
"AN EXPERIMENT IN REPRESENTING THE KNOWLEDGE INVOLVED
IN THE SPECIFICATION AND DESIGN OF SWITCHING SYSTEMS"

Jean-Francois CLOAREC, Jean-Francois CUDELOU

CNET LANNION-A SLC/ECA - 22301 LANNION - FRANCE

ABSTRACT

This experiment in representing knowledge has the
goal of studying what kind of help existing knowledge
representation tools might provide, for the process of
designing switching systems. We offer some tentative
positive as well as negative conclusions. The experiment
is principally successful in that it has allowed us to point
out some important representation problems, particularly
in the checking and maintenance of consistency, and the
expression of several points of view of a model.

I - INTRODUCTION

We have been addressing the task of representing
and modeling the knowledge contained in a part of the
general specifications of the French switching systems.
These specifications, called "NEF" for : "Functioning and
Exploitation Norms", give many sorts of informations,
from the general missions of the system to the environ­
ment constraints and some basic know-how, all expressed
informally in natural language.

The goal of this endeavor is to study the possibilities
of bringing some help in the design process, especially for
switching system software, mainly by providing some
knowledge representation tools, suitable for all the stages
of the design, and that f i t a general method.

II - THE EXPERIMENT

A. Abstract model of the specifications

Representing the specifications as an "abstract mo­
del" is the f irst stage in the design process, so, we have
f irst implemented a knowledge model related to a part of
our specifications, the management procedure of the
switching system, summarized by the following figure :

So, the representation problems to cope with at this
level are :

how to represent the objects ?
how to model their dynamic behavior and the man-
machine commands ?
how to express the constraints on the model and the
rules to check and enforce consistency ?
how to represent and deal with the multiple points
of view of objects ?

B. Representation tool for the exper iment; AIMDS

AIMD5 (Ar t i f ic ia l Intelligence Meta Description
System) is a knowledge representation system
(N.S. SRIDHARAN [6]), that provides powerful represen­
tation schemes for our experiment : it allows generic
objects and actions, instantiation of facts in a mul t i -
contexts base, simulation of state changes with backtrac­
king faci l i t ies, abil ity to describe definit ional knowledge
by means of meta-relations and to define consistency
conditions used by the system to deduce facts and to
check and/or restore the consistency of a model.

C. Building the model

We want to use only declarative descriptions so that
we can translate easily and explicit ly the non-procedural
specifications, and obtain an extensible model easy to
reason wi th. Nethertheless, this model must be executable
so that we can demonstrate its validity by simulating its
behavior and show that it tallies with the specified one.

It has been very easy to describe the objects of the
model. For example, here is a part of the definit ion of the
SINGLE-LINE object :

This defines a generic SINGLE-LINE user by means
of its three relations wi th a DESIGNATION object (e.g.
phone number), wi th an EQUIPMENT object (physical
wire), and with a COUNTER (account). The other rela­
tions are the ATTRIBUTES of the user. Each of these
relations are given algebraic and deductive properties
such as FN for functional 1 —> 1, L for list 1 —> n, or
default value ; and meta relations like INVERSE between
ND = and ND = OF or COMPLEMENT between ND = and
NOT-ND =.

386 J.-F. Cloarec and J.-F. Cudelou

It has been easy also to describe the commands and
the associated actions. For instance, the action to create
a new SINGLE-LINE user is defined as follows :

(TDN : ((ACTION-ABOCR A)
((ND = FN) DESIGNATION)
((NE = FN) EQUIPMENT)
((NC = FN) COUNTER (DEFAULT (LAMBDA (V)

(FIND (A COUNTER (FREE YES))))))
((TY= L) TYPES)...))

With, for transition rules :

(RULESFOR 'OPPORTUNITY)
((ACTION-ABOCR A (NC= C) (ND= D) (NE= E))
(COUNTER C (FREE YES))
(DESIGNATION D (FREE YES))
(EQUIPMENT E (FREE YES)))

(RULESFOR 'PGOAL)
((ACTION-ABOCR A (NC= C) (ND= D) (NE= E) (TY= T)...)
(SINGLE-LINE NIL(NC= C)(NE= E)(ND= D)(TY= T)...))

(RULESFOR 'OUTCOMES)
((ACTION-ABOCR A (NC= C) (ND= D) (NE= E)
(COUNTER C (TAKEN YES))
(DESIGNATION D (TAKEN YES))
(EQUIPMENT E (TAKEN YES)))

The opportunities are the preconditions to be che­
cked before performing an action, the goals are the
primary effects of the action, and the outcomes are the
additional effects. TAKEN and FREE have been declared
COMPLEMENT relations in the model.

These specifications permit AIMDS to simulate sta­
te changes.

D. The control structure

The control structure of the program is very simple,
we just translate a given command into an AIMDS des­
cription and instantiate it as an ACTION. This produce,
via PGOAL and OUTCOMES, the instantiation of the
corresponding OBJECTS. If there is a failure in one of the
action rules or in a consistency checking, an explicative
message is issued and a backtrack performed.

E. The main representation di f f icul t ies

It has been far more di f f icul t to solve the following
problems :

1. How to deal wi th both consistency checking and
consistency maintenance ? That is, what actions are
permissible to restore consistency ?

We need both to express automatic enforcement of
consistency, for example :

(A) TY = KLA ==> NOT-TY = CAD. That is to say
that if a user had f irst a dial, and later is given a
keyboard phone TY = KLA, his type dial TY = CAD must
be changed to NOT-TY = CAD to restore consistency.

and str ict consistency checking like :

(B) TY = MOD and TY = CAD ==> consistency
fai lure. A user wi th a dial phone cannot have the modif i ­
cation privilege TY = MOD.

- First d i f f icu l ty : A consistency condition (CC of AIMDS)
used to maintain consistency has also failure effects.

For example, the condition (A) is expressed by the CC :

(CC1) [(SINGLE-LINE X) NOT-TY = (TYPES CAD)
IF (X TY = KLA)]

The value of the relation NOT-TY= is -checked by
the value of the logical expression, and conversely, a
change of the value of this expression yields to the
according change of the relation. So, the assertion
(LINE-1 (TY= KLA)) with the previous value
(LINE-1 (TY= CAD)) leads to the correct result
(LINE-1 (TY= KLA) (NOT-TY= CAD)). But we need the
symmetrical behavior expressed by the CC :

(CC2) [(SINGLE-LINE X) NOT-TY= (TYPES KLA)
IF (X TY- CAD)]

With these two CCs, the very same assertion wi l l
produce a failure because TY = KLA is forbidden by
(CC2). So we can't express so easily the desired consisten­
cy maintenance.

The solution has been to express the consistency
maintenance between an object and the action that modi­
fies or creates this object. In fact, to avoid the repetit ion
of the CCs for each action, we regroup their common
attributes to be maintained in a single generic object,
called M-ATTRIBUTE. The CCs become like :

[(SINGLE-LINE X) NOT-TY = (TYPES CAD)
IF (X (SINGLE-LINE-OBJECTOF-M-ATTRIBUTE

M-ATTRIBUTE-TY = -TYPES) KLA) 1

So, the consistency of the object is maintained by using
the new asserted attr ibute values in the action, without
any undesirable effect.

- Second d i f f icu l ty : How to perform consistency mainte­
nance f irst and then consistency checking ?

When we have both consistency checking cases like
(B), and consistency maintenance like (A), we need to
execute the checking after the maintenance. So, if the
previous value is TY = CAD, when asserting
TY = MOD + KLA we expect that f i rst TY = KLA wi l l
enforce NOT-TY = CAD, so that TY = MOD wi l l be
accepted.

The solution has been to define a second generic
object, called C-ATTRIBUTE, with the relations to be
checked. The right order is assumed in instantiating M-
ATTRIBUTE before C-ATTRIBUTE.

So, the final meta-model is :
(1) (1)

COMMAND > ACTION > OBJECT
I 1(2) (2) "

(3) I—►TO-MAINTAIN-J (3)
(i) = Sequence order 1 ►TO-CHECK

2. How to give the model some knowledge about i ts own
generic structure ?

To reason on the structure, we need, at least, to
know what kind of action is associated with a given
command and which object is concerned.

J.-F. Cloarec and J.-F. Cudelou 387

But most of the representation languages, and this inclu­
des AIMDS, give us only faci l i t ies to reason upon facts
and instantiated objects.

Our solution has been to describe the structural
relations in each command with default values, for exam­
ple in ABOCR :

((ACTION FN) TEMPLATE (DEFAULT ACTION-ABOCR))
((OBJECT FN) TEMPLATE (DEFAULT SINGLE-LINE))

So, it is easy to find the action and the object
template-names related to a command. This is a speciali­
zed solution to this specific version of the problem. But
the general problem of knowing, reasoning on, and modi­
fying the generic structure of knowledge st i l l remains.

3. How to represent distinct points of view of the model ?

The specifications address several functional
aspects of systems, such as services to users, bi l l and
management ; and the design process involves new aspects
as electronics and layout. It is easy to represent these
points of view in using several perspectives (KRL C 1 \
FRL [5], or super-concepts (KLONE [2] , AKO of
AIMDS). But, in fact, these representations would mix all
the different aspects in the instantiated objects, via the
inheritance mechanism. What we need, is to split the
model in multiple views, to be able to reason sometimes
in a subdomain, sometimes in another, without hampering
ourselves with irrelevant aspects.

Our solution has been to define new meta-relations,
one called SEMANTIC to jump from the objective view of
constructed objects to a given subjective semantic (inver­
se SEMANTIC-OF) ; and one called ASPECT to jump from
one point of view to another.

But we have st i l l to study the properties of these
relations and what could be the problems of consistency
between all these different views.

III CONTINUATION OF THE EXPERIMENT

The continuation wi l l have to cope with the problem
of scaling-up and with new representation problems linked
to the design process.

A. Scaling up ;

The present experiment included the generic def ini­
tion of 12 commands, 12 actions and 20 objects, and in a
typical simulation about 200 objects might be instantiated
and 20 actions result from commands.

Although the ful l specification of the NEF com­
mands would require 10 times more commands, it is our
judgment, since we have experimented a representative
sample, that scaling up wi l l not reveal any new conceptual
problem.

B. Design process and knowledge representation ;

The design process wi l l have to manipulate both the
top-down and bottom-up approaches. This involves : deve­
loping design alternatives, since there are always several
choices to be had, from different functional organiza­
tions, to the use of different technologies. The context
mechanism as in PIE [3] , CONNIVER [4 3 , or AIMDS
could be a solution. This needs the definit ion of a distance
measure between structural objects to find whether a

solution could f i t and wi th what conditions and constraint
propagations.

We plan to tackle these problems in using our model
to study the design of the corresponding software of the
system management center.

VI CONCLUSIONS

This experiment allowed us to show some non-tr ivial
problems in knowledge representation and to clari fy what
a good knowledge representation system could do for us.

We wi l l emphasize upon :
- The need to deal with several points of view with the
aim of reasoning and building objects in one or in others,
and to bring back partial subjective solutions to be
merged in an objective design.
- The greater importance for us to manipulate structural
knowledge than facts. But these latter are nevertheless
used to simulate dynamic behavior in validation phases.
- The tremendous importance of the consistency problem,
where we need to deal both with checking and mainte­
nance aspects, on generic knowledge as on facts.

But none of the existing knowledge representation
systems seems to give solution to all these problems.
Particularly, the multi-points of view approach is confu­
sed with the multiple inheritance mechanism ; and even in
AIMDS, there is no clear separation between checking and
maintenance of consistency. Futhermore, these represen­
tation tools are mainly applicable to the instantiated
knowledge and are never concerned with the consistency
of definit ional, structural knowledge.

Nevertheless, the approach of AIMDS that allows
objects and actions, multi-contexts and states, def ini­
tional knowledge by means of meta-relations, seems par­
t icularly powerful for its uniformity of representation and
its possibilities in dynamic behavior representations.

ACKNOWLEDGMENTS

We thank RUTGERS University and especially
N.S. SRIDHARAN, without whom this experiment would
not have been possible.

REFERENCES

[1] D . Bobrow, T. Winograd : "An Overview of KRL
Representation Language". Cognitive Science 1:1
1977.

[2] R.J. Brachman : "A Structural Paradigm for Represen­
ting Knowledge". BBN Report N° 3605 May 1978.

[3] I. Goldstein, D. Bobrow : "Representing Design Al ter­
natives". CSL 81-3 March 1981, Xerox Park, Palo Alto
Research Center.

[4] D. McDermott, G.L. Sussman : "The CONNIVER Refe­
rence Manual". AI Memo N° 259, May 1972, MIT.

[5] R.B. Roberts, LP. Goldstein : "FRL User's Manual". AI
Memo N° 408 Apr i l 1977, MIT.

[6] N.S. Sridharan, B.L. Lantz, J.L. Bresina,
J.L. Goodson : "AIMDS User's Manual". Vers. 3,
Nov. 1981, RUTGERS University, New Brunswick (NJ).

