
A Case Study of Knowledge Representat ion in U C f 

David N. Chin 

Division of Computer Science 
Department of EECS 

University of California, Berkeley 
Berkeley, CA. 94720 

ABSTRACT 

The knowledge representation used in UC provides a flexible frame-
work suitable for a large variety of natural language processing tasks 
including parsing, inference, planning, goal analysis, and generation. 
Although many of the knowledge structures are specific to the UNIX 
Consultant domain, a common design goal is the use of associative 
processing. By providing direct links between related knowledge 
structures, inference and other processing can be done very 
efficiently. Access to representations in UC is by hash indexing 
which simulates a real associative memory. 

1 . I n t r o d u c t i o n 
UC, the UNIX* Consultant, is a natural language program that 
converses in English with users in the domain of the UNIX operating 
system. UC provides information on usage of system utilities, UNIX 
terminology, and plans for accomplishing specific tasks in the UNIX 
environment, all upon direct query by the user. In order to accom­
plish these tasks, UC must perforce have a considerable knowledge 
base, a large part of which is particular to the UNIX domain. The 
specific representations used in this knowledge base are essential to 
the successful operation of UC. Not only are the knowledge struc­
tures used in parsing, inference, planning, goal detection, and genera­
tion, but also the format of representation must permit the high 
efficiency in access and processing of the knowledge that is required 
in an interactive system like UC. This paper describes the details of 
this representation scheme and how it manages to satisfy these goals 
of usability and efficiency. An overview of the UC system can be 
found in Wilensky (1982). For an introduction to the knowledge 
structures in UC, see Chin (1983). In contrast, a totally different 
approach to the same problem domain is described in Douglass and 
Hegner (1982). 

S. The Representat ion 

UC uses a framelike representation where some of the contents are 
based on Schank's conceptual dependencies. The knowledge struc­
tures are stored in PEARL databases (PEARL is an Al package 
developed at Berkeley that provides efficient access to Lisp represen­
tations through hashing mechanisms, c.f. Deering, et. al., 1981 and 
1982). Since the knowledge to be represented is highly domain 
dependent, it is instructive to look at the range of queries that may 
be encountered by a UNIX consultant. The following dialogue is 
taken from actual UC sessions: 

User: How can I delete a directory? 

UC: To delete a directory with name directory name, type ' rm 
directoryname '. 

f This research WAS SPONSORED it part by the Office of Naval Raearck under contract 
N000M-8O-C-0732 aad the National Science Foundations under fraat 1ST-8007045 
• UNIX is trademark of Bell Laboratories 

User: What is a directory? 

UC: A directory is kind of file which is used to hold a set of files. 
User: Why can't I remove the directory Tmp? 
UC: The directory Tmp must be empty before the directory can be 

deleted. 

The first two queries are representative of direct requests for informa­
tion from UC and differ only in the type of information and the 
method of processing. The first asks for the name and usage of a 
UNIX ut i l i ty. In general, with queries of the first type, the user 
states the goals or results (hat are desired or the actions to be per­
formed and then asks UC for a plan to achieve those goals or per­
form those actions in UNIX. To process such "how" questions, UC 
encodes in its data base a large number of plans or equivalently the 
knowledge necessary to generate those plans as needed. The serond 
query is an information request for the definition of certain UNIX or 
general operating systems terminology. Although such requests can 
be bandied easily by canned textual responses, it is much harder to 
encode the knowledge in a format useful for generation. 

In the third query, the user describes a situation where his expecta­
tions have failed to be substantiated and asks UC to explain why. In 
general, the user simply presents a problem and asks for the solution. 
UC may have to infer the goals of the user and from that which plan 
the user likely had bern using. Once the plan is known, then UC 
must check for the proper execution of the plan, looking for mis­
placed steps or violated preconditions to the plan. 

S . An Analys is 

To see how the knowledge structures are actually used, it is instruc­
tive to follow the processing of queries in some detail. The English 
input is first parsed from left to right by the Phran parser (Wilensky 
and Arena, 1980a and b) into internal representations. For instance, 
the query of example three is parsed in sections. The clause, "Delete 
the directory T m p " is represented as a causat ion frame where the 
user (actually a frame which is not shown) does something to cause 
the directory (another frame not shown) to no longer exist. 

(causation (antecedent (do (actor *user*))) 
(consequent (state-change (actor directory 3) 

(state-name physical-state) 
(from existing) 
(to non-existing)))) 

The final form of the representation of query three is a quest ion 
frame with the single slot, cd, which is filled by a causation frame. 
The causation represents "why" (with antecedent 'unknown*) the 
user is unable to perform the action, ac t l , which is the causation 
frame for deleting shown above. 

(question (cd (causation (antecedent 'unknown*) 
(consequent (able (actor *user*) 

(value unable) 
(perform actl)))))) 



D. Chin 389 

Once the input is parsed, UC which is a data driven program looks in 
its data base to find out what to do with the representation of the 
input. An assert ion frame would normally result in additions to the 
database and an Impera t ive might result in actions (depending on 
the goal analysis). In this case, when UC sees a question about why 
someone is unable to do something, it interprets this as a statement 
that the user failed to perform the action, and that it should check 
the preconditions for the plan for that action. This knowledge is all 
encoded associatively in a memory-associat ion frame where the 
recall-key is the associative component and the cluster slot contains a 
set of structures which are associated with the structure in the 
recall-key slot. 

(memory-association 
(recall-key (question 

(cd (causation 
(antecedent 'unknown*) 
(consequent (able (actor 'person) 

(value unable) 
(perform Tact))))))) 

(cluster ((fail (cd Tact)) 
(goal (planner ?person) 

(objective ?states)) 
(assertion (cd (planfor (result ?states) 

(method ?plan)))) 
(check-preconds (cd ?plan))))) 

The above memory-association circumvents the need to infer that the 
user failed, to delete the directory, that the user has a goal and there 
is a plan carrying out the objectives of that goal. In UC, knowledge 
about plans is encoded in a large number of p lanfor frames which 
are used almost directly to handle informational queries about UNIX 
commands. In this example the usage of the plan is less direct since 
UC must check the preconditions for that plan. This intention is 
stored in the check-preconds frame. 

The plan itself was actually activated earlier when "deleting the 
directory T m p " was parsed and a memory-association reminded UC 
of the following planfor deleting the directory, Tmp, which was 
instantiated by unification with the patterns in the general planfor 
deleting directories: 

(planfor (result (state-change (actor directory3) 
(state-name physical-state) 
(from existing) 
(to non-existing))) 

(method (mtrans (actor *user*) 
(object (command (name rmdir) 

(args (Tmp)) 
(input *stdin*) 
(output *stdout*) 
(diagnostic *stdout*))) 

(from *user*) 
(to *Unix*)))) 

When UC processes the check-preconds, it looks for a preconds 
frame for the given plan and checks the preconditions listed therein: 
(preconds (plan (mtrans (actor Tuser) 

(object (command (name rmdir) 
(args (?directoryname)) 
(input *stdin*) 
(output *stdout*) 
(diagnostic *stdout*))) 

(from ?user) 
(to *Unix*))) 

(are ((state (actor (all (var ?file) 
(desc (file)) 
(pred (inside-of 

(object 'directory))))) 
(state-name physical-state) 
(value non-existing)) 

• • • ) ) > 

One precondition in this case is that the directory must be empty 
before it can be deleted. Upon querying UNIX directly, UC deter­
mines that this precondition is not satisfied, so it generates a message 
using the Phred generator (Jacobs, 1083) to inform the user of this 
fact. Of course if this precondition was not the problem, UC would 
continue to check the rest. Also in multi-step plans, UC would make 
sure that the steps were carried out in the proper order. 

The informational query of "How can I delete a directory" is handled 
in an even more straight forward way. It is first parsed into a ques­
tion frame: 

(question 
(cd (planfor (result (state-change (actor directory4) 

(state-name physical-6tate) 
(from existing) 
(to non-existing))) 

(method 'unknown*)))) 

Then the following memory-association directs UC to look for an 
ou t -p lan fo r frame whenever a question about how to do something 
(expressed as a planfor with an unknown method) is encountered: 

(memory-association 
(recall-key (question (cd (planfor (result Tconc) 

(method *unknown*))))) 
(cluster ((out-planfor (query Tconc) 

(plan ?*any*))))) 

The meaning of an out-planfor is that an answer to the query in the 
query slot is to simply execute the plan in the plan slot. Theoreti­
cally outrplanfors represent compiled answers to queries which the 
expert consultant has encountered so often that an immediate solu­
tion is already available. 

(out-planfor (query (state-change (actor ^directory) 
(state-name physical-state) 
(from existing) 
(to non-existing))) 

(plan (output (cd (planforlO))))) 

In this case, the plan in the out-planfor is an o u t p u t frame, the con­
tents of which are passed to the generator. PlanforlO in the output 
frame is the general version of the planfor shown in the previous dis­
cussion. In more complex queries where UC does not have an out-
planfor compiled away, the problem of creating a plan to handle that 
particular situation is done by the planning component of UC, Pan­
dora (Faletti, 1082). 

The processing of queries about terminology requires a somewhat 
different approach. Definitions are actually generated from basic 
knowledge. For example, the definition of a directory uses the fact 
that a directory is a kind of file in the type hierarchy of frames in 
UC. Also, used is the fact that a directory is a kind of func t iona l -
ob ject all of which have function*. The function of directories is to 
hold files. Although it would be possible for a consultant like UC to 
have definitions "compiled" away in its memory, it was felt that 
requests for definitions are so rare that this was unlikely, so UC gen­
erates all definitions from scratch. 

4. Associat ive Processing fo r Eff iciency 

A common theme in the knowledge representation of UC is the use of 
associative processing to achieve efficiency. Instead of potentially 
exponential cost inference engines, the knowledge structures in UC 
are designed to provide direct associations among relevant 
knowledge. For example, planfors provide immediate links between 
plans and their effects, out-planfors connect common queries to their 
generator ready outputs, and memory-associations provide a general 
mechanism for associative links of almost any kind. 



390 D. Chin 

Although computational methods of inference are undoubted still 
needed and desired, the premise taken in UC is that most common 
everyday inferences made by humans are not computational but 
rather fall out of the structure of memory. This can be modeled in 
AI programs like UC through appropriate design of knowledge 
representations. 

Lacking true associative memory, UC uses the hash indexing pro­
vided in PEARL databases to simulate associative access. Frames 
stored in PEARL databases are indexed by combinations of the 
frame type and/or the contents of selected slots. For instance, the 
planter of the example is indexed using a hash key based on the 
state-change in the planter's result slot. It is stored by the fact that 
it is a planter for the state-change of a directory's physical-state. 
This degree of detail in the indexing scheme allows this planter to be 
immediately recovered whenever a reference is made to deleting a 
directory. 

Similarly, a memory-association is indexed by the filler of the recall-
key slot, an out-plan for is indexed using the contents of the query 
slot of the out-planter, and a preconds is indexed by the plan in the 
plan slot of the preconds. Indeed all knowledge structures in UC 
have associated with them one or more indexing schemes which 
specify how to generate hashing keys for storage of the knowledge 
structure in the UC databases. These indexing methods are specified 
at the time that the knowledge structures are defined. Thus 
although care must be taken to choose good indexing schemes when 
defining the structure of a frame, the indexing scheme is used 
automatically whenever another instance of the frame is added to the 
UC databases. Also, even though the indexing schemes for large 
structures like planters involve many levels of embedded slots and 
frames, simpler knowledge structures usually have simpler indexing 
schemes. For example, the representation for users in UC are stored 
in two ways: by the fact that they are users and have a specific 
account name, and by the fact that they are users and have some 
given real name. Thus although extra work must be done to work 
out usable and efficient hash indexing schemes for structures, the 
gain in processing efficiency is well worthwhile. 

6 . Technica l D a t a 
UC is a working system which is stil l under development. In size, 
UC is currently two and a half megabytes of which half a megabyte 
is FRANZ lisp. Since the knowledge base is stil l growing, it is uncer­
tain how much of an impact even more knowledge will have on the 
system especially when the program becomes too large to fit in main 
memory. In efficiency, queries to UC take between two and seven 
seconds of CPU time on a VAX 11/780. Currently, all the 
knowledge in UC is hand coded, however efforts are under way to 
automate the process. 

6 . Acknowledgments 

Some of the knowledge structures used in UC are refinements of for­
mats developed by Joe Faletti and Peter Norvig. Yigal Arens is 
responsible for the underlying memory structure used in UC (Arens, 
1082) and of course, this project would not be possible without the 
guidance and advice of Robert Wilensky. 

7. References 
Arens, Y. 1982. The Context Model: Language Understand­
ing in Context. In the Proceedings of the Fourth Annual 
Conference of the Cognitive Science Society. Ann Arbor, MI . 
August 1982. 

Chin, D. 1983. Knowledge Structures in UC, the UNIX Con­
sultant. In the Proceedings of the 21 st Annual Meeting of the 
Association for Computational Linguistics. Boston, MA. 
June, 1983. 

Deering, M., J. Faletti, and R. Wilensky. 1981. P E A R L : An 
Efficient Language for Artificial Intelligence Programming. In 
the Proceedings of the Seventh International Joint Conference 
on Artificial Intelligence. Vancouver, British Columbia. 
August, 1981. 

Deering, M., J. Faletti, and R. Wilensky. 1982. The PEARL 
Users Manual. Berkeley Electronic Research Laboratory 
Memorandum No. UCB/ERL/M82/19. March, 1982. 

Douglass, R., and S. Hegner. 1982. An Expert Consultant for 
the Unix System: Bridging the Gap Between the User and 
Command Language Semantics. In the Proceedings of the 
Fourth National Conference of Canadian Society for Computa­
tional Studies of Intelligence. Uriversity of Saskatchewan, 
Saskatoon, Canada. 

Falett i, J. 1982. PANDORA - A Program for Doing Coro-
monsen&e Planning in Complex Situations. In the Proceedings 
of the National Conference on Artificial Intelligence. Pitts­
burgh, PA. August, 1982. 
Jacobs, P. 1983 Generation in a Natural Language Interface. 
In the Proceedings of the Eighth International Joint Conference 
on Artificial Intelligence. Karlsruhe, Germany. August, 1983. 

Wilensky, R 1982. Talking to UNIX in English: An Overview 
of UC. In the Proceedings of the National Conference on 
Artificial Intelligence. Pittsburgh, PA. August, 1982. 

Wilensky, R. 1981(b). A Knowledge-based Approach to 
Natural Language Processing: A Progress Report. In the 
Proceedings of the Seventh International Joint Conference on 
Artificial Intelligence. Vancouver, British Columbia. August, 
1981. 

Wilensky, R., and Arens, Y. 1980(a). PHRAN - a 
Knowledge-Based Natural Language Undcrstander. In the 
Proceedings of the 18th Annual Meeting of the Association for 
Computational Linguistics. Philadelphia, PA. 

Wilensky, R., and Arens, Y. 1980(b). PHRAN - a Knowledge 
Based Approach to Natural Language Analysis. University of 
California at Berkeley. Electronic Research Laboratory 
Memorandum No. UCB/ERL M80/34. 


