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ABSTRACT 

Noting that the methods employed by existing learning systems 
are often bound to the intended task domain and have little 
applicability outside that domain, this paper considers an 
alternative learning system design that offers greater flexibility 
without sacrificing performance. An operational prototype, 
constructed around a powerful adaptive search technique, is 
presented and applied to the problem of acquiring problem 
solving heuristics through experience. Some performance results 
obtained with the system in a poker betting domain are reported 
and compared with those of a previously investigated learning 
system in the same domain. It is seen that comparable levels of 
performance are achieved by the two systems, despite the latter's 
dependence on a considerable amount of domain specific 
knowledge for effective operation. 

I INTRODUCTION 

The design of problem solving systems capable of improving 
their performance autonomously through the accumulation of 
experience in a specific task domain has received much attention 
within Al [ 1 , 2, 6, 11, 13, 14). Such learning systems have 
appeared in many problem solving contexts and several have 
been quite successful. Yet, the underlying methods by which 
problem solving heuristics are acquired in these systems are often 
bound to the intended domain, relying on considerable amounts 
of information specific to the domain for effective operation. As 
such, these methods are inflexible and have little applicability 
outs.de the intended domain. This paper considers an alternative 
learning system design that offers greater flexibility without 
sacrificing performance. The design is operationalized in a 
program called LS-1 that learns a set of heuristics, represented as 
a production system (PS) program, to govern the application of a 
set of operators in performing a particular problem solving task. 

I I LEARNING AS ADAPTIVE SEARCH 

As in [10], learning is viewed as a searching problem in the 
system's representation space. The core of the system is an 
adaptive search technique called a genetic algorithm (GA). GAs 
are powerful procedures, motivated by standard models of 
heredity and evolution but applicable for searching any suitably 
represented domain of structures. Empirical studies have 
demonstrated their capabilities in the areas of function 
optimization [3], model-fitting [4], learning [8], and discovery [9]. 
Despite these results, GAs have been largely Ignored by the Al 
community." 

This may be duo, in part, to a mistaken association with early evolutionary 
search models (e.g. [5]) that embodied a form of random search. 

Briefly, a GA maintains a knowledge base of structures (e.g. 
alter native sets of problem solving heuristics lor a given domain) 
and proceeds by repeatedly 1) selecting structures on the basis of 
observed performance, and 2) applying idealized genetic 
operators to the structures selected to construct new structures. 
This results in a search wherein subsets of structure components 
found to contribute to good performance in the domain are 
propagated through the structures in the knowledge base, forming 
the basis for subsequent exploitation of larger and larger such 
subsets of components. Intuitively, selection according to 
performance focuses attention on the most promising subsets and 
application of the operators serves to explore the utility of these 
subsets in new contexts. 

Structures are represented as sequences of their constituent 
components and manipulated as such by the genetic operators. 
The variants employed in LS I operate at various levels of 
granularity, manipulating sequences of productions at the highest 
level; sequences of symbols at the lowest level. The first operator, 
crossover, takes two structures, selects a breakpoint on each 
structure at a particular level of granularity, and exchanges the 
sequences of components to the right of the breakpoints. For 
example, if two structures consisting of the component sequences 
c1,c.2|c3.c4.c5 and c1,c.2|c3.c4.c5' are crossed at the designated 
breakpoints, the structures generated are c1,c.2|c3.c4.c5 ' and 
c1,c.2|c3.c4.c5. This operator tends to preserve subsets of 
components in relatively close physical proximity to one another in 
the input structures. A complementary operator called inversion 
alters the sequence of components representing a structure, 
thereby reducing the susceptibility of particular subsets of 
components to disruption by subsequent crossovers. In this case, 
two breakpoints are selected on a single structure, and the 
sequence of components delineated by the breakpoints is 
inverted. For example, an inversion of the structure c1 |c2 ,c3 ,c4 |c5 

at the designated breakpoints yields c 1 , c 4 l c 3 x 2 . c 5 . Application of 
this operator is constrained to levels where interpretation of the 
components is independent of their positions in the sequence 
(e.g. at the production level). A final operator is mutation, which 
arbitrarily alters individual components of a structure. It functions 
as a background operator (i.e. its/probability of application is very 
low), its presence insuring the reachability of all points in the 
search space. 

As alluded to above, the power of the algorithm lies not in the 
testing of individual structures but in the efficient exploitation of 
the wealth of information concerning the components comprising 
the structures. Consider the sequence of compononts c 1 , c 2 cn 

that comprises a single structure S in the knowledge base. An 
evaluation of S (e.g. an assessment of the relative worth of S as a 
solution structure) actually provides information as to the worth of 
each of the different subsets of components that are present in S, 
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since it is these components that interact to produce the observed 
performance of S. If S has n components, then information is 
provided about 2n-1 distinct subset?. The theory underlying the 
algorithms, established in [/J and extended to encompass LS-1's 
operator set in |12] , states that the number of structures in the 
knowledge base possessing a given subset of components can be 
expected to increase or decrease over time at a rate directly 
proportional to the observed performance of the subset. Thus, all 
subsets of components appearing in the structures in the 
knowledge base are simultaneously pursued in a near-optimal 
fashion, a phenomenon referred to as implicit parallelism. The 
reader is referred to [3, 7| for a more detailed discussion of the 
algorithms and their properties. 

The remainder of the paper is organized as follows. A brief 
overview of the LS-1 system is presented in Section III (a complete 
description may be found in [12]). In Section IV, some 
experimental results obtained with LS-1 in the poker betting task 
domain investigated in [14] are reported and a comparison is 
drawn. In Section V, some concluding remarks are made. 

I l l SYSTEM OVERVIEW 

The LS-1 learning paradigm is depicted schematically in Figure 
1. The system maintains a knowledge base of M structures, each 
a candidate set of productions (or PS program) for solving the task 
at hand. On a given cycle through the learning loop, each PS 
program is applied by the problem solving component to k 
instances of the task. The critic analyzes the /< operator 
sequences generated by the problem solver in this proficiency test 
as well as characteristics of the PS program under evaluation, and 
assigns a performance measure indicative of the relative worth of 
the PS program as a potential solution to the task at hand. Once 
all structures in the knowledge base have been evaluated in this 
manner, the GA is invoked to construct a new knowledge base of 
structures for testing and the cycle is repeated. The knowledge 
base of PS programs, together with the associated performance 
measures, is viewed as LS-Vs internal memory, representing the 
sum of the system's experience in the task domain at any point in 
time. Externally, LS-1's current hypothesis as to a solution to the 
task is the PS program that has been highest rated by the critic 
thus far in the search. LS-1's progress is monitored by 
considering the sequence of hypotheses generated over time. 

A. THE PROBLEM SOLVING COMPONENT 

The PS architecture serving as LS-1's problem solving 
component is organized as a domain independent framework into 
which task specific primitives must be injected for operation within 
a given task domain. More specifically, LS-1 is instantiated in a 
particular problem solving domain by supplying an appropriate set 
of state variables and operators. The state variables provide the 
problem solver with a characterization of the domain and the 
operators form the problem solver's repertoire of alternatives in 
reacting to the current state. When enabled, the productions 
invoke operators and enter signals into working memory (WM) in 
response to perceived state variable and WM configurations. 

The productions,which collectively constitute a single structure 
in LS-1's internal memory, are homogeneous and simplistic in 
nature. Each antecedent contains a fixed number of elementary 
patterns, one sensitive to each of the domain's state variables and 
a given number attending to the signals resident in WM. Each 
consequent contains a signal, to be placed in WM if the 
production is activated, and, optionally, the designation of an 
operator to be applied to the current state. If no operator is 
designated, the production is intended for internal communication 

purposes only. 

This simple structure, necessary in providing a knowledge 
representation amenable to manipulation by a GA, imposes limits 
on the recognizing capabilities of individual productions. These 
deficiencies are balanced, however, by a PS control scheme that 
activates all instantiations found during the recognition phase of a 
given cycle. This allows distinct productions to cooperate in the 
recognition of more complex aspects of the current state. A 
default resolution mechanism coordinates external activity if more 
than one operator is designated by instantiated productions on 
the same cycle. 

B. THE CRITIC 

The LS-1 critic, in assessing the performance of the PS 
programs constructed by the GA, provides the GA with a global 
focus in the subsequent construction of PS programs. 
Accordingly, the critic is equipped with a means for analyzing the 
correctness of the k operator sequences produced by a given PS 
program during its proficiency test, and measures based on this 
analysis play a major role in the derivation of the overall 
performance rating. However, the critic also considers general 
characteristics of the PS program under evaluation that appear 
relevant to good performance regardless of the specific task 
domain. Structural properties of the productions (e.g. potential for 
communication in the WM patterns and signals, level of generality 
in the productions' conditions), dynamic properties of the 
execution history (e.g. percentage of productions activated, 
amount of dependence on the default resolution mechanism), and 
efficiency (e.g. number of productions) are all assessed to provide 
a finer level of discrimination between candidate structures. 

IV SOME EXPERIMENTAL RESULTS 

To provide a basis for comparison with previous work, LS-1 was 
tested in the poker betting domain first considered by 
Waterman [14]. Briefly, the system engages in a game of draw 
poker with the goal of making bet decisions that maximize profits. 
Each time it is the system's turn to bet, it must therefore infer the 
most appropriate bet decision to make, given the current state of 
the poker game. For purposes of evaluation in the experiments 
described below, the objective was to generate the correct bet 
decisions in each of 10 consecutive rounds of play. 

Remaining faithful to Waterman's paradigm, the LS-1 problem 
solving component was presented with 7 state variables upon 
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which to base its bet decisions: the value of the problem solver's 
hand, the amount of money in the pot. the amount of money last 
bet, the ratio of the amount of money in the pot to the amount of 
money last bet, the number of cards replaced by the opponent, a 
measure of the probability that the opponent can be bluffed, and a 
measure of the conservativcncss of the opponent. 4 bet decisions 
were provided as operators: call, drop, bet low, and bet high. 
Within the critic, Waterman's deductive procedure for determining 
the correctness or incorrectness of a given bet decision, based on 
an axiomatization of the game of poker, was implemented and a 
measure indicating the percentage of agreement with the axioms 
in the bet decisions generated was incorporated in the evaluation 
function. A second measure relating to performance, the number 
of successfully completed rounds of play, was also utilized to 
insure that premature drop decisions (i.e. drops issued before 
cards have been replaced) would not be assessed as appropriate 
by the crit ic. 

LS-1 was pitted against P[built-in], a poker betting program 
hand crafted by Waterman and judged to perform at roughly the 
same level as an experienced human poker player [14|. An 
internal knowledge base of 50 PS programs was maintained by the 
system, generated at the outset by randomly selecting condit ions 
and operators for the individual productions of each structure. 
Running for 2 DEC10 cpu hours. LS-Vs operation verses, P[built 

in] was observed over an interval of 4,200 PS evaluations 
(approximately 85 cycles through the learning loop). As indicated 
by the performance results depicted in table 1. LS-1 achieved the 
performance objective within this time frame. A PS program was 
constructed that successfully completed 10 consecutive rounds of 
play in which there was total agreement with the poker axioms as 
to the bet decisions generated. 

In attempting to understand these performance results it was 
discovered that the heuristics used by P[bu i l t in ] , while 
appropriate within Waterman's paradigm, were not designed for 
such an extended game of poker (i.e. 42,000 rounds of play). 
Generally speaking. P[built-in] incorrectly judged LS 1 to be an 
extremely conservative player over time, and, with this 
misconcept ion, was easily bluffed into dropping. LS-1 responded 
to its opponent in precisely the right manner, constructing PS 
programs that exhibited an overriding tendency to bet. 

The decision to start LS-1 from scratch in these experiments was entirely 
motivated by a desire to provide a direct comparison with Waterman's results and 
is not due in any way to properties of the model. We could have initialized LS-1 at 
any level of expertise. 

••• 
Since a GA is inherently a stochastic process, successful performance in a 

single run might be misleading (e.g. a consequence of the random number seed). 
The results presented here actually represent averages taken over several distinct 
runs of LS-1. 

To test LS-1 against a more formidable opponent, adjustments 
were made to P[built-in] to eliminate the above misconception and 
a second experiment was conducted. The results obtained in this 
case are presented in Table 2. We once again observe a steady 
and significant improvement in the hypotheses generated by LS-1 
as the poker game progressed. Within 4,000 evaluations, a PS 
program was constructed that successfully completed 9 of 10 
rounds of play while generating bet decisions that agreed with 
those deduced by the critic 82% of the time. 

The relative success of LS 1 in the poker betting domain can be 
gauged by comparing these results to those obtained with 
Waterman's system. Waterman subjected his trained learning 
system to a proficiency test consisting of 50 rounds of poker 
against a human opponent, also measuring performance in terms 
of the percentage of agreement with the axioms in the bet 
decisions generated. 86% agreement was achieved by his system 
in this test [14]. Thus, while LS-1 PS programs were subjected to 
a shorter proficiency test (i.e. 10 rounds), the levels of 
performance achieved by the two systems are comparable. This 
becomes particularly significant when we examine the methods 
employed by Waterman's system in manipulating its PS program. 
Specifically, the creation of new productions was guided by an a 
priori supplied decision matrix, specifying for each possible bet 
decision, the reason why each state variable is relevant to that 
decision if, in fact, the variables are relevant. This information was 
used directly in building the predicates of new productions' 
antecedents. 

V CONCLUDING REMARKS 

The intent of the LS-1 design was to provide a flexible yet 
effective means of acquiring problem solving knowledge in a 
learning system. The experimental results presented above 
clearly illustrate the viability of the approach. Moreover, the 
method of learning employed by LS-1 embodies a general 
technique whose effectiveness in a given problem solving domain 
depends primarily on the quality of the evaluation function realized 
by the critic (LS-1 has, in fact, yielded similar performance results 
in another, unrelated domain [12], although space limitations 
prohibit their discussion here). Clearly, domain knowledge must 
enter into the derivation of the performance measure. However, It 
is felt that this shift in perspective with respect to the role of 
domain knowledge fundamentally enhances the general 
applicability of a learning system. The specif ication of domain 
specific measures to judge the external performance of 
hypotheses appears a far less imposing problem than the 
construction of learning methods based on domain specific 
assumptions. 
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