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Abstract

Representing and reasoning about the knowledge an
agent (human or computer) must have to accomplish some
task is becoming an increasingly important issue in artificial
intelligence (Al) research. To reason about an agent's beliefs,
an Al system must assume some formal model of those beliefs.
An attractive candidate is the Deductive Belief model: an
agent's beliefs are described as a set of sentences in some formal
language (the base sentences), together with a deductive process
for deriving consequences of those beliefs. In particular, a
Deductive Belief model can account for the effect of resource
limitations on deriving consequences of the base set: an agent
need not believe all the logical consequences of his beliefs.
In this paper we develop a belief model based on the notion
of deduction, and contrast it with current Al formalisms for
belief derived from Hintikka/Kripke possible-worlds semantics
for knowledge."

1. Introduction

As Al planning systems become more complex and are
applied in more unrestricted domains that contain autonomous
processes and planning agents, there are two problems (among
others) that they must address. The first is to have an adequate
model of the cognitive state of other agents. The second is to
form plans under the constraint of resource limitations: i.e., an
agent does not always have an infinite amount of time to sit and
think of plans while the world changes under him; he must act.
These two problems are obviously interlinked since, to have a
realistic model of the cognitive states of other agents, who are
presumably similar to himself, an agent must reason about the
resource limitations they are subject to in reasoning about the
world.

In this paper we address both problems with reference to
Al planning system robots and one part of their cognitive state,
namely beliefs. Our goal is to pursue what might be called robot
psychology: to construct a plausible model of robot beliefs by
examining robots' internal representations of the world. The
strategy adopted is both descriptive and constructive. We
examine a generic Al robot planning system (from now on we
use the term agent) for commonsense domains, and isolate the
subsystem that represents its beliefs. It is then possible to form

'This paper describes results from the author's dissertation research. The
work presented here was supported by grant N0014-80-C-0296from the
Office of Naval Research.

an abstraction of the agent's beliefs, that is, a model of what
the agent believes. This is the descriptive part of the research
strategy. Among the most important properties of this model is
an explicit representation of the deduction of the consequences
of beliefs, and so we call the model one of Deductive Belief.

It is assumed that the beliefs of the agent are about
conditions that obtain in the planning domain, e.g., what
(physical) objects there are, what properties they have, and
what relations hold between them. Thus the descriptive model
of Deductive Belief has an obvious shortcoming. Although
agents can reason about the physical world, they don't have
any method for reasoning about the beliefs of other agents (or
their own). By taking the descriptive model to be the way in
which agents view other agents' beliefs, we can construct a more
complex model of belief that lets agents reason about others'
beliefs. This is the constructive part of the research strategy.

There are two main sections to this paper. In the first, the
concept of a belief subsystem is introduced, and its properties
are defined by its relationship to the planning system as a whole.
Here we discuss issues of deductive closure, completeness, and
the resource limitations of the belief subsystem. We also
characterize the constructive part of the model by showing how
to expand a belief subsystem to reason about the beliefs of other
agents. In the second section, we formalize the Deductive Belief
model for the propositional case by introducing the belief logic
B, and compare it with other formalizations of knowledge and
belief. Because the treatment here must be necessarily brief,
throughout the paper proofs established by the author, but not
yet published, are referenced.

2. Deductive Belief

What is an appropriate model of belief for robot problem-
solving systems reasoning about the world, which includes other
robot problem-solving systems? In this section we discuss issues
surrounding this question and propose a model of Deductive
Belief as a suitable formal abstraction for this purpose.

2.1 Planning and Belief: Belief Subsystems

A robot planning system, such as STRIPS, must represent
knowledge about the world in order to plan actions that affect
the world. Of course it is not possible to represent all the
complexity of the real world, so the planning system uses some
abstraction of real-world properties that are important for its
task, e.g., it might assume that there are objects that can be
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Figure 1. A Schematic Belief Subsystem

stacked on each other in simple ways (the blocks-world domain).
It is helpful to view the representation and deduction of facts
about the world as a separate subsystem within the planning
system; we call it the belief subsystem. In its simplest, most
abstract form, the belief subsystem comprises a list of sentences
about a situation, together with a deductive process for deriving
consequences of these sentences. It is integrated with other
processes in the planning system, especially the plan derivation
process that searches for sequences of actions to achieve a given

goal.

In a highly schematic form, Figure 1 sketches the belief
subsystem and its interaction modes with other processes of the
planning system. The belief system is composed of the base
sentences, together with the belief deductive process. Belief
deduction itself can be decomposed into a set of deduction rules,
and a control strategy that determines how the deduction rules
are to be applied and where their outputs will go when requests
are made to the belief subsystem.

There are two types of requests that result in some action
in the belief subsystem. A process may request the subsystem to
add or delete sentences in its base set; this happens, for example,
when the plan derivation process decides what sentences hold in
a new situation. Although this process of belief updating and
revision is a complicated research problem in its own right, we
do not address it here (see Doyle [I| for related research). The
second type of request is a query as to whether a sentence is a
belief or not. This query causes the control strategy to try to
prove that the sentence is a consequence of the base set, using
the deduction rules. It is this process of belief querying that we

model in this paper.

We list here some further assumptions about belief
subsystems. The internal language of a belief subsystem is a
formal language, which must include a (modal) belief operator,
e.g., a propositional or first-order modal language would be
appropriate. It is assumed that there is a Tarskian semantics
for the language, that is, sentences of the language are either
true or false of the real world. The belief subsystem doesn't
inherently support the notion of uncertain beliefs, although

this idea could be introduced if the internal language contained
statements about uncertainty, e.g., statements of the form P is
true with probability 1/2.

The deduction rules of a belief subsystem are assumed
to be sound (with respect to the semantics of the internal
language), effectively computable, and to have bounded input.
In particular, this forces deduction rules to be monotonic. It is
our view that nonmonotonic or default reasoning should occur in
the belief updating and revision process, rather than in querying
beliefs.

The process of belief derivation is assumed to be fotal. This
means that the answer to a query will be returned in a finite
amount of time; i.e., the belief subsystem cannot simply sit and
continue to perform deductions without returning an answer.

It is possible to define several types of consistency for
beliefs. Deductive consistency requires that no sentence and its
negation be simultaneous beliefs. Logical consistency requires
that there be a world in which all the beliefs are true. Note
that deductive consistency does not entail satisfiability, because
the deductive process may not be complete. That is, a set
of beliefs may be unsatisfiable and thus logically inconsistent,
but, because of resource limitations, it may be impossible for
an agent to derive a contradiction. Deductive consistency is
the appropriate concept for belief subsystems. The assertion
that rational agents are consistent is compatible with, but not
required by, the model. It gives rise to a slightly different
axiomatization (see Section 3).

The results of this paper depend only on the most general
features of a belief subsystem as depicted in Figure 1: namely,
that there is a formal internal language in which statements
about the world are encoded; that there is a finite set of base
beliefs in this language; and that there is some process of
belief deduction that applies sound and effectively computable
deduction rules to the base sentences at appropriate times,
in response to requests by other processes in the planning
system. A belief subsystem with these properties (along with
the amplifications and restrictions given above) is a model of
belief for planning agents, which we call Deductive Belief.

2.2 Resource Limitations and Deductive Cloture

One of the key properties of belief deduction that we
wish to include is the effect of resource limitations. If an
agent cannot deduce all the logical consequences of his beliefs,
then we say that his deductive process is incomplete. Logical
incompleteness arises from two sources: an agent's deduction
rules may be too weak, or his control strategy may perform
only a subset of the derivations possible with the deduction
rules. Both these methods can be, and are, used by Al systems
confronted with planning tasks under strict resource bounds.
For several reasons, both conceptual and technical, we do not
include incomplete control strategies in the Deductive Belief
model. Instead, we make the following assumption:

CLOSURE PROPERTY. The sentences derived in a belief

subsystem are closed under its deduction rules.

One advantage of requiring that beliefs be closed under
deduction is conceptual clarity and predictability. If beliefs
are not closed, then there is some control strategy that guides



the deductive process, making decisions to perform or not to
perform deductions. If this control strategy uses a global effort
bound, then behavior of such a subsystem is hard to predict.
Theoretically there may be a derivation of a sentence, but the
control strategy in a particular case decides not to derive it,
because it tried other derivations first. Closed systems, on the
other hand, behave more dependably. They are guaranteed to
arrive at all derivations possible with the given deduction rules.

The concept of "belief is also complicated by the
introduction of control strategy issues. For example, it makes
a difference to the control strategy as to whether a sentence
is a member of the base set, or obtained at some point in
a derivation. One cannot simply say, "Agent S believes P*
because such a statement doesn't give enough information about
P to be useful. If P is derived at the very limit of deduction
resources, then nothing will follow from it; if it is a base
sentence, then it might have significant consequences.

In terms of formalizing the model of Deductive Belief, the
assumption of closure is technically extremely useful. Consider
the task of formalizing a belief subsystem that has a complex
global control strategy guiding the deductive process. To
do this correctly, one must write axioms that describe the
agendas, proof trees, and other data structures used by the
control strategy, and how the control process guides deduction
rules operating on these structures. Reasoning about the
deductive process involves making inferences using these axioms
to simulate the deductive process, a highly inefficient procedure.
By contrast, the assumption of closure leads to a simple
formalization of belief subsystems that incorporates the belief
deductive process in a direct way (the Deductive Belief logic,
B, is presented in the next section). We have found complete
proof techniques for B that involve running an agent's deductive
system directly, in a manner similar to the semantic attachment
methods of Weyhrauch [6].

Having argued that control strategies that use a global
effort bound are undesirable, we now show that weak (but
closed) deduction can have the same effect as control strategies
with a local effort bound. We define a local bound as a restriction
on the type of derivations allowed, without regard to other
derivations in progress, i.e., all derivations of a certain sort
are produced. An example of this sort of control strategy is
level-saturation in resolution systems. Here we give a simpler
example.

Suppose an agent uses modus ponens as his only deduction
rule, and has a control strategy in which only derivations
using fewer than k applications of this rule are computed;
this is a local effort bound. To model this situation with a
closed belief subsystem, consider transforming the base set so
that each sentence has an extra conjunct tacked onto it, the
predicate DD(0) (DD stands for "derivation depth"). Instead of
modus ponens, the belief subsystem has the following modified
deduction rule:

DD{n)ra  DD{m)rla>8)
DD{n+m+ 1)r8 ’

MP2: n+msk

MP2 is sound and effectively computable, so it is a valid
deduction rule for a belief subsystem. The closure of the base
set of sentences of the belief subsystem under MP2 will be the
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same (modulo the DD predicate) as the set of sentences deduced
by the nonclosed control strategy of the agent.

The Closure Property, together with the assumption of
totality for the belief derivation process, imply that the
deduction rules are decidable for all base sets of sentences.

2.3 Views

Up to this point, we have specifically assumed that agents
don't have any deduction rules dealing with the beliefs of other
agents. Now, however, we form the constructive part of the
Deductive Belief model: adding to the belief subsystem model
so that an agent can reason about its own and other belief
subsystems.

We can arrive at deduction rules that apply to beliefs
by noting that the obvious candidate for the intended
interpretation of the belief operator is another belief subsystem.
That is, the modal sentence [Sja is intended to mean "the
sentence a is derivable in agent S's belief subsystem." The new
deduction rules that apply to belief operators will be judged
sound if they respect this intended interpretation. For example,
suppose a deduction rule states that, from the premise sentences
\SJp and [S}(p>q), the sentence [S]q can be concluded. This is a
sound rule if modus ponens is believed to be a deduction rule of
S's belief subsystem, since the presence of p and pz>q in a belief
subsystem with modus ponens means that q will be derived.

We summarize by postulating the following property of
Deductive Belief:

RECURSION PROPERTY. The intended model of the
belief operator in tbe internal language of a belief
subsystem is another belief subsystem. The intended
model for an agent's own beliefs is his own belief
subsystem.

The Recursion Property of belief subsystems leaves a large
amount of flexibility in representing nested beliefs. Each agent
might have his own representational peculiariaties for other
agents' beliefs. An agent John might believe that Sue has a set
of deduction rules R;, whereas he believes that Kim's rules are
R,. In addition, John might believe that Sue believes that Kim's
rules are R;. We call a belief subsystem as perceived through a
chain of agents a view, and use the Greek letter v to symbolize
it. For example, John's perception of Sue's perception of Kim's
belief subsystem is the view v = John, Sue, Kim.

Obviously, some fairly complicated and confusing
situations might be described with views, in which agents
believe that other agents have belief subsystems of varying
capabilities. Some of these scenarios would be useful in
representing situations that are of interest to Al systems, e.g.,
an expert system tutoring a novice in some domain would need
a representation of the deductive capabilities of the novice that
would initially be less powerful and complete than its own, and
could be modified as the novice learned about the domain.

Having slated the Recursion Property, we now ask if there
is a way to implement it within the confines of belief subsystems.
At first glance it would seem so: suppose the agent S wishes to
know whether he believes some statement p, ie., whether [S]p
is one of his own beliefs. If we assume he can query his belief
subsystem, he simply submits p to it; if it answers "yes," he
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believes {S]p, and if '"no," then he believes -[S]p. Similarly, if he
wishes to know whether another agent S' believes p, he simply
queries a subsystem supplied with (his version of) S’ deduction
rules, and uses the answer to conclude either [S]p or -[S']p.

The problem with this strategy is that we haven't shown
that S will receive an answer from the subsystems he queries. In
the case of querying his own subsystem, there may be another
occurrence of the modal operator [S] that will cause a recursive
call to his belief subsystem, and so on in an unbounded manner.
Although we assumed that the initial subsystem without the
Recursion Property was decidable, we have not shown that this
is also true for the expanded subsystem.

In the case of querying S's subsystem, S doesn't have the
complete subsystem in hand, since he has incomplete knowledge
of the base set. So, in effect, 5 must try to prove that, in each of
S"s base sets that are consistent with S's beliefs, p is derivable.
But even if we assume that individual subsystems that faithfully
implement the Recursion Property are decidable, we haven't
shown that the theory of a set of such subsystems is decidable,
which is what is needed for S to receive an answer to [S’]p.

We now give a formal interpretation of these issues. Let
6 be a belief subsystem for agent S characterized by a set of
deduction rules R, and let 6(B) be the set of sentences deduced
by the belief subsystem from a base set B. We say that 6 is
decidable if 6(B) is decidable for all B. An extension of 6 is
a subsystem whose deduction rules are a superset of R. Now
suppose $ is decidable, and consider the following questions:

1. I3 there an extension 6’ of § auch that, for alf base
sets B and all septences o,
a) if a € §'(B), then [S]a € 6'(B), and
b) if o @5 (B), then -[S|e € §(B) !
2. Is  decidable?
3. [Is the theory of §' decidable?

We have proven the following about these questions. In
general, (1) must be answered negatively, as not all subsystems
are extendable. There are specific types of subsystems for
which extensions satisfying (1) exist, however (e.g., if the base
set contains no instances of the self-belief operator).2 If an
extension exists, it is decidable. But the theory of a decidable
extension is not, in general, decidable; there exist counter-

examples to (3).3

Even though a complete, decidable implementation of the
Recursion Property does not exist in all cases, we can find
incomplete approximations. The idea is that the undec id ability
results from the unboundedness of belief recursion, that is,
reasoning about an agent reasoning about an agent..., in an
unbounded manner. Suppose, however, we place a bound on
the depth of such reasoning: as the deductions involve higher
embeddings of belief subsystems, the rules become weaker,
and eventually the line of reasoning is cut off at some finite
depth. Belief subsystems satisfying this property are said to
have Bounded Recursion. Bounded Recursion subsystems are a
nice example of resource limitations in belief deduction.

2Tbe work of Levesque [2] is helpful in finding classes of extendable systems.

3The proof of this uses Kripke's well-known result that monadic 55 is
undecidable.

3. A Propositional Deductive Belief Logic

We present a logic, B, for Deductive Belief. For simplicity
and ease of compariaon with other modal systems, we assume
a (modal) propositicnal internal language. The logic is capable
of representing belief subsystems with or without the Bounded
Recursion property. It is sound and complete with respect to
these models.

3.1 Sequent Systeme and Views

The general model of deduction that we assume is a
block tableau sequent system. Block tableaux have much in
commen with PLANNER-type theorem-provers, and also have
mice formal properties; the ipterested reader is referred to
Smullyan [5]. The treatment here will be necessarily brief.

Let 5; be a scL of (names for} agents, and let L be a modal
propositional |anguage, with unary modalities [S;] (|S:]a means
“agent S; believes a”). Let capital Greek letters stand for
finite sets of sentences of L {lower Greek letters atand for single
sentences). A sequent is an ordered pair of sets written as '= A,
and read as “A [ollows from I'™ A sequent I'=A is true in a
Boolcan valuation iff the sentence (v, avan...)o(8;vlav.. ) is
true.

A block tableau system T consists of a set of axioms and
deduction rules. A sentence o is a theorem of a system T if
there is a tlosed block tableau whose root is the sequent ma. A
set of sentences T is inconsistent if there is a closed tableau for
'=. We make use of 3 set of rules Tp that are propesiticnally
complete, i.c., all tautological consequences can be derived using
To (see Smullyan [5]).

Ahlthough we have given a semabtic treatment of sequenta
above, they have a natural interpretatiop in terms of
derivability, and it is this interpretation we exploit to formalize
beliel subsystemmns. Consider the belief subsystem of agent S5;.
This subaysiem has a set of eflectively computable deduction
rules, represented as a block tableau system; call the et of
rules r{). Suppose 'm ;o is a theorem of this aystem {we use 2
subscript on the sequent sign Lo denote that this sequent refers
to 5;'s belief subsysiem). If all of T' are beliefs ol S;, then, by
the Closure Property, o must be also, since a is deducible from
I", according ta S;.

For any view », we can thus characterize the belief
subsyatem by a set of tableau rules (). These, together
with iableau rules that relste sentences in one view to another,
constitute the aystem B, which we give below [the following
abbreviation is used: [SII =yt [5]11, [S]y2,...)

= The propositional rules Tg.
-, Rules r(v) for each view v.
Cut®: IS{]", iSf]F-t, [S.-]a
[SilD1=,[5i]8  [Si]T,[5i]Bw, [Si]e
Be: L, [Si]r=,[S]a,N
5 [SF, T, 45, [SdA
Remarks, There are three parts to the theory B. The

first part is & set of rules formalizing the outside obeerver’s



Boolean system. These rules incorporate the nonsubscripted
sequent sign {=+). A propositionally complete dedyctive system
is employed here {i.c., To), since we are interested in deducing all
we can concerning the belief systems of the ageats. Properties of
belief systems in general are always stated using the observer’s
sequent; for example, to show formally that, il any agent
believes p, he belicves he believes p, we prove that the sequent
[Silp=[5.]|8:]p i» a theorem of B. The second part is a set
of rules formalizing the propositional component of each view
(=+y ). These rules involve the sequent sign =+, since they talk
about agepta' deduetive systema.

The third part of B lormalizes the constructive component
of the Deductive Belief model, characterizing the way in which
the outside observer views agents’ deductive systems, and the
way in which agents view their own and other agents' aystems.
In general these rules have intermixed occurrences of sequent
signs with diflerent view indices. Rule Cut® implements the
Closure Properiy for each view, by naying that, if 8 follows from
believing T, and o from # (and possibly additional beliefs '),
then # follows from believiog Tl (and T'). Rule B formalizea
the deductive systcm of an agent from the peint of view of an
oulsicke observer and other agents. The key part to ihis rule
is that the modal operators get dropped from [S;]I" and one of
[Si]& in going from the top to the bottom sequent. This part
of Lbe rule can be informally resd as, “in any view, 5; believing
# follows from his believing I" if, in that view of S;'s deductive
system, § follows from I." When put this way, rule By is simply
a formal statement of the basic concept of deductive belief given
in the last section.

There are two other interesting components to By: both
[SilA and (ST get repeated ob the botiom sequent. The
reason for this is Lo eapture the introspective properties of belief;
namely, if an agent believes T, then he believes that he believes
it, and if an agent doesn't believe A, then he believes that he
doesn’t believe it. Note that B; is appropriate oaly il agents
actually have complete knowledge of their own beliefs. As we
indicated in the last section, this is not always even theoretically
possible. Iu this case, weaker versions of By must be used. If an
agent doesn't know all the things he doesn't believe, then |S;}A
is dropped from the bottom sequent. If he doesn't kpow all the
things be does believe, then [Si]T is dropped.

Finally, we meed s separate rule to state a consistency
copdition on beliefs, if this is desired.

1, [S5|T=, 1
[Sijr=y [Si]e [ST=, [8i]~a
This rule atates that 5; believing T is logically inconsistent, if I’
isdeductively inconsistent in S;'s deductive system (recall that
[=; means that the [T are logieally inconsistent).

B,

We have proven the system B to be both socund and
complete with respect to the Deductive Belief model.

8.2 Comparison to Other Moda) Systems

Most Al research om formal representations of belief
and knowledge is based on Hintikka's adaptstion of Kripke's
possible-worlds model {e.g., 4], [3]). Possible-worlds models, by
their very nature, require that all logical consequences of un
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agent's beliefs are also beliefs; a possible-worlds model cannot
take into account resource limitations that might be present
in an agent's belief system. The propositional modal logic
that formalizes the possible-worlds model of belief is weak 55,
that is, 55 without the condition that all beliefs are true. We
have proven that B reduces to this system under the following
conditions:

J.  The propositioned rules r(v)) for each view v are
complete, and
2. Beliefrecursion is unbounded.

In addition, if a modified form of Bs is used in which an
agent doesn't know everything he doesn't believe, then under
the same conditions B reduces to weak 54. Thus, under the
assumption of deductive completeness and an infinite resource
bound, the B reduces to more familiar belief logics.

4. Conclusion

We have introduced the concept of robot belief subsystems
parameterized by a finite set of base sentences and a set
of deduction rules. This Deductive Belief model is a viable
alternative to possible-worlds models of belief and has the
attractive property of taking resource limitations into account
in deriving consequences of beliefs. We have formalized the
Deductive Belief model for the propositional case with the logic
B, which is sound and complete with respect to our model.
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ABSTRACT

This paper outlines an approach toward compu-
tationally investigating the processes involved in
reasoning about the knowledge states of other cog-
nitive agents. The approach is Fregean and is com-
pared with the work of McCarthy and Creary. We
describe how the formalism represents the knowing
of intensional individuals, coreferentiality, iter-
ated propositional attitudes, and we describe plans
to test, the scheme in the domain of speech act
recognition.

| INTRODUCTION

Humans quite effectively reason about other
humans' knowledge states, belief states, and states
of wanting. Unfortunately, the processes by which
humans do this are not well understood. This paper
outlines an approach toward computationally inves-
tigating these processes. This approach involves
two components, the first of which involves ade-
quately representing knowledge about others' know-
ledge; and the second of which involves describing
implementable processes by which it is possible to
reason about such knowledge. Our approach is Freg-
ean to the extent that the kind of cognitive system
we propose puts emphasis upon the representation of
Fregean senses. However, the approach is not en-
tire]y Fregean because we do not represent denota-
tions. This contrasts with the purely Fregean
approaches of McCarthy (1979) and Creary (1979).

A. McCarthy's Approach

McCarthy begins with the simple example of Pat
knowing Mike's phone number which is Incidentally
the same as Mary's phone number, although Pat does
not necessarily know this. This example immediate-
ly exposes one of the difficulties of reasoning
about knowledge, namely, the problem of inhibiting
substitution of equal terms for equal terms in
referentially opague contexts. McCarthy's approach
toward solving this problem involves explicitly
representing senses and denotations.

B. Creary's Extension

Creary extended McCarthy's system to handle
iterated propositional attitudes. McCarthy's sys-
tem fails for iterated propositional attitudes be-
cause propositions are represented but not their
concepts. Creary's extensions involve introducing

a hierarchy of typed concepts. Thus for individu-
als such as the person Mike, this scheme would
have the person Mike, the concept of Mike, the con-
cept of the concept Mike, and so forth. The higher
concept is the Fregean sense of the lower concept,
which reciprocally is the denotation of the higher
concept. A similar situation holds for proposi-
tions. The hierarchy would consist of a truth
value, the proposition which denotes the truth
value, the concept of that proposition, and so on.
This scheme allows for the representation of iter-
ated propositional attitudes because all objects
in the domain of discourse (most notablv proposi-
tions) have senses.

C. The Maida-Shapiro Position

Our starting point is the observation that
knowledge representations are meant to be part of
the conceptual structure of a cognitive agent, and
therefore should not contain denotations. The
thread of this argument goes as follows: A cogni-
tive agent does not have direct access to the
world, but only to his representations of the
world. For instance, when a person perceives a
physical object such as a tree, he is really
apprehending his representation of the tree.
Hence, a knowledge representation that is meant to
be a component of a "mind" should not contain
denotations. A more elaborate statement of this
position can be found in Maida and Shapiro (1982)
and the system for representing knowledge, called
Lambda Net, described in the remainder of this
paper is described in Maida (1982). For our pur-
poses, refraining from representing denotations
achieves two goals: 1) the problem of substitution
of equal terms for equal terms goes away because
distinct terms are never equal; and 2) we can
represent iterated propositional attitudes without
invoking a hierarchy of types.

Il LAMBDA NET

A. Intensional Individuals

There is a class of intensional individuals
for which it can be said that they have a value as
seen in assertions such as:

a) John-bear knows where Irving-bee is.
b) John knows Mike's phone number.
c) John knows the mayor's name.



What does John know in each of these sentences?
He knows the value of some intensional individual.
We can characterize these individuals by observ-
ing that they each involve a two-argument rela-
tion; namely, location-of, phone-no-of, and
name-of, respectively. In each case, one argument
is specified; namely: Irving-bee, Mike, and the
mayor. The other argument is unspecified. We
make the assumption that context uniquely deter-
mines the value of the unspecified argument.

This value is the value of the intensional expres-
sion. The expressions themselves can now be
represented as:

d) {(the (lambda {x) (locatiou-of Irving x)))
e) (the {(Jambda {(x) {phoue-no-of Mike %))
f} (the {(lambda {x) (name-of mayor x3))

B. Knowing Intensional Individuals

Since each of these expressions has a value,
someone can know their values. We will express
this via a relation called "know-value-of" which
takes a cognitive agent and an intensional indi-
vidual as arguments. To represent "John knows
Mike's phone number," we write:

g) (know-value-of John
(the (lambda (x) (phone-no-of Mike x))))

Observe that we treat propositional attitudes,
and attitudes toward intensional individuals, as
being relational and not as intensional operators.
Knowing is viewed as correct (but not necessarily
justified) belief.

The meaning of "know-value-of" entails that
if John knows the value of Mike's phone number,
and the value of Mike's phone number is 831-1234,
then John "knows-that" the value of Mike's phone
number is 831-1234.

C. Iterated Proposltional Attitudes

Reasoning about the knowledge states of
others necessarily involves iterated proposi-
tional attitudes because the cognitive agent
doing the reasoning is generating beliefs about
another agent's knowledge state which itself may
contain beliefs about the beliefs of other cog-
nitive agents. Thus it is useful to show how
Lambda Net represents such assertions. Creary
(1979) offers three semantic interpretations of
the ambiguous sentence:

h) Pat believes that Mike wants to meet
Jim's wife.

He suggests that the task of representing these
interpretations provides a strong test of the
representation. In order to allow the reader to
compare the Lambda Net scheme with Creary's we
list the representations below. In each case, we
give a rendering of the interpretation in English,
our representation, and Creary's representation.

1) Pat believes that Mike wants to meet Jim's
wife as such.
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a} (believe-that Pat
(wants Mike
{meet
(the (lambda (x:person)
(wife—of Jlm x)))})}

b) belleves {pat, WantgiMike, Meec$
fMike$, Wifes Jimshd)

2) Pat believes Lhat the person Mike wants to
meet is Jim's wife, although Mike doesn't
necogsarily believe that.

i) (believe Par
(wife-of Jim
{the (lambda (x:person)
(wants Mike (meet Mike x})))))

b} believes (pat, Exist P§.Wants fMike,
MEELSiMikESo, P$}1 And Conceptof
{ps, Wife Jim})

3) There is a1 specific person Pat helleves Mike
wants to mect. Nelther necessarily believes
this person is Jim's wife, but it incldent-
ally is.

4) {wife-of Jim
{the {lambda (x:per=on)
{believe Pat {want Mike
{meet Mike x))))})

b)Y 3PS Pobelieves{pat, Wants {Mike,
MeetS{MikeS, 1’531) & concoptof (PS,P) &
conceptof (P, wife jim)

The reader should refer to the original papers,
Creary (1979) and Maida (1982), to make the proper
comparison. One of Creary's goals is to stay
within the confines of a first-order logic.
Net does not have that constraint.

Lambda

D. Knowing Coreferential Intensional Individuals

To assert that two intensional individuals are
coreferent, we write:

i) (equiv individual-1 Individual-2)

The relation "equiv" is mnemonic for extensional
equivalence, and is the only reference to exten-
sionality used in Lambda Net. One of our perform-
ance goals is to design a system which reacts
appropriately to assertions of coreference. This
involves specifying a method -to treat transparent
and opaque relations appropriately. A relation, or
verb, such as "dail" or "value-of" is transparent
whereas a relation such as "know" is opaque with
respect to its complement position. We can express
this as:

(transparent dial)
(transparent value-of)
(conditionally-transparent know Ist-arg 2nd-arg)

"Dial" and "value-of" are unequivically transpar-
ent, whereas "know" (either know-that or know-
value-of) is transparent on the condition that the
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agent doing the knowing also knows that two enti-
ties are coreferent. We can partially express

E. Axiom of Rationality

A system that reasons about the beliefs of
another cognitive agent must make assumptions
about the rationality of that agent in regard to
what he considers legitimate rules of inference.
We shall assume that all cognitive agents util-
ize the same set of inference schema. This is the
Axiom of Rationality and we further assume that
this set of schema is exactly the set given in

this paper. A statement of the Axiom of Ration-
ality is:
Axiom of Rationality - If a cognitive agent

knows or is capable of deducing all of the
premises of a valid inference, then he is
capable of deducing the conclusion of that
inference.

The Axiom of Rationality enables one cognitive
agent to determine by indirect simulation whe-
ther another cognitive agent is capable of infer-
ring something. It implies, "If | figured it out
and he knows what 1 know, then he can also figure
it out if he thinks long enough." We will assume
that the situations involved in knowing about tel-
ephone numbers are simple enough to make plausi-
ble the stronger rule, "If 1 figured out and he
knows what | know, then he has definitely figured
it out."

F. Reasoning about Knowing

In this section we give an example of how
reasoning about knowing can take place in Lambda
Net by modeling the following situation involving
a propositional attitude.

Premises: 1) John knows that Pat knows Mike's
phone number.
2) John knows that Pat knows that Mike's
phone number is the same as Mary's
phone number.

Conclusion: John knows that Pat knows Mary's
phone number.

By the definition of knowing as correct belief,

it follows that: 1) Pat knows Mike's phone number;
and, 2) Pat knows that Mike's phone number is the
same as Mary's phone number. From conditional
transparency and the Axiom of Rationality, the
conclusion follows.

Il SUMMING UP
A. What has been Achieved?

A system which can reason validly about know-
ledge must have at least the following three per-
formance characteristics: 1) The system must be
able to represent assertions involving iterated
propositional attitudes and reason from these
assertions; 2) The system must react appropriately
to assertions involving coreference between dis-

tinct intensional individuals; and, 3) The system

must felicitously represent that another cognitive
agent can know the value of some intensional indi-
vidual without the system itself necessarily know-
ing the value. Lambda Net has these characteris-

tics just as Creary's (1979) does. However, Lambda
Net offers the advantage of not invoking a hierar-
chy of conceptual types in order to achieve these

performance characteristics.

B. Current Work

We are implementing this system to process
speech acts using the general strategy described
by Allen (1979). This approach views speech acts
as communications between cognitive agents about
obstacles and potential solutions to achieving some
goal. Therefore, comprehending and appropriately
reacting to a speech act necessarily requires the
capacity to reason about another cognitive agent's
goals (wants), planning strategy, and knowledge
states.
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