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ABSTRACT

A general method for the inference of re-
cursive functions (programs) from exam-
ples of computations is described. It is
based on the so called algebraic semantics
of recursive program schemes and in this
paper mainly applied to the representa-
tion and induction of infinite concepts
and recursive action sequences (which are
of importance for problem solving and
hierarchical planning). Additionally, the
use of recursive program schemes leads to
a new principle of generalization in the
sense that families of structures or
classes of programs could be treated sim-
ultaneously and that already existing so-
lutions of old problems could be trans-
ferred to new problems which have to be
solved.

1. Introduction

Program synthesis by induction as opposed
to program synthesis by deduction from
input-output specifications becomes a
matter of increasing interest in Al and
Computer Science. In this field much work
has dealt with the synthesis of LISP pro-
grams from examples of computations /3/,
IV, [I5].

We are interested on the one hand in the
development of a general formalism not de-
pending on a specific programming lan-
guage and on the other hand in the induc-
tion of certain infinite concepts and re-
cursive action sequences extending in
this way our earlier work on concept
learning /6/, /7/. By infinite concepts
we mean classes of strings and other
stuctures having some intrinsic periodi-
city (In Pattern Recognition only feature
vectors of fixed dimensionality have been
considered so far). Our method is based
on the so called algebraic semantics and
recursive program schemes /1/, [/2/ and it
is intended to provide a general frame-
work for the abovementioned representation
and induction problems* The induction
principle we introduce in this paper is a
more general version of SUMMERS' main syn-
thesis theorem /5/. Our main aim is to
apply it to the representation and induc-
tion of recursive action sequencee from
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examples of obsarved behaviour. Thie ia
aleo of importance for problem solving
and hierarchicsal planning.

Section 2 starts with a brief survey on
the basic definitions together with eaxam=
ples taken from tha recursive operation
of clearing a block and preparing in this
way the more detalled discussion of thsa
CLEAR=¢Qperator in section 5. In section 3
the induction principle is stated and
then applied to two basic sxamples in
section 4 and 5 demonstrating the general
method. The consideration of synthesized
programs as recursive program achemes
(RPS} allows us to introduce 2 new prin-
ciple of gensralizatrion not investigated
in AT until now.

2. Basic definitions

Jerm slgebrae, tresse, rewriting rules,
rogram schames

n the owing we use the notatione and
definitions of /1/. Lat V= vi,....vk}

and V = ;{ Vy be sets of variables and F
1

a set of primitive function synbols with

erity or rank {fe F has erity ¢ l).

F contains a diatinguished synbo
representing the “undefined”. Than let

M{F,V) be the sat of finite well-formed
terms on Fu V. Terms are inductively de~
fined by

Definition 2.1,

1M o is & term (F = constants)

2) If Tyrven,t € M{F,V) are terms then
f(ti".”tn)' with fe F,g(f) = n is n

tarm.
Terws can be representad as trees.

Example 2.1.
The term 1 r(v,), v, h(f{v,), o(r{f(v,)},

Vzo-n_))) with f, g, r. h‘F.e(f) = 1'
9(9) = 3, g(h) = 2 18 the tree
g
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(For the interpretation as a partially de-
fined program for clearing s block see ex-
ﬂﬂple 2.4.)

Dafinition 2.2.

On"M F,V) a partial order < is dafined,
intuitively: t«< t* if t' can be gensereted
from t by substitution of 1 by terms ¥y
at some positions in t. Jiis the least
elemant of< .

Every directed subset A¢ M(F,V) has an
upper limit Sup({A) which is a finite or
infinite tree. This allows one to extend
M{F,V) to the M@ (F V) of infinite tre
Iwﬁtcﬁ we will designate by T ae oppoaes
to finite treee t).

In addition to the primitive function sym=-
bols f& F we coneider a set Q-{Gl....,cr}

of function variables with arity g (Gy) =

= ki which will later on play the role of
"subprograms”,

Let MP(Fu §,v) be the term algebra ex~

tended by J.

Definition 2,3.

A recursive program ascheme (RPS) is a
pair <% ,t> conslsting of a system of
equatione

!-(Gi‘vi,ooo.vki) = til 1 t 4 i < n>

and a term t € M{F v v,), 6, e §

t, € M(Fuﬂi,vk Yo ¢ kdr e ’

t plays the roleiof the "mein program”,
which ies composed of the "subprograms® Gi
n:tually "ealling each other™ by means
of £ .

Example 2,2,

b Etvi.vzi = g(r{v, )., vy, h(f(v,),
G(f(vi)l Vz))) =t

(For the interpretation as a program of

clearing a block ses ex. 2.4)

A system X can be "solved” using the fol-

lowing rewriting rule by which function

variables in the ti » can be iteratively

eliminated.

Definition 2.4, (rewriting rule)

By this Se?InItion wo allow in & trees t
subtrees beginning with function varia-
ables G¢ 9 to be substituted by other
trees G{G)} (which appropriate correspon-
dences in the variables).

Formally: A tree t is transformed into
another tree B(t) inductively defined by

1) 8(x) = x 1f xEFguV
2) B(f(ty,enest,)) = £(B(t,),0..,60t,))
3) B(G(ty,eerity)) =
= 6(G) [8(t ) /v i0ee,B(r)/v,]
In 3) the r.he.s. meana that in the tree

(G) the varisble v, 1e to be_replaced by
g(ti)' 154 2k, (kote that 3(t1) -t

1f t, containe no function variables.)
Inetead of G(t) we will also write

t { tifcli,...,tn,/cink
if in t G1
Examples ae; example 2.3

Definition 2.5
et X be a as in def. 2.3, For 1418n
and 1 = 0, 1, 2, ... we define a sequence

6{1) by
G£0)' o, G£1+1)_

is to be replaced by tJ.

-t {6{M 6, ... ,6810 6 )<

-
=Df ti{ G 1)/0 }
using the eubstitution rule of def. 2.4.
This sequence is celled KLEENE-gequence.

It can be shown that Gil)-< G£1+1), l=
= 0,1,6e snd that Sfp Gil)hT{I .Gi),

1 53 S pn4s the fixpoint solution (least
solution) of X .

E le 2.3,

?%%EQFE-Eﬁg_bf ox, 2.2. we define

G(O)(Vlovz) =i, G(lj(vl,vz) = gtrtvl)n
2 vor NF(v,), 1))

G (V1:V2) = g{r(vljn Vzl h(f(Vl),

. e riv,), v

hd = g(r(vi)l vzl h(f{vijl

. a(r(f{vy))s Voo h(f3(v,).
2. ...

¢{2*2) (v, ,v,) = glrlvy)s vy h{f(v,),
{1 f(v,), vu)))seee

using the rewriting rule of def. 2.4.

H%I? 8ry = 6y, v,), o6) =

G (vi.vz).

Note that this KLEENE-saquence is genara-

ted by the following procedure which we

will uvae for induction (section 3):
There is s tree tr = G\L} = g(r(v1 ' Vor

h{f(vij,xxjj and a fixed node m in tr
{labelled by .n ) and 6{1*1) ta construc-
ted bsg substituting Gu) [?/\?J -

= 6{1(5(v.), v,) at node m (1= 2,3,...)
gll) [?733 weans that the vector of vari-
ables v = (vl,vz) of 6(1) has to be re-

placed by the vector of tren-t’ -
- (f(vijn Vz)'

IJ:i‘r:_t_z,;ijﬂ;{;n:.t:n'l and valuation

til now w mITTTETITINIIL d syntaotiocal
structures only. By an %nt.rg:gggfign I
we assign to every function symbo with

arity 1 a function on some domain



(Dv1 x sz X see X DV1)I. (Wa have to take
into account sorted functions and varie
ebles V1. 'oc,vi)c

< 1g interpreted by S 1+ 42 by § (the “un-

defined”). An interpretation assigns to
each RPS a program., By a valuation -7 we
asaign to each variable v, a valUé Yrom

domein (Di)I. An interprataticn together

with a valuation assigns to a RPS a value
(the result of the computation by X }.

Example 2.4, (see fig. 1 and example 2.2.)
Cet $, Fe FO be the truth values "true*
end "falee" respectively and in example
2.2+ g be the McCARTHY-conditional
g{x.y,z) <= 4if x then y else =z
g{T.v,z) =y, g(F,y.z2) = =
9(;-Y-Z) = g(TnLoz) = Q(FvY-L, = 1

{( ¥ denotes interpretation)
Let vy be a variable denoting definite

obiects x {blocks), r{x) the predicete
CT{x) = cleartop x;, f(x} the logical
function Cu(ON(u,x)) (*"that block u
lying on block x*)}, v, a state variable s
and h{x,s) & put (x.a) {("put x in state
s on the table™ getting the new state g’ a
put {x,a)}. Then

G{"y"z)'@: CLEAR (x,s)

is the {recursive) CLEAR-opsrator. In the
cage of fig. 1 we have 2
CLEAR {x,e) = put (f({x), put (f7(x),

Q(CT(fZ(x))'g.,..} eee)
= put (f{x), put (f%(x},e))
eince g (CT{fz(XJ): 8§, ese) = B

a a' = CLEAR (x,s)
{1n1t1a1_atate {final state)

2

{x)

{x)

x x

tabele
Fig. 1 Clearing e block xg f(x) =,

¢t U{ON{u,x))
{L: jota operator)

3. Principle of induction

Our oain aie is to construct (recureive)
programs from examples of computations.
The induction principle is a gensralizs-
tion of the eynthesis theoresm of SUMMERS
/5/« (The convergence properties are al-
ready sstablighed by our use of the
KLEENE=-mequence, def. 2.5., for induction)
In the first stage we build from a finite
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set of examples a finite tree T either by
a learning algorithm or by a combination
of alternatives similar to /5/. Then we
try to interpret t ae an element of a
KLEENE~gequence of soms RPS which has to
be induced. Formally: If there exists a
tree tr & M{(Fv§,v), 8 fixed node m in
tr, 8 vactor t = (t,_ ,.e.,t of trees
t,e M(Fu @, v) (1 = 1,...,“; and a se-
qﬁance

tw) = 0, t‘n = tr{sx/m),
ttz) o tf(t(i) [?/VJ/M),...,? a

er(e(1-1) [240/m)

then we consider T as_the 1®th element of
o KLEENE-sequence. t{¥/V] means that the
vagctor v of variables of t has to be re=-
placed by the vector T and tr(t/m) means
that w 1s the root noiﬁ of subtree t in
tr. {In general the t 's are defined
only for some specific valuee of the vis
and the domain has to be extended by

the induction procesa.} The mathod can be
generalized to the cese whare several
nodes m in tr have to be repleced by

"macro~functions™ (ese section 5)+ Having

established t as t‘l } and 1% being suf-
ficientlz high we extrapolate the sequen-
ce for @11l 1 and get the simplest hypo=-
theals 1. e. RPS) which hae T as the

1®th element of ite KLEENE=-sequence, 1
can be regarded as a measure of the raeli-
ability of the hypothesis. In sections 4
and 5 we demonstrate the mathod by two
basic exemples.

4, Induction of recursive

EOOI!G!‘I BXEI‘GBBIOHS

We consider the following classification
problem on the eet{ a,a,ce.a, | k=1,2...}

of binary atrings (a6 {0,1) for 1£3%k):
all strings with a, =1 for £ = 1,400,k

belong to the class T ("true®) and all
aother strings {i. e. containipg at least
one a, = 0) belong to the clasa F (" falad')

From o finite training sample of strings
the algoritha has to infsr the claseifi-
cation function for strings of arbitrary
length. Our set of primitive functione g,
x, r, 8¢ F (seoe section 2) is defined as
followe

Definition 4.ﬁi
g ies the Y conditional as in ex.

2.4'
Tif 8, =1 1 €1 €k
(10 o, 1if 81
x(1) »y:. 4 F if 8, =0 defined)
unde fined i>k (1. o, if
a, not def.)
T if x defined
r(1) =pf 4 F 1¢ xii undefined J= /2.
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’(k) =k +1 k » 0, 1, 2,600

x{(1), r{j) are tests to be performed on
atrings, s is the successor function, T,
Fe F, are the truth values for teats ae in

8xe 2¢4. Suppose we have 8 training sample
of all strings up to langth k = 2, atrings
conaigting only of gsymbols 1 being classi-
fied as T, etrings containing at least one
0 as T. Then by a slight modificetion of
an algorithm for automstically construc-
ting decision trees from training a@mples
of feature vectors 76/, /7/ the following
inttial tree t can be built
T = g(x(1). g(r(2), g(x(2), g(r(3),n,

. H. N5

= QIX(ig. g(r(s{1)), g{x(e(1))},

g(r(a (1))ln 1] T)J F)l T)J F)
This tree classifies (by definitions 4.1.)
the stringe 1 and 11 as T, all other
strings with length £ 2 ae F 4nd strings
with length> 2 as.. .
According to section 3 we have to search
for a tree tr which appeara as a subtres
of itself (at a fixed node m) recureively
with appropriate substitutions £/ of va=
riables. {That is we use & matching pro-
cedure with appropriate replacement of
variables.)
Observing the “periodicity" of the sppear-
ance of the symbols r and x respectively
in ? at the same position in subtrees be-
ginning with g we define

t(O)-Df G(O)-J1, :(1)=Df G(l)(i) = g(x(1),
g{r(s{1)),,T), F) = tr

-~ (2)

t =n¢ 6277(1) = g(x(1), 9(r(s(1)),

eMe(ay, T),7)
with

6{Mar1)) = 61 (2) = g(x(s(1)),
g(r(s2ap.n, N5

That ie we have for 0 £ 1 = 1%, 1™ . 2 &

KLEENEwsoguence

ct*1) (n) = gix(n), g(r(e(n)), 6{(e(n)),
. F)

which is partially defined for
1SHE1™ - (1~1)(1la1,2; 1" a2) and
undefined for other veluss of n. In the
senas of sectlion 3 we have (for n = 1,2)

tr '*9("(“): g(r{e(n})), c, T), )

and t = t, = s{n}. ¢ ie an arbitrary tree
labelling“the node m mentioned in section
3

Now we went to get the simplest hypothesis
for continuation of the KLEENE-sequencs.
The eimplest hypothesis ia to extrapolate

G(]‘) for all 1 and for all n

(. . extending the domain) using the
successor function e(n) on the natural
nufibers.This way we get the recuraive
program

E 1t 6(n) = g{x(n), g{r(s(n}),
G{e(n)}, T)n r)

G(1) accepts {clasaifies) all atrings
containing only 1's as T all others as
end our starting tree t is the second
element of its KLEENE-sequence. (With
other worde: ¥ accepts for n = 1 a logr
ical conjunction of arbitrary length. For
n> 1 the first n -~ 1 elementa of a atring
are ignored.) Note that the reliability
of the hypothesis is low bacause we have
used examples up to 1% = 2 only.

e) b}
g =iy
Ly 4 Dn Loy 1) / '\-
L’.f
Fig 2 Chain and ¢ircuit

Now we introduce a new principle of gene-
ralization. We abstract from the interpre-
tation of the functionh aymbols G, g, x, r,
, T used so far (see def. 4.1.) and con-
sider ¥ as 8 pure eyntactical structure
(i ®», RPS). 1If we interpret g, x, r as
in def., 4.1, but T by F and F by ¥ thens
accepts all strings consisting only of 1'%
as F and all others as T, If we addition-
ally interpret x bya,x (negation of x)
then X accepts all etrings containing at
least one 1, i, &. a logical disjunction
of arbitrary length. With another inter-
pretation of x, r, wa could make I accept
all graphs consieting of a directed chain
{fig. 2a) and with still another inter~
pretation all directed circuite (fig 2b).
This means that £ read as a RPS accepts
familiees of structures which can be con-
sidered as being equivaslent in this sense.
Thie could be used to avoild the full in-
duction process for a new problem for
which one has a starting tree t. Before
performing the induction one could try to
find a structural isomorphism of ‘¥ with
an element of a KLEENE-sequence of an al-
ready existing RPS (sclution of an old
problem) being at the same time a syntac-
tical solution of the new preoblem too.

Note that this procedure may also be re-

gerded as some kind of analogicsl reason~
ing in which functions {or relations)
would be raplaced by other functions
(relations).

E. Learning action se-uences

Now we consider m more complicated exam-
ple in which saveral nodes m in the tree

tr {esne soction 3) have to be replaced by
"macrofunctiona™. We return to the problsnm



of clearing a block x {fig. 1) which we
have dealt with in examples 2.2. = 2.4.
The variables and primitive functions are
as 1n ex. 2.4, Suppose we have the follo=
wing three examples of observed behaviour
(training instances):

CT(x) » & ("if clartop (x) then nothing
is to be done*)

CT{f(x))=> h(f(x), 8) {"if the block f(x)
lying on x 1s clear then put
f{x) on the teble in state s")

CT(£2(x)) = h{f{x), h{fZ(x}, s))
(two blocks on x, repeated
clearing)

Combining these alternatives by means of
the function g to a initial tree t leads
to

o~

t = g(CT(X), 8, Q(CT(f(X)), g(f(x)o s)l
g(CT(£2(x)), h(f(x), h(F2(x), 8)),.0))
(5.1)

From the first position in each subtree

beginning with g we get the eaquence

CT(x), CT(f(x)), CT(F3(x))

and define

F{1,x) =p, i1 x) 1= 0,1,2; F{O,x) = x
{5.2)

with thie definition we get from the se-
cond poslition in the subtrees beginning
with g the sequence

s, h{F(1,x), 8), h{F(1,x), h(F(2,x), s8)).
The simpleet hypothesie is to continue by
h(F(1,x}, h{F{2,x}, h{F(3,x), 8}}), «oo

1. e, by using the successor function s{n)
for extrapolation. With a function

H'(1,n,x,8) =5, g(i> n,s,h(F(1i,x),
H' (e(1),n,x,8)))

the above sequence can be wrltten ae

H(n,x,s8) 2n¢ H'(2,n,x,8); H{O,x,s) =pf ©

(5.3)

{5.4)
and the tree T {5.1) a8
T g(CT{F(D,x}), H(O,x,8),
g(CT{F{1,x)), H{1,x,s), (5.6)

g{CT(F(2,x})., H{2,x,8), 1 M)

The gimplest hypothesis ia again to ex~
trapolate by means of the successor funce
tion., Using the induction methods intro-
duced in section 3 and 4 we get thie way

8 KLEENE~gegquence 6 (1) and the fixpoint
solution

sup 6*(1) = 6*(n,x,8) = g(CT(F(n.x)),
10 H(n,x,8), G*(s(n),x,8)) (5.6)
n= 0,1.2.000
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Progoaition 5,1,
G* {0,x,8) reproduces the tree ) {5.1)

Proof: By def. 2,5. of the KLEENE-se~
quence and use of (5.2) -~ (5.4).
G*'(0,x,8) clears a block x from an arbi=-
trarI number of blocks (fig. 1).

Finally we compare the representation G’
{5.68) of the CLEAR=-operator with the re=-
presentation G introduced in examples Z2.2.
and 2.4, which 1g the minimel one (but
not easy to learn). The equvalence of
both representations is established by
the following

Proposition 5.2.
There exlstse a ayntactic transformation

which tranasforms G' into G.

Proof: By proving that each element G'(l)
of the KLEENE-ssquence of G' can be trans-

formed into the corresponding slement
G(l) of G using the reduction rules
g{r.h{x,s), i ) = h{x,g({r.e,8})
g{r.h{x,s), h{x,8'))— h({x,g{r,s,s"))
h{x, 1) = . (6.7)

repeatedly. These rules could be made
clear from the semantice in ex. 2.4. (=
means that the l.h.s. of the rule can be
replaced by the r.h.s.)}

6* Conclusion

A framework for representation and in-
duction of infinite concepts and action
sequences has been represented. It was
applied to examples taken from typical Al
domains, demonstrating the general con-
struction algorithm* The induction prin-
ciple was formulated with the help of the
KLEENE-8equence# Equivalently the concept
of a tree grammar could have been applied,
i* e. our induction problem is equivalent
to the problem of identification of a tree
grammar* In our examples we have dealt
with the construction of single loops
only, multiple (nested) loops can be
treated by a more step procedure in a
similar manner* The use of program sche-
mes (RPS) instead of programs allows one
to treat classes of functions simultan-
eously* This can be used to avoid the
full solution of new problems if there
exists already program schemes isomorphic
to then”

In future work we will investigate broad-
er classes of functions playing an impor-
tant rols in Al research especially in
picture recognition and planning.

REFERENCES

/1/ Courcelle, B* "Infinite trees in nor-
mal form and recursive equations
having a unique solution*" Math*
System Theory 13 (1979), 131-180.



414

121

131

141

151

16/

171

F. Wysotzki

Courcelle, B.; Nivat, M. "The algebra-
ic semantics of recursive program
schemes*" In: Math. Found. of Comp.
Science 1978 (Winkowski eds.). Lecture
Notes in Comp* Sciences,Vol 64, Sprin-
ger-Verlag, New York 1978, 16-30.

Jouannaud, J P., Guiho, G. "Inference
of functions with an interactive
system*" Machine Intelligence 9 (1979)
227-250.

Jouannaud, J. P., Kodratoff, Y.
"Characterization of a class of func-
tions synthesized from examples by a
SUMMERS-like method using the "B.M.W."
matching technique." In Proc. 6, IDCAI,
Tokyo 1979.

Summers, Ph. D. "A methodology for
LISP program construction from exam-
ples." 0. ACM 24/1 (1977), 162-175.

Unger, S.; Wysotzki, F. "Lernfahige
Klassifizierungssysteme." Akademie-
Verlag, Berlin 1981.

Wysotzki, F.; Kolbe, W.; Selbig, J.
"Concept learning by structured ex-
amples - an algebraic approach." In:
Proc. 7. IJCAI, Vancouver 1981.



