REPRESENTATION AND INDUCTION OF INFINITE
CONCEPTS AND RECURSIVE ACTION SEQUENCES

Fritz Wysotzki

Dept.
Central

of Artificial
Institute of Cybernetics and

Intelligence

Information Processes of the Academy of Sciences

1086 Berlin,

ABSTRACT

A general method for the inference of re-
cursive functions (programs) from exam-
ples of computations is described. It is
based on the so called algebraic semantics
of recursive program schemes and in this
paper mainly applied to the representa-
tion and induction of infinite concepts
and recursive action sequences (which are
of importance for problem solving and
hierarchical planning). Additionally, the
use of recursive program schemes leads to
a new principle of generalization in the
sense that families of structures or
classes of programs could be treated sim-
ultaneously and that already existing so-
lutions of old problems could be trans-
ferred to new problems which have to be
solved.

1. Introduction

Program synthesis by induction as opposed
to program synthesis by deduction from
input-output specifications becomes a
matter of increasing interest in Al and
Computer Science. In this field much work
has dealt with the synthesis of LISP pro-
grams from examples of computations /3/,
IV, [I5].

We are interested on the one hand in the
development of a general formalism not de-
pending on a specific programming lan-
guage and on the other hand in the induc-
tion of certain infinite concepts and re-
cursive action sequences extending in
this way our earlier work on concept
learning /6/, /7/. By infinite concepts
we mean classes of strings and other
stuctures having some intrinsic periodi-
city (In Pattern Recognition only feature
vectors of fixed dimensionality have been
considered so far). Our method is based
on the so called algebraic semantics and
recursive program schemes /1/, [/2/ and it
is intended to provide a general frame-
work for the abovementioned representation
and induction problems* The induction
principle we introduce in this paper is a
more general version of SUMMERS' main syn-
thesis theorem /5/. Our main aim is to
apply it to the representation and induc-
tion of recursive action sequencee from

German Democratic Republic

examples of obsarved behaviour. Thie ia
aleo of importance for problem solving
and hierarchicsal planning.

Section 2 starts with a brief survey on
the basic definitions together with eaxam=
ples taken from tha recursive operation
of clearing a block and preparing in this
way the more detalled discussion of thsa
CLEAR=¢Qperator in section 5. In section 3
the induction principle is stated and
then applied to two basic sxamples in
section 4 and 5 demonstrating the general
method. The consideration of synthesized
programs as recursive program achemes
(RPS} allows us to introduce 2 new prin-
ciple of gensralizatrion not investigated
in AT until now.

2. Basic definitions

Jerm slgebrae, tresse, rewriting rules,
rogram schames

n the owing we use the notatione and
definitions of /1/. Lat V= vi,....vk}

and V = ;{ Vy be sets of variables and F
1

a set of primitive function synbols with

erity or rank {fe F has erity ¢ l).

F contains a diatinguished synbo
representing the “undefined”. Than let

M{F,V) be the sat of finite well-formed
terms on Fu V. Terms are inductively de~
fined by

Definition 2.1,

1M o is & term (F = constants)

2) If Tyrven,t € M{F,V) are terms then
f(ti".”tn)' with fe F,g(f) = n is n

tarm.
Terws can be representad as trees.

Example 2.1.
The term 1 r(v,), v, h(f{v,), o(r{f(v,)},

Vzo-n_))) with f, g, r. h‘F.e(f) = 1'
9(9) = 3, g(h) = 2 18 the tree
g

P W
Ir vz flh\
Y
1 A

410 F. Wysotzk

(For the interpretation as a partially de-
fined program for clearing s block see ex-
ﬂﬂple 2.4.)

Dafinition 2.2.

On"M F,V) a partial order < is dafined,
intuitively: t«< t* if t' can be gensereted
from t by substitution of 1 by terms ¥y
at some positions in t. Jiis the least
elemant of< .

Every directed subset A¢ M(F,V) has an
upper limit Sup({A) which is a finite or
infinite tree. This allows one to extend
M{F,V) to the M@ (F V) of infinite tre
Iwﬁtcﬁ we will designate by T ae oppoaes
to finite treee t).

In addition to the primitive function sym=-
bols f& F we coneider a set Q-{Gl....,cr}

of function variables with arity g (Gy) =

= ki which will later on play the role of
"subprograms”,

Let MP(Fu §,v) be the term algebra ex~

tended by J.

Definition 2,3.

A recursive program ascheme (RPS) is a
pair <% ,t> conslsting of a system of
equatione

!-(Gi‘vi,ooo.vki) = til 1 t 4 i < n>

and a term t € M{F v v,), 6, e §

t, € M(Fuﬂi,vk Yo ¢ kdr e ’

t plays the roleiof the "mein program”,
which ies composed of the "subprograms® Gi
n:tually "ealling each other™ by means
of £ .

Example 2,2,

b Etvi.vzi = g(r{v,)., vy, h(f(v,),
G(f(vi)l Vz))) =t

(For the interpretation as a program of

clearing a block ses ex. 2.4)

A system X can be "solved” using the fol-

lowing rewriting rule by which function

variables in the ti » can be iteratively

eliminated.

Definition 2.4, (rewriting rule)

By this Se?InItion wo allow in & trees t
subtrees beginning with function varia-
ables G¢ 9 to be substituted by other
trees G{G)} (which appropriate correspon-
dences in the variables).

Formally: A tree t is transformed into
another tree B(t) inductively defined by

1) 8(x) = x 1f xEFguV
2) B(f(ty,enest,)) = £(B(t,),0..,60t,))
3) B(G(ty,eerity)) =
= 6(G) [8(t) /v i0ee,B(r)/v,]
In 3) the r.he.s. meana that in the tree

(G) the varisble v, 1e to be_replaced by
g(ti)' 154 2k, (kote that 3(t1) -t

1f t, containe no function variables.)
Inetead of G(t) we will also write

t { tifcli,...,tn,/cink
if in t G1
Examples ae; example 2.3

Definition 2.5
et X be a as in def. 2.3, For 1418n
and 1 = 0, 1, 2, ... we define a sequence

6{1) by
G£0)' o, G£1+1)_

is to be replaced by tJ.

-t {6{M 6, ... ,6810 6)<

-
=Df ti{ G 1)/0 }
using the eubstitution rule of def. 2.4.
This sequence is celled KLEENE-gequence.

It can be shown that Gil)-< G£1+1), l=
= 0,1,6e snd that Sfp Gil)hT{I .Gi),

1 53 S pn4s the fixpoint solution (least
solution) of X .

E le 2.3,

?%%EQFE-Eﬁg_bf ox, 2.2. we define

G(O)(Vlovz) =i, G(lj(vl,vz) = gtrtvl)n
2 vor NF(v,), 1))

G (V1:V2) = g{r(vljn Vzl h(f(Vl),

. e riv,), v

hd = g(r(vi)l vzl h(f{vijl

. a(r(f{vy))s Voo h(f3(v,).
2. ...

¢{2*2) (v, ,v,) = glrlvy)s vy h{f(v,),
{1 f(v,), vu)))seee

using the rewriting rule of def. 2.4.

H%I? 8ry = 6y, v,), o6) =

G (vi.vz).

Note that this KLEENE-saquence is genara-

ted by the following procedure which we

will uvae for induction (section 3):
There is s tree tr = G\L} = g(r(v1 ' Vor

h{f(vij,xxjj and a fixed node m in tr
{labelled by .n) and 6{1*1) ta construc-
ted bsg substituting Gu) [?/\?J -

= 6{1(5(v.), v,) at node m (1= 2,3,...)
gll) [?733 weans that the vector of vari-
ables v = (vl,vz) of 6(1) has to be re-

placed by the vector of tren-t’ -
- (f(vijn Vz)'

IJ:i‘r:_t_z,;ijﬂ;{;n:.t:n'l and valuation

til now w mITTTETITINIIL d syntaotiocal
structures only. By an %nt.rg:gggfign I
we assign to every function symbo with

arity 1 a function on some domain

(Dv1 x sz X see X DV1)I. (Wa have to take
into account sorted functions and varie
ebles V1. 'oc,vi)c

< 1g interpreted by S 1+ 42 by § (the “un-

defined”). An interpretation assigns to
each RPS a program., By a valuation -7 we
asaign to each variable v, a valUé Yrom

domein (Di)I. An interprataticn together

with a valuation assigns to a RPS a value
(the result of the computation by X }.

Example 2.4, (see fig. 1 and example 2.2.)
Cet $, Fe FO be the truth values "true*
end "falee" respectively and in example
2.2+ g be the McCARTHY-conditional
g{x.y,z) <= 4if x then y else =z
g{T.v,z) =y, g(F,y.z2) = =
9(;-Y-Z) = g(TnLoz) = Q(FvY-L, = 1

{(¥ denotes interpretation)
Let vy be a variable denoting definite

obiects x {blocks), r{x) the predicete
CT{x) = cleartop x;, f(x} the logical
function Cu(ON(u,x)) (*"that block u
lying on block x*)}, v, a state variable s
and h{x,s) & put (x.a) {("put x in state
s on the table™ getting the new state g’ a
put {x,a)}. Then

G{"y"z)'@: CLEAR (x,s)

is the {recursive) CLEAR-opsrator. In the
cage of fig. 1 we have 2
CLEAR {x,e) = put (f({x), put (f7(x),

Q(CT(fZ(x))'g.,..} eee)
= put (f{x), put (f%(x},e))
eince g (CT{fz(XJ): 8§, ese) = B

a a' = CLEAR (x,s)
{1n1t1a1_atate {final state)

2

{x)

{x)

x x

tabele
Fig. 1 Clearing e block xg f(x) =,

¢t U{ON{u,x))
{L: jota operator)

3. Principle of induction

Our oain aie is to construct (recureive)
programs from examples of computations.
The induction principle is a gensralizs-
tion of the eynthesis theoresm of SUMMERS
/5/« (The convergence properties are al-
ready sstablighed by our use of the
KLEENE=-mequence, def. 2.5., for induction)
In the first stage we build from a finite

F. Wysotzki 411

set of examples a finite tree T either by
a learning algorithm or by a combination
of alternatives similar to /5/. Then we
try to interpret t ae an element of a
KLEENE~gequence of soms RPS which has to
be induced. Formally: If there exists a
tree tr & M{(Fv§,v), 8 fixed node m in
tr, 8 vactor t = (t,_ ,.e.,t of trees
t,e M(Fu @, v) (1 = 1,...,“; and a se-
qﬁance

tw) = 0, t‘n = tr{sx/m),
ttz) o tf(t(i) [?/VJ/M),...,? a

er(e(1-1) [240/m)

then we consider T as_the 1®th element of
o KLEENE-sequence. t{¥/V] means that the
vagctor v of variables of t has to be re=-
placed by the vector T and tr(t/m) means
that w 1s the root noiﬁ of subtree t in
tr. {In general the t 's are defined
only for some specific valuee of the vis
and the domain has to be extended by

the induction procesa.} The mathod can be
generalized to the cese whare several
nodes m in tr have to be repleced by

"macro~functions™ (ese section 5)+ Having

established t as t‘l } and 1% being suf-
ficientlz high we extrapolate the sequen-
ce for @11l 1 and get the simplest hypo=-
theals 1. e. RPS) which hae T as the

1®th element of ite KLEENE=-sequence, 1
can be regarded as a measure of the raeli-
ability of the hypothesis. In sections 4
and 5 we demonstrate the mathod by two
basic exemples.

4, Induction of recursive

EOOI!G!‘I BXEI‘GBBIOHS

We consider the following classification
problem on the eet{ a,a,ce.a, | k=1,2...}

of binary atrings (a6 {0,1) for 1£3%k):
all strings with a, =1 for £ = 1,400,k

belong to the class T ("true®) and all
aother strings {i. e. containipg at least
one a, = 0) belong to the clasa F (" falad')

From o finite training sample of strings
the algoritha has to infsr the claseifi-
cation function for strings of arbitrary
length. Our set of primitive functione g,
x, r, 8¢ F (seoe section 2) is defined as
followe

Definition 4.ﬁi
g ies the Y conditional as in ex.

2.4'
Tif 8, =1 1 €1 €k
(10 o, 1if 81
x(1) »y:. 4 F if 8, =0 defined)
unde fined i>k (1. o, if
a, not def.)
T if x defined
r(1) =pf 4 F 1¢ xii undefined J= /2.

412 F. Wysotzki

’(k) =k +1 k » 0, 1, 2,600

x{(1), r{j) are tests to be performed on
atrings, s is the successor function, T,
Fe F, are the truth values for teats ae in

8xe 2¢4. Suppose we have 8 training sample
of all strings up to langth k = 2, atrings
conaigting only of gsymbols 1 being classi-
fied as T, etrings containing at least one
0 as T. Then by a slight modificetion of
an algorithm for automstically construc-
ting decision trees from training a@mples
of feature vectors 76/, /7/ the following
inttial tree t can be built
T = g(x(1). g(r(2), g(x(2), g(r(3),n,

. H. N5

= QIX(ig. g(r(s{1)), g{x(e(1))},

g(r(a (1))ln 1] T)J F)l T)J F)
This tree classifies (by definitions 4.1.)
the stringe 1 and 11 as T, all other
strings with length £ 2 ae F 4nd strings
with length> 2 as.. .
According to section 3 we have to search
for a tree tr which appeara as a subtres
of itself (at a fixed node m) recureively
with appropriate substitutions £/ of va=
riables. {That is we use & matching pro-
cedure with appropriate replacement of
variables.)
Observing the “periodicity" of the sppear-
ance of the symbols r and x respectively
in ? at the same position in subtrees be-
ginning with g we define

t(O)-Df G(O)-J1, :(1)=Df G(l)(i) = g(x(1),
g{r(s{1)),,T), F) = tr

-~ (2)

t =n¢ 6277(1) = g(x(1), 9(r(s(1)),

eMe(ay, T),7)
with

6{Mar1)) = 61 (2) = g(x(s(1)),
g(r(s2ap.n, N5

That ie we have for 0 £ 1 = 1%, 1™ . 2 &

KLEENEwsoguence

ct*1) (n) = gix(n), g(r(e(n)), 6{(e(n)),
. F)

which is partially defined for
1SHE1™ - (1~1)(1la1,2; 1" a2) and
undefined for other veluss of n. In the
senas of sectlion 3 we have (for n = 1,2)

tr '*9("(“): g(r{e(n})), c, T),)

and t = t, = s{n}. ¢ ie an arbitrary tree
labelling“the node m mentioned in section
3

Now we went to get the simplest hypothesis
for continuation of the KLEENE-sequencs.
The eimplest hypothesis ia to extrapolate

G(]‘) for all 1 and for all n

(. . extending the domain) using the
successor function e(n) on the natural
nufibers.This way we get the recuraive
program

E 1t 6(n) = g{x(n), g{r(s(n}),
G{e(n)}, T)n r)

G(1) accepts {clasaifies) all atrings
containing only 1's as T all others as
end our starting tree t is the second
element of its KLEENE-sequence. (With
other worde: ¥ accepts for n = 1 a logr
ical conjunction of arbitrary length. For
n> 1 the first n -~ 1 elementa of a atring
are ignored.) Note that the reliability
of the hypothesis is low bacause we have
used examples up to 1% = 2 only.

e) b}
g =iy
Ly 4 Dn Loy 1) / '\-
L’.f
Fig 2 Chain and ¢ircuit

Now we introduce a new principle of gene-
ralization. We abstract from the interpre-
tation of the functionh aymbols G, g, x, r,
, T used so far (see def. 4.1.) and con-
sider ¥ as 8 pure eyntactical structure
(i ®», RPS). 1If we interpret g, x, r as
in def., 4.1, but T by F and F by ¥ thens
accepts all strings consisting only of 1'%
as F and all others as T, If we addition-
ally interpret x bya,x (negation of x)
then X accepts all etrings containing at
least one 1, i, &. a logical disjunction
of arbitrary length. With another inter-
pretation of x, r, wa could make I accept
all graphs consieting of a directed chain
{fig. 2a) and with still another inter~
pretation all directed circuite (fig 2b).
This means that £ read as a RPS accepts
familiees of structures which can be con-
sidered as being equivaslent in this sense.
Thie could be used to avoild the full in-
duction process for a new problem for
which one has a starting tree t. Before
performing the induction one could try to
find a structural isomorphism of ‘¥ with
an element of a KLEENE-sequence of an al-
ready existing RPS (sclution of an old
problem) being at the same time a syntac-
tical solution of the new preoblem too.

Note that this procedure may also be re-

gerded as some kind of analogicsl reason~
ing in which functions {or relations)
would be raplaced by other functions
(relations).

E. Learning action se-uences

Now we consider m more complicated exam-
ple in which saveral nodes m in the tree

tr {esne soction 3) have to be replaced by
"macrofunctiona™. We return to the problsnm

of clearing a block x {fig. 1) which we
have dealt with in examples 2.2. = 2.4.
The variables and primitive functions are
as 1n ex. 2.4, Suppose we have the follo=
wing three examples of observed behaviour
(training instances):

CT(x) » & ("if clartop (x) then nothing
is to be done*)

CT{f(x))=> h(f(x), 8) {"if the block f(x)
lying on x 1s clear then put
f{x) on the teble in state s")

CT(£2(x)) = h{f{x), h{fZ(x}, s))
(two blocks on x, repeated
clearing)

Combining these alternatives by means of
the function g to a initial tree t leads
to

o~

t = g(CT(X), 8, Q(CT(f(X)), g(f(x)o s)l
g(CT(£2(x)), h(f(x), h(F2(x), 8)),.0))
(5.1)

From the first position in each subtree

beginning with g we get the eaquence

CT(x), CT(f(x)), CT(F3(x))

and define

F{1,x) =p, i1 x) 1= 0,1,2; F{O,x) = x
{5.2)

with thie definition we get from the se-
cond poslition in the subtrees beginning
with g the sequence

s, h{F(1,x), 8), h{F(1,x), h(F(2,x), s8)).
The simpleet hypothesie is to continue by
h(F(1,x}, h{F{2,x}, h{F(3,x), 8}}), «oo

1. e, by using the successor function s{n)
for extrapolation. With a function

H'(1,n,x,8) =5, g(i> n,s,h(F(1i,x),
H' (e(1),n,x,8)))

the above sequence can be wrltten ae

H(n,x,s8) 2n¢ H'(2,n,x,8); H{O,x,s) =pf ©

(5.3)

{5.4)
and the tree T {5.1) a8
T g(CT{F(D,x}), H(O,x,8),
g(CT{F{1,x)), H{1,x,s), (5.6)

g{CT(F(2,x})., H{2,x,8), 1 M)

The gimplest hypothesis ia again to ex~
trapolate by means of the successor funce
tion., Using the induction methods intro-
duced in section 3 and 4 we get thie way

8 KLEENE~gegquence 6 (1) and the fixpoint
solution

sup 6*(1) = 6*(n,x,8) = g(CT(F(n.x)),
10 H(n,x,8), G*(s(n),x,8)) (5.6)
n= 0,1.2.000

F. Wysotzki 413

Progoaition 5,1,
G* {0,x,8) reproduces the tree) {5.1)

Proof: By def. 2,5. of the KLEENE-se~
quence and use of (5.2) -~ (5.4).
G*'(0,x,8) clears a block x from an arbi=-
trarI number of blocks (fig. 1).

Finally we compare the representation G’
{5.68) of the CLEAR=-operator with the re=-
presentation G introduced in examples Z2.2.
and 2.4, which 1g the minimel one (but
not easy to learn). The equvalence of
both representations is established by
the following

Proposition 5.2.
There exlstse a ayntactic transformation

which tranasforms G' into G.

Proof: By proving that each element G'(l)
of the KLEENE-ssquence of G' can be trans-

formed into the corresponding slement
G(l) of G using the reduction rules
g{r.h{x,s), i) = h{x,g({r.e,8})
g{r.h{x,s), h{x,8'))— h({x,g{r,s,s"))
h{x, 1) = . (6.7)

repeatedly. These rules could be made
clear from the semantice in ex. 2.4. (=
means that the l.h.s. of the rule can be
replaced by the r.h.s.)}

6* Conclusion

A framework for representation and in-
duction of infinite concepts and action
sequences has been represented. It was
applied to examples taken from typical Al
domains, demonstrating the general con-
struction algorithm* The induction prin-
ciple was formulated with the help of the
KLEENE-8equence# Equivalently the concept
of a tree grammar could have been applied,
i* e. our induction problem is equivalent
to the problem of identification of a tree
grammar* In our examples we have dealt
with the construction of single loops
only, multiple (nested) loops can be
treated by a more step procedure in a
similar manner* The use of program sche-
mes (RPS) instead of programs allows one
to treat classes of functions simultan-
eously* This can be used to avoid the
full solution of new problems if there
exists already program schemes isomorphic
to then”

In future work we will investigate broad-
er classes of functions playing an impor-
tant rols in Al research especially in
picture recognition and planning.

REFERENCES

/1/ Courcelle, B* "Infinite trees in nor-
mal form and recursive equations
having a unique solution*" Math*
System Theory 13 (1979), 131-180.

414

121

131

141

151

16/

171

F. Wysotzki

Courcelle, B.; Nivat, M. "The algebra-
ic semantics of recursive program
schemes*" In: Math. Found. of Comp.
Science 1978 (Winkowski eds.). Lecture
Notes in Comp* Sciences,Vol 64, Sprin-
ger-Verlag, New York 1978, 16-30.

Jouannaud, J P., Guiho, G. "Inference
of functions with an interactive
system*" Machine Intelligence 9 (1979)
227-250.

Jouannaud, J. P., Kodratoff, Y.
"Characterization of a class of func-
tions synthesized from examples by a
SUMMERS-like method using the "B.M.W."
matching technique." In Proc. 6, IDCAI,
Tokyo 1979.

Summers, Ph. D. "A methodology for
LISP program construction from exam-
ples." 0. ACM 24/1 (1977), 162-175.

Unger, S.; Wysotzki, F. "Lernfahige
Klassifizierungssysteme." Akademie-
Verlag, Berlin 1981.

Wysotzki, F.; Kolbe, W.; Selbig, J.
"Concept learning by structured ex-
amples - an algebraic approach." In:
Proc. 7. IJCAI, Vancouver 1981.

