
FLEXIBLE LEARNING OF PROBLEM SOLVING

HEURISTICS THROUGH ADAPTIVE SEARCH

Stephen F. Smith

The Robotics Institute

Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213 USA

ABSTRACT

Noting that the methods employed by existing learning systems
are often bound to the intended task domain and have little
applicability outside that domain, this paper considers an
alternative learning system design that offers greater flexibility
without sacrificing performance. An operational prototype,
constructed around a powerful adaptive search technique, is
presented and applied to the problem of acquiring problem
solving heuristics through experience. Some performance results
obtained with the system in a poker betting domain are reported
and compared with those of a previously investigated learning
system in the same domain. It is seen that comparable levels of
performance are achieved by the two systems, despite the latter's
dependence on a considerable amount of domain specific
knowledge for effective operation.

I INTRODUCTION

The design of problem solving systems capable of improving
their performance autonomously through the accumulation of
experience in a specific task domain has received much attention
within Al [1 , 2, 6, 11, 13, 14). Such learning systems have
appeared in many problem solving contexts and several have
been quite successful. Yet, the underlying methods by which
problem solving heuristics are acquired in these systems are often
bound to the intended domain, relying on considerable amounts
of information specific to the domain for effective operation. As
such, these methods are inflexible and have little applicability
outs.de the intended domain. This paper considers an alternative
learning system design that offers greater flexibility without
sacrificing performance. The design is operationalized in a
program called LS-1 that learns a set of heuristics, represented as
a production system (PS) program, to govern the application of a
set of operators in performing a particular problem solving task.

I I LEARNING AS ADAPTIVE SEARCH

As in [10], learning is viewed as a searching problem in the
system's representation space. The core of the system is an
adaptive search technique called a genetic algorithm (GA). GAs
are powerful procedures, motivated by standard models of
heredity and evolution but applicable for searching any suitably
represented domain of structures. Empirical studies have
demonstrated their capabilities in the areas of function
optimization [3], model-fitting [4], learning [8], and discovery [9].
Despite these results, GAs have been largely Ignored by the Al
community."

This may be duo, in part, to a mistaken association with early evolutionary
search models (e.g. [5]) that embodied a form of random search.

Briefly, a GA maintains a knowledge base of structures (e.g.
alter native sets of problem solving heuristics lor a given domain)
and proceeds by repeatedly 1) selecting structures on the basis of
observed performance, and 2) applying idealized genetic
operators to the structures selected to construct new structures.
This results in a search wherein subsets of structure components
found to contribute to good performance in the domain are
propagated through the structures in the knowledge base, forming
the basis for subsequent exploitation of larger and larger such
subsets of components. Intuitively, selection according to
performance focuses attention on the most promising subsets and
application of the operators serves to explore the utility of these
subsets in new contexts.

Structures are represented as sequences of their constituent
components and manipulated as such by the genetic operators.
The variants employed in LS I operate at various levels of
granularity, manipulating sequences of productions at the highest
level; sequences of symbols at the lowest level. The first operator,
crossover, takes two structures, selects a breakpoint on each
structure at a particular level of granularity, and exchanges the
sequences of components to the right of the breakpoints. For
example, if two structures consisting of the component sequences
c1,c.2|c3.c4.c5 and c1,c.2|c3.c4.c5' are crossed at the designated
breakpoints, the structures generated are c1,c.2|c3.c4.c5 ' and
c1,c.2|c3.c4.c5. This operator tends to preserve subsets of
components in relatively close physical proximity to one another in
the input structures. A complementary operator called inversion
alters the sequence of components representing a structure,
thereby reducing the susceptibility of particular subsets of
components to disruption by subsequent crossovers. In this case,
two breakpoints are selected on a single structure, and the
sequence of components delineated by the breakpoints is
inverted. For example, an inversion of the structure c1 |c2 ,c3 ,c4 |c5

at the designated breakpoints yields c 1 , c 4 l c 3 x 2 . c 5 . Application of
this operator is constrained to levels where interpretation of the
components is independent of their positions in the sequence
(e.g. at the production level). A final operator is mutation, which
arbitrarily alters individual components of a structure. It functions
as a background operator (i.e. its/probability of application is very
low), its presence insuring the reachability of all points in the
search space.

As alluded to above, the power of the algorithm lies not in the
testing of individual structures but in the efficient exploitation of
the wealth of information concerning the components comprising
the structures. Consider the sequence of compononts c 1 , c 2 cn

that comprises a single structure S in the knowledge base. An
evaluation of S (e.g. an assessment of the relative worth of S as a
solution structure) actually provides information as to the worth of
each of the different subsets of components that are present in S,

S. Smith 423

since it is these components that interact to produce the observed
performance of S. If S has n components, then information is
provided about 2n-1 distinct subset?. The theory underlying the
algorithms, established in [/J and extended to encompass LS-1's
operator set in |12] , states that the number of structures in the
knowledge base possessing a given subset of components can be
expected to increase or decrease over time at a rate directly
proportional to the observed performance of the subset. Thus, all
subsets of components appearing in the structures in the
knowledge base are simultaneously pursued in a near-optimal
fashion, a phenomenon referred to as implicit parallelism. The
reader is referred to [3, 7| for a more detailed discussion of the
algorithms and their properties.

The remainder of the paper is organized as follows. A brief
overview of the LS-1 system is presented in Section III (a complete
description may be found in [12]). In Section IV, some
experimental results obtained with LS-1 in the poker betting task
domain investigated in [14] are reported and a comparison is
drawn. In Section V, some concluding remarks are made.

I l l SYSTEM OVERVIEW

The LS-1 learning paradigm is depicted schematically in Figure
1. The system maintains a knowledge base of M structures, each
a candidate set of productions (or PS program) for solving the task
at hand. On a given cycle through the learning loop, each PS
program is applied by the problem solving component to k
instances of the task. The critic analyzes the /< operator
sequences generated by the problem solver in this proficiency test
as well as characteristics of the PS program under evaluation, and
assigns a performance measure indicative of the relative worth of
the PS program as a potential solution to the task at hand. Once
all structures in the knowledge base have been evaluated in this
manner, the GA is invoked to construct a new knowledge base of
structures for testing and the cycle is repeated. The knowledge
base of PS programs, together with the associated performance
measures, is viewed as LS-Vs internal memory, representing the
sum of the system's experience in the task domain at any point in
time. Externally, LS-1's current hypothesis as to a solution to the
task is the PS program that has been highest rated by the critic
thus far in the search. LS-1's progress is monitored by
considering the sequence of hypotheses generated over time.

A. THE PROBLEM SOLVING COMPONENT

The PS architecture serving as LS-1's problem solving
component is organized as a domain independent framework into
which task specific primitives must be injected for operation within
a given task domain. More specifically, LS-1 is instantiated in a
particular problem solving domain by supplying an appropriate set
of state variables and operators. The state variables provide the
problem solver with a characterization of the domain and the
operators form the problem solver's repertoire of alternatives in
reacting to the current state. When enabled, the productions
invoke operators and enter signals into working memory (WM) in
response to perceived state variable and WM configurations.

The productions,which collectively constitute a single structure
in LS-1's internal memory, are homogeneous and simplistic in
nature. Each antecedent contains a fixed number of elementary
patterns, one sensitive to each of the domain's state variables and
a given number attending to the signals resident in WM. Each
consequent contains a signal, to be placed in WM if the
production is activated, and, optionally, the designation of an
operator to be applied to the current state. If no operator is
designated, the production is intended for internal communication

purposes only.

This simple structure, necessary in providing a knowledge
representation amenable to manipulation by a GA, imposes limits
on the recognizing capabilities of individual productions. These
deficiencies are balanced, however, by a PS control scheme that
activates all instantiations found during the recognition phase of a
given cycle. This allows distinct productions to cooperate in the
recognition of more complex aspects of the current state. A
default resolution mechanism coordinates external activity if more
than one operator is designated by instantiated productions on
the same cycle.

B. THE CRITIC

The LS-1 critic, in assessing the performance of the PS
programs constructed by the GA, provides the GA with a global
focus in the subsequent construction of PS programs.
Accordingly, the critic is equipped with a means for analyzing the
correctness of the k operator sequences produced by a given PS
program during its proficiency test, and measures based on this
analysis play a major role in the derivation of the overall
performance rating. However, the critic also considers general
characteristics of the PS program under evaluation that appear
relevant to good performance regardless of the specific task
domain. Structural properties of the productions (e.g. potential for
communication in the WM patterns and signals, level of generality
in the productions' conditions), dynamic properties of the
execution history (e.g. percentage of productions activated,
amount of dependence on the default resolution mechanism), and
efficiency (e.g. number of productions) are all assessed to provide
a finer level of discrimination between candidate structures.

IV SOME EXPERIMENTAL RESULTS

To provide a basis for comparison with previous work, LS-1 was
tested in the poker betting domain first considered by
Waterman [14]. Briefly, the system engages in a game of draw
poker with the goal of making bet decisions that maximize profits.
Each time it is the system's turn to bet, it must therefore infer the
most appropriate bet decision to make, given the current state of
the poker game. For purposes of evaluation in the experiments
described below, the objective was to generate the correct bet
decisions in each of 10 consecutive rounds of play.

Remaining faithful to Waterman's paradigm, the LS-1 problem
solving component was presented with 7 state variables upon

424 S. Smith

which to base its bet decisions: the value of the problem solver's
hand, the amount of money in the pot. the amount of money last
bet, the ratio of the amount of money in the pot to the amount of
money last bet, the number of cards replaced by the opponent, a
measure of the probability that the opponent can be bluffed, and a
measure of the conservativcncss of the opponent. 4 bet decisions
were provided as operators: call, drop, bet low, and bet high.
Within the critic, Waterman's deductive procedure for determining
the correctness or incorrectness of a given bet decision, based on
an axiomatization of the game of poker, was implemented and a
measure indicating the percentage of agreement with the axioms
in the bet decisions generated was incorporated in the evaluation
function. A second measure relating to performance, the number
of successfully completed rounds of play, was also utilized to
insure that premature drop decisions (i.e. drops issued before
cards have been replaced) would not be assessed as appropriate
by the crit ic.

LS-1 was pitted against P[built-in], a poker betting program
hand crafted by Waterman and judged to perform at roughly the
same level as an experienced human poker player [14|. An
internal knowledge base of 50 PS programs was maintained by the
system, generated at the outset by randomly selecting condit ions
and operators for the individual productions of each structure.
Running for 2 DEC10 cpu hours. LS-Vs operation verses, P[built

in] was observed over an interval of 4,200 PS evaluations
(approximately 85 cycles through the learning loop). As indicated
by the performance results depicted in table 1. LS-1 achieved the
performance objective within this time frame. A PS program was
constructed that successfully completed 10 consecutive rounds of
play in which there was total agreement with the poker axioms as
to the bet decisions generated.

In attempting to understand these performance results it was
discovered that the heuristics used by P[bu i l t in] , while
appropriate within Waterman's paradigm, were not designed for
such an extended game of poker (i.e. 42,000 rounds of play).
Generally speaking. P[built-in] incorrectly judged LS 1 to be an
extremely conservative player over time, and, with this
misconcept ion, was easily bluffed into dropping. LS-1 responded
to its opponent in precisely the right manner, constructing PS
programs that exhibited an overriding tendency to bet.

The decision to start LS-1 from scratch in these experiments was entirely
motivated by a desire to provide a direct comparison with Waterman's results and
is not due in any way to properties of the model. We could have initialized LS-1 at
any level of expertise.

•••
Since a GA is inherently a stochastic process, successful performance in a

single run might be misleading (e.g. a consequence of the random number seed).
The results presented here actually represent averages taken over several distinct
runs of LS-1.

To test LS-1 against a more formidable opponent, adjustments
were made to P[built-in] to eliminate the above misconception and
a second experiment was conducted. The results obtained in this
case are presented in Table 2. We once again observe a steady
and significant improvement in the hypotheses generated by LS-1
as the poker game progressed. Within 4,000 evaluations, a PS
program was constructed that successfully completed 9 of 10
rounds of play while generating bet decisions that agreed with
those deduced by the critic 82% of the time.

The relative success of LS 1 in the poker betting domain can be
gauged by comparing these results to those obtained with
Waterman's system. Waterman subjected his trained learning
system to a proficiency test consisting of 50 rounds of poker
against a human opponent, also measuring performance in terms
of the percentage of agreement with the axioms in the bet
decisions generated. 86% agreement was achieved by his system
in this test [14]. Thus, while LS-1 PS programs were subjected to
a shorter proficiency test (i.e. 10 rounds), the levels of
performance achieved by the two systems are comparable. This
becomes particularly significant when we examine the methods
employed by Waterman's system in manipulating its PS program.
Specifically, the creation of new productions was guided by an a
priori supplied decision matrix, specifying for each possible bet
decision, the reason why each state variable is relevant to that
decision if, in fact, the variables are relevant. This information was
used directly in building the predicates of new productions'
antecedents.

V CONCLUDING REMARKS

The intent of the LS-1 design was to provide a flexible yet
effective means of acquiring problem solving knowledge in a
learning system. The experimental results presented above
clearly illustrate the viability of the approach. Moreover, the
method of learning employed by LS-1 embodies a general
technique whose effectiveness in a given problem solving domain
depends primarily on the quality of the evaluation function realized
by the critic (LS-1 has, in fact, yielded similar performance results
in another, unrelated domain [12], although space limitations
prohibit their discussion here). Clearly, domain knowledge must
enter into the derivation of the performance measure. However, It
is felt that this shift in perspective with respect to the role of
domain knowledge fundamentally enhances the general
applicability of a learning system. The specif ication of domain
specific measures to judge the external performance of
hypotheses appears a far less imposing problem than the
construction of learning methods based on domain specific
assumptions.

S. Smith 425

ACKNOWLEDGMENTS

This work was conducted while the author was in the Computer
Science Department at the University of Pittsburgh. The author
would like to thank Ken DeJong for his guidance and
encouragement throughout the course of the project.

REFERENCES

[1] Buchanon, B. and T.M Mitchell, "Model-Directed Learning of
Production Rules", in Pattern Directed Inference Systems,
Waterman and Hayes-Roth, Ed., Academic Press, 1978.

[2) Carbonell, J.G., "Experiential learn ing in Analogical
Problem Solving", Proc. AAAI-82, August, 1902.

[31 DeJong,K.A., "Adaptive System Design: A Genetic
Approach", IEEE Trans, on Man, Systems, and Cybernetics 10, 9
(September, 1980).

[4] DeJong, K.A. and T. Smith. "Genetic Algorithms Applied to
Information Driven Models of US Migration Patterns", 12th Annual
Pittsburgh Conf. on Modeling and Simulation, April, 1981.

[5] Fogel, L.J., A.J. Owens and M.J. Walsh, Artificial Intelligence
Through Simulated Evolution, Wiley, New York, 1966.

[6] Hednck, C.L., "Learning Production Systems from
Examples". Artificial Intelligence 7 (1976).

[7] Holland, J.H., Adaptation in Natural and Artificial Systems,
Univ. of Michigan Press, 1975.

[8] Holland, J.H. and J. Reitman, "Cognitive Systems Based on
Adaptive Algorithms", in Pattern Directed Inference Systems,
Waterman and Hayes-Roth, Ed., Academic Press, 1978.

[9] Holland, J.H., "Adaptive Algorithms for Discovering and
Using General Patterns in Growing Knowledge Bases", Int.
Journal on Policy Analysis and Information Systems 4, 2 (1980).

[10] Mitchell, T.M., "Generalization as Search", Artificial
Intelligence 18 (1982).

[11] Mitchell, T.M., P.E. Utgoff and R.B. Banerji, "Learning
Problem Solving Heuristics by Experimentation", in Machine
Learning, Michalski, Carbonell, and Mitchell, Ed., Tioga Press,
1983.

[12] Smith, S. F., A Learning System Based on Genetic Adaptive

Algorithms, Ph.D. Th., Univ. of Pittsburgh, December, 1980.

[13] Stolfo, S.J. and M.C. Harrison, "Automatic Discovery of
Heinictics for Nondeterministic Programs", Proc. IJCAI-79, 1979.

[14] Waterman, D.A., "Generalization Learning Techniques for
Automating the Learning of Heuristics", Artificial Intelligence 1
(1970).

