PREDICATE LOGIC INVOLVING DATA STRUCTURE
AS A KNOWLEDGE REPRESENTATION LANGUAGE

Setsuo Ohsuga

Institute of Interdisciplinary Research
Faculty of Engineering,

The University of

Tokyo

4-6-1 Komaba, Meguro-ku, Tokyo 153, Japan

ABSTRACT

A modification of predicate logic,
called multi layered logic, is discussed.
It is designed as the knowledge represen-
tation language for describing the systems
that uses engineering knowledge to support
the system analysis and design. A multi
level data structure is used to represent
the complex systems in which an abstract
entity at a level of abstraction is formed
as the collection of the entities at the

next lower level. Multi layered logic
adapts to this structure of the system and
meets the conditions for supporting

analysis and design of complex systems.

| Introduction

In order to analyze and design large

systems, a structured analysis and design
methodology has to be employed. This
involves the concept of multiple levels of
abstraction where at each level of

abstraction, the system is viewed composed

of a network of entities. Abstract
entities at the next higher level of ab-
straction is formed as the collection of
these entities. At the highest level of

abstraction, the system is a single entity
while at the lowest level, the system is

composed of primitive entities. Each
primitive entity has some functionality
which is specified, in advance, for each
object system. Systems of more complex
functionality are composed of them. Here
by functionality, we include various con-

cepts' other than the structural relation-
ships, such as attribute, property, func-
tion etc. of an entity. When to define
the abstract entity at a level of abstrac-
tion, the internal structure of the entity
at the next lower level need not be known,
but these entities can be thought of as
primitives at that level of abstraction.
Some entities at the same level are inter-
connected to each other to form the net-
work of entities. Thus the specification
of the structure of a system s recursive
in nature.

A system can be specified either
directly by specifying its structure or

indirectly by specifying its behavior.
Generally speaking, to analyze a system s
to obtain the behavior of the system given
its structure. Hence the structure of
the system has to be specified in terms of
the primitive entities before it can be

analyzed. On the other hand, to design a
system is to obtain the structure of the
system given the behavior. In general,

to find the complex structure to have the
specified behavior is not an easy task.
One needs to generate a tentative struc-
ture and examine it whether it has the
specified behavior. The system can be
specified by specifying the structure and
the functionality of the primitive en-
tities at the lowest level. But very
often it is necessary to give the explicit
description on (part of) functionality of

an entity at an arbitrary level. Thus,
each abstract entity has three parts: (1)
the components, (2) the interconnection

between the entities in the same level and
(3) the description on functionality.
These parts are represented in the system
described below by the hierarchical struc-
ture for (1) in which each entity at any

level of abstraction is represented by a
node and each node in the collection at
the lower level is linked to the upper
node, by the table of connection for (2)

and by the logical formula for (3).

In this paper, we will discuss a
knowledge representation language designed
to deal with this structure. Unlike many
of the CAD Inguage involving the hardware
description language [3,4], this language
is designed to use engineering knowledge
to support the automatic transformation
between the structure of the system and
its behavior.

This language is based on the predi-
cate logic because it is suited for de-
scribing the interconnections between the
entities in the table form and func-
tionality of an abstract entity. The
entity-component relation also can be rep-

resented by providing the system with an
atomic formula of the form (COMPONENT x vy)
meaning that x is a component of y. How-
ever, then, the representation of the
complex structure of the system will be

392 S. Ohsuga

of a number of instances of the
atomic formula and synthesizing, restruc-
turing and analyzing the structure should
be achieved by means of the logical infer-

composed

ence. It is an inefficient way of pro-
cessing the structure. Because these
processing can be formalized to a large

extent by viewing the entity-components
relation as the set-elements relation, an

efficient procedure to deal with the
structure can be defined without loss of
generality. For this purpose we modify

the syntax of predicate logic to restrict
the scope of the quantifiers just to the
referenced structure. We call this system
logic (MLL in short).

multi layered

I Expression in MLL

The definition of MLL is mostly the
same with the ordinary first order logic
except the scope of each variable is
restricted to a specified set and also the
set can be an abstract entity in the
hierarchical structure mentioned in the
last section viewing the collection of the
lower level entities as the set.

There is the concept of predicate
logic with the restricted domain of
variables, named many sorted logic (MSL in

short). Here, the formula (y¥x) {{MAN x)
=>(MORTAL x)] in the ordinary first order
logic is written as (¥ x/man)} (MORTAL x)

where the variable x is restricted to the
set 'man’.

Now referring to the hierarchical
structure of (upper half of) Fig.lI, let's
consider an expression "There is some
polygon in the polyhedron H such that,
for every edge line in this polygon, its
length is #1". This is the case where

the object being described is an edge line
which is referred to not directly but

A-H

{b) tay

Fig.l An example of hierarchical structure

indirectly through the known entity H via
entities at the intermediate level
(polygon) .

Let's try to represent it by using

MSL. "Some polygon in H" part is denoted
{3x/H), where X represents some polygon in
H, while "for every edge line in this
polygon" part, in the spirit of MSL,
should be written as (¥y/x), resulting in
the formula,

(Ix/H) (Yy/x) [LENGTH it 1) ($1)
Note that x is a variable representing a
polygon in H and at the same time a domain
of another variable y (edge line). That
is, the prefix of the formula reflects the
given hierarchical structure. Thus MLL
is the natural extension of MSL to allow
an object being any abstract entity in the
structure.

This idea is extended to the case
where the structure is not specified but

it is asked to find such a structure,
given the set of primitive entities, to
satisfy the specified condition. This is
the case of automatic synthesis of the
structure using the set of components L.
In the syntax of multi layered Ilogic, a
symbol * is used to denote a power-set.

Let *L denote the power-set of L (but the
empty set is excluded). For example, if
L is a set of lines, then *L can Dbe
interpreted as a set comprising all poly-
gons composed of lines in L. Similarly,
*(*L) defines a set that comprises all
polyhedra composed of L. In general, n-
th order power-set is defined recursively
snp=+(*7-1).

Suppose to ask the system to synthe-
size a polyhedron of the volume #b by
using the given set of the lines L as the
edge lines. Then the system should obtain
at first the set S of polygons as the
subset of *L, and then, a set of polyhedra
V as the subset of *S which, in turn, is
a subset of *?L. The condition of an
element x of *L being a polygon is that a
chain of lines contained in x forms an
elementary cycle and every line in this
chain is on the same plane. Let the con-
dition be represented (POLYGON x). Simi-
larly, the condition of an entity y in *2L

being a polyhedron is that vy satisfies
Eular equation. Let the condition be
represented (POLYHED y x). Then the

requirement is represented,
(3y/*2 L) {¥x/y} [(POLYHED y XJA
{(POLYGON x} A (VOLUME y #b}]. ($2)

III Properties of Multl Layered Logic
for example, two structures,

are composed of the same set
as shown in

Suppose,
say X and Y,
of primitive components, L,
Fig.l. Then both

(Wx/%) (Yy/2) (F) (53a)

{Yu/Y) (yv/u) (Yw/v) (F w)
expressions and are

equivalent
which contains

(v z/L) (F z) wk
information
it the base expression.

expression for the formula

that there is a common
relative to this ground level.
is denoted x'.

quantifier-
variable-domain
where Q represents either .
representation of

part becomes
same matrix,
referenced
Hence the set of the variables,
to a structure and
is not equel

depending on

to the set X'
in the same structure
in the matrix. Let the highest
in X be n and k while those of

respectively.

For example, ($3b), X={u, v, w}

in case of

structures

can appear
same formula.

The order of QWD
prefix affects the meaning of the

In case of MLL, however,
is not one-to-one as

this order

the variables belonging
structure,

the top to
in the prefix.

structure,
precedes the order

For example, compare (3x*'/x) {¥y/x)
(F y) with (ygy/xv) @@= /x)(F v¥).
are defined
X of Fig.l.
in the prefix and the structure

referenced coincide the first one while

y can not be specified unless x
the structural
quires a priority. interprete the
second formula the same as the first

Suppose the formula in the base
possible to modify

structure, by the following theorems,

that both the highest
the variables

equivalence

is a base formual

obtain the base formula. the follow-

S. Ohsuga 393

ing, therefore, we consider only the base
farmula, that is, m=n and k=l.

v Inference of MLL

we can obtain an inference rule ?or
MLL as the modification of the resolution
principle.

A. Standard Form

A formula of MLL is standardized by
the same procedure as the ordinary case
except a few differences as the feollow-
ings, First, because the order in the
prefix of variables belenging to the same
structure bhas no effect, Skdrem function
replacing a variable comprises only
variables belonging to the other structure
as the arguments. second, the demain
specified to each variable should be
remained. it is kept in the form of the
variable-domain pair x/% denoting X is
the domain of x.

Then the formula, for example,
(yx' /x} (3y! /Y)Y (Yyo /y') (3x° /x')

(F x' x% y' ¥°)
is transformed to (F ®/X, E{ye/g{x/X}}/¥,
gf{x' /xy/Y, ye/qix' /X)) . .
Here x° is replaced by the function
fly® /y'), but because y! is rgplacad by
ancther function g{¥'/X), it is substi-
tuted inte y' in £ (y°/y') resulting 1in
flye/9(x!' /X)),

B, bUnification

Suppose two sets of clauses are gliven.
A most general unifier has to be found
between them. In case of MLL, not only
the variables but their domains should be
unified.

The pair of formulas are unifiable if
and only if the condition shown in Table 1
is met on the set-theoretical relation
between the domains of the highest 1level
variables involved (dencoted here X and Y],
as well as the ordinary unifiability
condition on terms {variables, functions
and constants). Table 1 also shows the
unifled domain appearing in the resolvent.
As an entity is the domain of the next

Conditlon | New Domain
(Qx QY)

v Iylxoy “ly
(¥ VY| XxnYyeg XnY
(2 V)| XcY X

(@ Q): combination of quantifires
x ¥ in both formulas.
X, Y : domains of variables

Table 1 Condition on domains for
unifiabilicy

394 S. Ohsuga

lower level variables, that the uppper
level wvariable is unified means that the
demains of the next lower level variables
are unified and the condition of Table 1
is automatically satisfied. Hence, no
consideration on the domain is necessary
at all for lower level variables in the
same structure,

Example, A couple of formulas
Fo=(3x /X)(Vy' 7Y) (Vx> /xt)} (3y°/y!)
[~{G x' ,x2,y" ,y®)V (F x' ,x0,y" ,y%)]
Fp={yv /v (Yw /W) [Sve /vl } (Ywl/w')
[~(F vi ,vo w ,wo)]
are normalized, respectively, to
~{G a'/x, xP/a y'/Y, f(x°/a')/y').
(F a /x, x%/a y' /Y, E(x®/a }/y")
~{F VUV, giw WV, W W, W)
on the
the

The condition of unifiabiliry
domain is : Xcv and YnW#@. Then
resolvent is
~{G al /X, gly' sTysa,

y' /2, flgly' /2)/a')/y')
where Z=YaW.

Before c¢lesing this section, we break
further down the conditions presented in
Table 1. It is necessary when either or
both of ¥ and ¥ is of the form X=*™ a,
because not X but A is the known quantity
and therefore the conditien must be
expressed in terms of A.
tet x™!' ang y™!
level known entities and At
i-th level known entities. Then Table 2
shows how the relations between the
domains listed in Table 1 are broken down
to those of khown quantities, In this
table, the symbol I x® denotes a set of
entities at the level s-r and composing a
specific structure x5 of the level s,
The symbel '--' shows that the relation
does not hold.

denote the highest
and Bt be the

In Table 2, both nen-specific struc-

tures X and Y at the level m+l are
assumed being composed of the i-th level
entities. In general, however, it is

possible that the levels of component sets
differ, that is, x=*Mirlc and y=*"i'lD,
is#j, where C and D are the known entities
of the level I and } respectively. With-
out loss of generality, we assume i< j.
Then the test for X3Y, Y2X and XY+ s
further broken down to

{l) XD¥Y -*""C:D by the rule (I}=-(1}
=C2i* p by the rule (I)-{2}

{2) Xc ¥ =®éCcecp by the rule (I)-({1)
does not hold by the rule {I)=-{3)

(3) (XnYE@)=(*iCnDE@)

.. by the rule (II)~{1)

=2y o' by the rule (I1)-(2)
for some k

where D={D} , D} ,

The new domains in the resolvent for the

cases (1) and (3) are *ip and i:l(U D)

s.t. (C:)J-"-' Dy') respectively.

Equivalent Relation New Domain

(1 X2 0 o
(1)(* x:)*m+p “ (x:,v) ’ *m+\;
(23 (*“H_)I(;Ym ye (T Y™ |y
(X "' ¥):doas'nt hold | —=~=
@™ s v™) las 1t s "
{11} xAY 2 ¢
(1(*™ X *::‘ Y#g!)a(xnwpgl & (XnY)
(2) (A7 X Y38 e(x D U'rk ot (Xoh o m

for some k
(3) (HAMve) @ (10RO | Y xk

for seme k
(43 (XMAY™ e ras st 1s Y

5.t.{YD+ xk)

S E S WEEER LAMER L AR

Table 2

Equivalent set-theoretical relations
and new domains

Y Conclusion

A modification of predicate legic,
called multi layered logic, has been dis-
cussed. It was designed as the knowledge
representation language for describing the
systems that uses engineering knowledge to

support the hierarchical style of system
analysis and design. A multi level data
structure was used to represent the
complex systems in which an abstract

entity at a level of abstraction is formed
as the collection of the entities at the
next lower level. Multi layered legic
adapts to this structure of the system and
meets the conditions for supporting
analysis and design of complex systems.

REFERENCES
[1] ¢Chang, C. L. and R. C. T. Lee,
“sSymbolic Logic and Mechanical
Theorem Proving® Academic Press, 1973

[2] Enderton, H.B. *A mathematical
Introduction to Logic.” Academic
Press, 1972.

(3] Rill, F. 3., R. E. Swanson, M, Masud
and Z. Navabi, "Structure
specification with a Procedural

Hardware Description Language." IEEE
Trans. Computers C-30:2(1981) 157-161
f4] Lim, W. Y, P. "HISDL -=- A Structure
Description Language CACM 25:11
(1582} 823-830.
[5] o©ohsuga, &S. "A New Method of Model
pescription -~—~ Use of Knowledge Base

and Inference," In Proc. IFIP W.G.5.2
working Conf. on 'CAD System
Framework' June 1982. {Tc be pub-

lished from North-Holland Pub. Co.,])
Ohsuga, 5. YKnowledge Based Man-
Machine System,” Proc. IFAC/IFIP/
IFORS/IEA cConf. on Analysis, Design,
and Evaluation of Man-Machine System
Sept. 1982, pp.345-354.

f6l]

DESCRIPTIONS AS CONSTRAINTS IN OBJECT-ORIENTED REPRESENTATION

Luc STEELS
Artificial Intelligence Laboratory
Vrije Universiteit Brussel
Pleinlaan 2 - 1050 Brussel (BELGIUM)
of 12, i.e. 1,2,3,7,6 or 12, are indefinite

ABSTRACT

A motivation is given to introduce in-
definite descriptions. Parts of a descrip-
tion language are presented. Mechanisms
for the interpretation of indefinite de-
scriptions are briefly discussed.
KEYWORDS Knowledge representation, Al
programming languages, object-oriented
systems, description languages, reasoning,
constrain! propagation.

1. INTRODUCTION

A form in LISP or a term in PROLOG can
be viewed as a description, i.e. an expres-
sion which refers to an entity in a domain
of discourse. Forms and terms are both de-
finite descriptions. They are subject to
two restrictions

(i) The uniqueness condition A descrip-
lion may onJy denote a unique referent, it
cannot be ambiguous. For examplJe, (Father
John) is allowed because John can only
have one father, but (Brother John) is not
allowed because John may have more than
one brother and it is therefore not clear
which one is intended.

(ii) The computability condition: when
the referent of a description is needed
during interpretation, it should be com-
putable. For example, the expression
(Father John) must be computable when it
is needed otherwise an error condition
oc curs.

Variables can also be viewed as descrip-
tions. Typically, the uniqueness and com-
putability conditions hold for then too :
a variable may have only one value (within
a given environment of course) and the
value should be retrievable when needed,
otherwise an error condition (unbound
variable) results.

Descriptions that may have more than
one possible referent or whose referent is
not computable at the time it is needed
are called indefinite. We want to develop
a system where definite as well as indefi-
nite descriptions can be used.

For example, (Greaterthan 10), which de-
notes an unknown number greater than 10,
or (Divisor 12), which denotes a divisor

descriptions which would be allowed in the
system. Note that the conjuction of (Grea-
terthan 10) and (Divisor 12) wuniquely re-
fers to 12. In other words, the conjunction
of indefinite descriptions may be definite.

A definite description provides a deter-
ministic method to compute the referent
when needed. An indefinite description ex-
presses a constraint on its referent. Com-
putation vith indefinite descriptions con-
sists of operations over constraints. For
example, (Greaterthan 10) expresses the
constraint that the referent has to satis-
fy the predicate (lambda (X) (> 10 X)).
(Divisor 12) introduces the constraint that
the referent has to be a member of (1,2,3,
)<,6,12). The predicate can be applied to
filter members out of this set, so that tho
conjunction of the two descriptions yields
12.

In recent years there have been some
proposals that are relevant to this researdi
Concepts like lazy evaluation (Henderson
and Morris, 1976), or futures (Hewi11,1977)
make it possible to delay evaluation until
needed or until sufficient information is
available.

The concept of a logical variable as
used in PROLOG (Kowalski, 1977) can be vie-
wed as a way to relax the computability
condition, because a logical variable can
be used even though its referent is not
known or only partially known. Note however
that a logical variable can be bound to
only one object at the time, which would
make it necessary to backtrack 5 times be-
fore 12 yields a successful match in the
previous example (but see Kornfeld, 1983).

Because the evaluation process needed
to deal with indefinite descriptions re-
sembles techniques used to implement con-
straint propagation, there are some inte-

resting relations to constraint languages
as well (cf. Borning (1980), Steele and
Sussman (1980)

There are four motivations for studying
indefinite descriptions. First they can be
incorporated in ordinary programming lan-
guages, particularly in object-oriented
languages in which definite descriptions

396 L. Steels

already _play an impo!'tant role. Second they|ects are T(top), NIL, and 1. (.bottom;.
can be incorporated in knowledge represen-one gomain of T is the universe of discour-
tation languages, particularly in the re- <o The domain of NIL is the empty set.

cent generation of description languages 956 gomain of 1 is overdefined. When at a
(see e.g. Winograd (1982), Attardi and ;ertain point a subexpression refers to the
Simi (1982)).)verdefined object, then the whole expres-

Third, because indefinite descriptions .ign refers to the overdefined object.
feature prominently in natural language, ’

the relation between formal languages and 3. DESCRIPTIONS BASED ON CONCEPTS
natural Ianguag_es promi_ses t_o_become more The second type of descriptions is of
transparent. Finally, indefinite descrip- the form <concept> or (<concept> < arg >. ..
tions can be used as a component of query .arg >) for n > 1. A concept may either be
languages for databases. It would make it | f,nction, in which case a unique referent
possible that a user supplies constraints .55 pe computed given referents as argu-
in the form of indefinite descriptions lents. For example, (+5 10) is a descrip-
to refer to an object in the database-. tion with referent 15. But a concept need

. tot be a function. For example, (Divisor
In this short paper a full treatment of 2) is a description with possible refe-

the description system is impossible. In- .gpts 1,2,3,4,6 and 12. Divisor is a con-
stead we only introduce some basic lin- cept but not a function.
guistic constructs and mention some proper-
ties of the evaluation mechanism. 4 DESCRIPTIVE CONNECTIVES
The descriptive connectives dAnd, dOr,
1. DO,MAIN VS. _REFER,ENT Not, dEither and dAncinot are used to com-
The first key idea is that we make a bine descriptions. They should not be con-
distinction between the domain of a des- ,s6q with the propositional connectives
cription and its referent. The referent used to combine statements in predicate
is the element denoted by the description. 5culus
The domain is the set of possible elements The descriptive connectives reflect set-
out of which the referent has to be cho- tpgoretic relations between the domains of
sen. For the description ‘'uneven' the the component descriptions. The referent
domain is the set of uneven numbers and of (dAnd d1 d2) is an element out of the
the referent is an element out of this intersection of the domains of d1 and d2.
set - although it is unknown which one. The referent of(dOr d1 d2) is an element
The domain of ‘the brother of John' s 5ut of the union of the domains of d1 and
equal'to all brothers of John.' The refe- 42 The referent of (dEither dI d2) is an
rent is one element out of this set. element of the domain of dl or of the do-
The distinction between domain and re- main of d2 but not of both. The referent

ferent allows the construction of a clear gf (dAndnot dl d2) is an element out of
set-theoretic semantics for a description the set-theoretic difference between the
language. By making it possible to give domains of d1 and d2. (dNOT d) is an ab-

pa.rtial description's of the domain, it breviation of (dAndnot T d), i.e. dNot
raises the expressive Power of the languageindicates a set-theoretic difference with
Also the explicit representation of con- the domain of the all-description. Thus

straints on the domain makes the deduction (yNot female) is equivalent to (dAndnot
more powerful. Often we know a lot about 7T female).
the domain of a description but not its that T and NIL act

: It is easy to prove
f t. B t t the | | of . .
(rjirr?ariir; weycgr?eggrnlgtgim:s regucgvteheo as the identity and zero-element for these

Iconnectives. Analogues exists also for the

domain wuntil it is a singleton, i.e. unti other robositional laws. such as De
there is a wunique referent left. These M p‘ p ’
points will be illustrated in the rest of organ's.
the paper. First we introduce description 5. DESCRIPTIONS OF THE DOMAIN
types. There are a variety of things that could
be know about the domain of a description.
%h NAMES lAND fSPECIA¥ OB‘éECTS. . . We want to have constructs that are able
e simp es_t orm ot a _e_scr|pt|on Is a to express this partial information. Here
name which uniquely indentifies an element are some examples
in the domain of discourse. A name is an ENUMERATION OF THE POSSIBLE MEMBERS.
atom or a datastructure containing only An expression of the form (Element-of
names as elements. Sequences and sets are xi X expresses the constraint that the
considered to he primitive datastructures. PN)
referent has to be either X;.... or X .
For example, JOHN, [JOHN MARY ~JAMES] and For example, an alternative description
(JOHN ~ MARY = JAMES) are examples of names. for (Brother John) could be (Element-of
There are three special objects in the George James)

system. The undefined object or all-object,
the null-thing or empty object, and the
overdefined object. The names of these ob-

PARTIAL ENUMERATION. A description of
the form (INCLUDES X) expresses that the
referent comes out of a domain that has
X as a member. For example, if it is known
that George is one of the brothers of John
then (includes George) is an alternative
description for (Brother John).

CARDINALITY OF DOMAIN. The description
(Number-of X) with X an integer, indica-
tes that the cardinality of the domain is
equal to X. For example, if it is known
that John has two brothers, then (Brother
John) can be described as (Number-of 2).

The deduction rules for the descriptive
connectives include rules for dealing
with such domain descriptions. For example,
the referent of (dAnd (Brother John) (Friend
Frank)), where (Brother John) is (Element-
of George James) and (Friend Frank) is
(Element-of George Mary), is equal to
George because George is the only element
in the intersection of the domains of two
descri ptions.

6. VARIABLES

Variables are descriptions which start
out as indefinite members of the universe
and gradually assume their domain as con-
straints accumulate. Variables are prece-
ded by the symbol and are lexically sco-
ped within the expression in which they
occur, although they may occur anywhere in
the description. For example, in (dAnd :
Y 5), or its equivalent (dAnd 5 Y), the
referent of Y will be equal to 5+« Varia-
bles in the description system thus behave
like logical variables.

7. CONVERSE DESCRIPTIONS

If (Father George) is a~—description for
John, then (with Father John) is an alter-
native description for George. A descrip-

tion of the form (with <concept> <descrip-
tion> is called a converse description, be-
cause it denotes the converse of a concept.

8. EVALUATION

The goal of evaluation is to find the
name of the referent of a description, i.e.
a value. When a description is definite,

its referent
proceeds as

can be computed and evaluation
ordinary applicative evaluation

When the description is indefinite, the
result from evaluation is a collection of
constraints on the referent, called a con-
straint <cluster.

These constraints take the form of a
predicate that the referent has to satisfy,
generators which could start enumeration
of the domain if needed, and constraints

list of its members
the domain,

on the domain such as a
a list of the elements not in

a partial list of the members, the cardi-
nality of the domain, etc.

The evaluator will attempt to proceed
with the computation even though partial
results are constraint clusters. Deduction

rules for the descriptive connectives

L Steels 397

operate over constraint clusters.

For example, if the constraint clusters
of two descriptions contains predicates,
then the constraint-cluster of the conjunc-
tion of the two descriptions will contain
the AND-conjunction of the two predicates.
Thus (dAND (Greaterthan 10) (Lessthan 5))
results in ((Predicate (lambda (x)(and
(> x 10)(< x 5)))))-

The evaluation process will also attempt
to apply functions to constraint clusters.
For example, when an explicit domain is
known, computations can be performed by
mapping the function. For example, (+(ele-
ment-of 1 2) (element-of 3 4) is equal to
(element-of 4 5 6).

Note however that it is possible to spe-
cify descriptions whose referent will not
be computable because it would require the
introduction of much more knowledge. For
example, the description (dAnd Even Prime)
has only one referent, namely 2, but this
cannot be determined from knowing predica-
tes or generators on the component descrip-
tions themselves.

9. CONCLUSION

We argued for the introduction of inde-
finite descriptions, sketched some linguis-
tic constructs and briefly indicated a

possible evaluation.
REFERENCES
[1] Attardi and Simi (1982) Semantics of

inheritance and attribution in the

description system OMEGA. MIT-Al lab.
Memo. 642

[2] Borning, A. (1979) THINGLAB, A.
Constraint oriented simulation labora-
tory. Xerox Parc Report 55L~79-3

[3] Hewitt,Carl (1977) Viewing control struc-
tures as Patterns of Passing Messages.
Al Journal 8, n° 3. PP. 323-364

[4] Henderson, P. and J. Morris (1976) A
lazy evaluator. Proceedings of the
3d POPL Symposium, Atlanta George

[6] Kornfeld, B. (1983) Equality for PRO-
LOG. IJCAI-83, Karslruhe

[6] Kowalski, R. (1978) Logic for problem
Solving. North-Holland, Amsterdam

[7] Steele, G. and J. Sussman (1980) Con-
straints. MIT A.l. Las Memo 502

[8] Winograd, T.
nitive process.
wood Cliff.

(1983)
Prentice-Hall,

Language as a cog-
Engle-

