}

{#axiocms concerning the existence of
an edge of type e in the net#)

I1SEDGE .e {tEMPTYNET, [nl_t.,n?_3j])+FALSE

ISEDGE.e (INSERTEDGE.e (m,[nl_i,n2_3I).

[n1_i.,n2_3 )&{ISNCDE(m,nl_ila

ISNGDE (m,n2_j}} ~ TRUE '

1SEDGE.e (INSERTEDGE.f{m,{nt_i,n2_j)),

[(n3_%x,nd4_11re{int_14n3_kvn2_ j+nd_lvetf)

AISNODE (m,nl_1)AISNODE{m,n2_j)}

+ ISEDGE. P(m,[n3 _k,n4 11)

{#axioms concernlnq the operation
"NEIGHROURNODES"” which provides the
get of all adjacent nodes cof a node®)

NEIGHHOURNODES (EMPTYNET,n_i)-<EMPTYSET

NEIGHBOURNODES (ADDNODE.i{m,n_i),n_1)&

{ISNODE(m,n_1) }+*NEIGHROURNGDES (m,n_4)

NEIGHBOURNODES (ADDNODE.i{m,n_i},n_1i)&

{NOT ISNCDE(m,n_i)} = EMPTYSET

NEIGHBOURNODES (ADDNODE.i{m,nl_1),n2_J)

s{nl_i%n2_3} - NEIGHBOURNODES (m,n2_3)

NEIGHBOURNODES (INSERTEDGE . e(m,[nx iy

n2_3]1,n1_1)a{ISNODE(m,nl_1) A

ISNODE (m,n2_3j) }~INSERT (NEIGHBOURNODES

(m,nl_1i}.n2_3})

NEIGEBOURNODES (INSERTEDGE.e{m,[nl 1,

n2 31).n2 3 e{ISNODE (m,nl_i}AISNODE

tm,nz_j}}-INSERT(NEIGHBOURNODES(m,nz_j)
nl_1})

NEIGHBOURNODES (INSERTEDGE.e(m,[ni 1,

n2_31).n3_k)s&

{n3_k#nl_ian3_k*n2_ JAISNODE(m,nl_i)A

ISNODE (m, n2 j))-NEIGHBOURNODEs(m,n3 _x)

_i.n2_3D



W. Dilger and W. Womann 323

I'l'l PROPERTIES OF THE METANET v A SIMPLE EXAMPLE
The following ideas are incorporated in We give an example of a concrete net-
the METANET: work .
The operations have no side effects. node types = 2 (Concept, Instance) .
Example: Before a node can be deleted, edge types = 2 (subset_of, element.of).
all its incident edges have Con-Concept,Ins-Instance,sub”subset.of,
to be detted. Else, if we elreleraent.of.
would try to delete a node
prior to the deletion of its The full specification of this semantic
incident edges, we had to network as' instantiation of the metanet
delete its edges together consists of 78 axioms. We omit the fully
with itself to avoid mistakes. instantiated specification, but cf.
(Womann, 1983). Rather we present a subset
- For each sorts there is an error element of the axioms, which is used for the re-
Errors for the handling of exceptions duction of a sample term.
(Goguen, Thatcher and Wagner, 1976) .
Example: Axiom 4: If an attempt is made Instantiated axioms for the example:

to insert an edge between
nodes nl and n2 and one of
them does not exist in the
network, then the insert

operation is evaluated to
Error

il) DELETEEL (INSERTSUB (m,[ nl_con,n2_con])
[ n3_ins,n4_con])&
{(nl_conxn3__insvn2_con*n4_convEL*SUB)
AISNODE(m,nl_con)AISNODE(m,n2_con)}-
INSERTSUB(DELETEEL(m,[ n3_ins,n4_con])

ne twork [n1 con,n2 _con])
(*instance of axiom 24%)

i2) DELETEEL (ADDCON (m,nl_con) ,[n2_ins,

where the whole expression is evaluated nd_con J)-ADDCON(DELETEEL(m, [n2_ins,

to Errors (Goguen, Thatcher and Wagner, n3l_con]),nl_con)l

1976) . (*instance of axiom 25%)

i3) DELETEEL(INSERTEL(m,[nl_ins,n2_con]),
[nl_ins,n2_con])&{ISNODE(m,nl_ins)A
ISNODE(m,n2__con) }>m
(¢instance of axiom 23%)

- The operations are assumed to be strict,
i.e. if an error element occurs some-

The production schemata of the meta-
descriptioncan be proven as noetherian by
one of the techniques given in (Dershowitz
and Manna, 1973), (Manna, Ness and The concrete network is:
Vuillemin, 1973). It is easy to find
weights for the individual and operation
symbols in the production schemata, such
that the technique of (Manna, Ness and
Vuillemin, 1973) can be applied. Con-
fluence can be shown by means of the super-
position algorithm of (Knuth and Bendix,
1969). Both properties make it possible
that every term describing a metanet is
reducible to an equivalent minimal genera-
ting expression (Womann, 1983), i.e. a
term consisting only of operations which
are constructors.

Metanets can be extended by nodes of The term T, describes this semantic net
higher type representing semantic networks. Ty = INSERTSUB (ADDCON (INSERTEL (ADDCON
This extended metanet is specified in the (ADDINS {ADDCON {EMPTYNET, #cience) .,
9ame way as the basic metanet. (Womann, mathematics) ,

1983) gives a specification of an extended sporcs) .,

metanet which corresponds to the parti- [mathematics
tioned networks (Hendrix, 1979). The sports]},
axioms are similar to those given here, fencing),

except that all operations have an addi- [fencJ.ng.sportsJ)

tional argument concerning spaces and there

Becaudae we made a mistake classifying
are some further axioms for the vistas.

mathematics as an instance of sports, we
want to adjust this. We extend term T, ad-
ding two new operations. Then we delete
the element of-edge betweeen the nodes for
nathematice and sports and we add :a ele-
ment_of-edge between mathematics ard

sclence. The extended term 1is named Tl‘



324 W. Dilger and W. Womann

T1 HE INSERTEL(DELETEEL(TO.[mathematics,
sports]),[mathematics,science])

sub el

&

Now we reduce Ty by means of the in-
stantiated axioms to an eguivalent term
which is a minimal generating expression
{the reader is invited to check what
"...im" means whereever it occurs).

T

with 5'{fencinglnl_con,spcrtsln?hcon,
mathematicslIn3 ins,sportsind con,
vo.im} - -

T r= INSERTELEMENT (INSERTSUB(DELETEEL
{ADDCON{INSERTEL (ADDCON{ADDINS
(ADDCON {(EMPTYNET ,science) ,mathe-
matics),sports), mathematics,sports]?)
fencing}.[mathematics,sports]}.
[fencing,sports]),[mathematica,
science])

Fa
Ly

i, with 6={fencinginl_con,mathematics]|
A n2_ins,spertsin3_con,...!Im}

T := INSERTEL (INSERTSUB{ADDCON (DELETEEL
(INSERTEL{ADDCON (ADDINS (ADDCON
(EMPTYNET,science) ,mathematics) ,
sports), [mathematics,sports]),

[mathematics,sports]),fencing},
[fencing,sports]), [mathematics,
sclence])

i, with d={mathematicsInl ins,spcrtsl
n2_con,...lm} -

T := INSERTEL{INSERTSUB (ADDCON{ADDCON
{ADDINS (ADDCON (EMPTYNET,s8cienve)},
mathematics) ,sports),.fencing),
[fencing.sports]).[mathematics,
science])

T, 18 a minimal generating expraession. No
further axiocms are applicable. T, is
equivalent to Ty

v CONCLUSION

It is difficult to define concrete Be-
mantic networks as abatract data types
bacause the specification of such a data
type would become too complex and hard to
survey. On the other side it 1is desirable
to have semantic networks defined as ab-
gtract data types, bhecause the structure
of an Al-gysten depends heavily on tha

reallizatien of its knowledge representa-
tion technigue. If this technigue is de-
fined by means of abstract data type
theory, the whole system can be structured
as a hierarchy of abstract data types. The
metanet 18 a means to overcome this prob-
lem. The metanet is defined as a specil-
fication of an abstract data type and each
semantic network can be described as an
instance of the metanet.

At present, we are implementing a pro-
gram which yields instantiatiens of the
metanet from concrete semantic primitives.
Together with an interpreter for the
axioms which reduces terms to minimal
generating expressions we would have a
tool for development and testing applica-
bility of semantic networks and for the
comparison of different semantic networks
on the same level.

REFERENCES

{1] Barr A. ana Feigenpbaum E.A. (ed)}:
"The Handbook of Artificial Intel-
ligence". Stanford, 1981,

[2] Brachman R.J.: "What's in a concept:
Structural foundations for BSemantic
Networks". Int. J. Man-Machine
studies 9 (1977) 127-152.

[3] pershowitz N. and Manna Z.: "Proving
Termination with Multiset Orderingse”.
Comm. of the ACM 16 {(1973) 465-476.

(4] Goguen J.A., Thatcher J.W., Wagner
E.G.: “An initial algebra approach to
the specification, correctpess, and
implementation of abstract data types
in Yeh R.T. {ed.}: Current Trends in
Programming Methodology., Volume IV,
Data Structuring, 1976.

[s] Hendrix G.G.: "Encoding knowledge in
Partitlioned Networks". in Findler H.
{ed): Associative Networks., New York,
1979,

[6] Xnuth E. and Bendix P.B.: "Simple
word problems in universal algebras".
in Leech J. {(ed.}): Computaticnal

Problems in Universal Algebras.
oxferd, 1969,

[7] manna 2., Nesa §., Vulllemin J.:
"Inductive Methods for Proving
Properties of Programs”. Comm. of the
ACM 16 (1973) 491-50D4.

[B] Schubert, Goebel, Cercone: “The
Structure and Organisation of a
Semantic Net for Comprehensicn and
Inference". in Findler N., see [5].

{9] womann, W.: "Abatrakte Datenstruk-
turen fiir die Wisasensreprdsentation
mittels semantischer Netze".
Diplomarbeit, Universitat
Kailserslautern, 1983.



