
CONCEPT FORMATION FROM VERY LARGE TRAINING SETS

Richard A. O'Keefe*

Department o f A r t i f i c i a l I n t e l l i g e n c e
Un ive rs i t y of Edinburgh, Edinburgh

Abstract

This paper proposes an a l t e r n a t i v e to
Quin lan 's a lgor i thm fo r forming c l a s s i f i c a t i o n
t rees from large sets of examples. My a lgor i thm
is guaranteed to te rminate . Quin lan 's a lgor i thm
i s usua l ly f a s t e r .

I. The Nature of the Problem.

We have a populat ion of objects which we want
to c l a s s i f y i n to two** groups. We have a set of
a t t r i b u t e s , each w i th a sna i l f i n i t e number of
d i s t i n c t va lues , and a set of examples whose
a t t r i b u t e s have been measured and which have
al ready been c l a s s i f i e d . Our goal is to f i nd a
r u l e , based on these examples, which we can use to
c l a s s i f y other members of the popu la t ion .

In general t h i s w i l l lead us to s t a t i s t i c a l
methods such as c l us te r analys is (E v e r i t t , 1974,
Kenda l l , 1975, S t u r t , 1981a, S t u r t , 1981b). The
l a rge r our c o l l e c t i o n of examples, the more l i k e l y
i t is that some of them are m i s c l a s s i f i e d . (S t u r t ,
1981a) provides an exce l len t i l l u s t r a t i o n of how
improving the f i t of a ru le to the t r a i n i n g set
(beyond a ce r t a i n po in t) can make It perform worse
on the rest of the popu la t ion .

Even so, there are i n t e r e s t i n g tasks where
the domain is f o rma l , and we can be sure that we
have a l l the in fo rmat ion we need and that our
c l a s s i f i c a t i o n s are c o r r e c t . There a re , however,
i n t e r e s t i n g problems where the domain is formal
ra the r than r e a l , and we can be sure that a l l the
re levant in fo rmat ion is ava i lab le and our
c l a s s i f i c a t i o n s are c o r r e c t . Chess pos i t ions and
a lgebra ic equations are two such domains.

*Th is work was supported by a Commonwealth
Scho larsh ip . Computing was done on the SERC
Dec-10 under grant CR/C/20826

** ID3 and ray a lgor i thm are both presented in
terms of two ca tego r ies . The in fo rmat ion
h e u r i s t i c genera l ises to any f i xed number of
ca tegor ies , and so do the a lgo r i thms.

480 R. O'Keefe

* t h i s Is where the gene ra l i sa t i on to more than
two ca tegor ies is made.

IV . Quin lan 's I t e r a t i v e Dichotomiser

The aIgor i thm described above is normally
regarded as su i tab le only when a l l the examples
(and the ru le) can be f i t t e d i n to main memory.
Real problems sometimes don ' t f i t . (Quin lan, 1979)
used chess end-games. His a lgor i thm makes concept
format ion p r a c t i c a l f o r such problems. In
o u t l i n e , i t i s

select a sample of the t r a i n i n g se t .
do

I n f e r a ru le from the sample.
check the ru le against the whole t r a i n i n g se t .
e x i t when there are no mistakes.
se lec t a new sample from the old sample and
the exceptions which were j u s t d iscovered,

od .

In p r a c t i c e , ID3 works very w e l l . Each
i t e r a t i o n requires only one pass over the t r a i n i n g
s e t , and only changes data in main memory. If ID3
terminates , it has indeed found a r u l e . However,
ID3 needs some_ of the examples to be in memory. A
r u l e which w i l l f i t in memory may be missed
because the examples i t is i n f e r r a b l e from w i l l
not f i t . I t would be be t te r i f none of the
examples had to be kept in memory. The resampling
method as descr ibe in (Qu in lan , 1979) may f a i l to
r e a l i s e that no possib le sanple w i l l work, and
loop f o r v e r .

I t would be acceptable i f ID3 spotted that i t
cou ldn ' t cope and stopped. In p rac t i ce a l i m i t on
the size of the tree or the number of i t e r a t i o n s
is enough. However, there is no guarantee that a
problem which exceeds these l i m i t s doesn' t have a
simple r u l e .

V. Rule Bu i ld ing is l i k e Radix Sor t .

Quinlan made two con t r i bu t i ons to concept
fo rmat ion : the in fo rmat ion h e u r i s t i c , and h is
i t e r a t i v e sampling method. We can r e t a i n the
former, and look f o r another way of handl ing la rge
t r a i n i n g s e t s .

The only d i f f e rence between the Concept
Formation a lgor i thm and rad ix sor t is that the

R. O'Keefe 481

sons of a node nay test different attr ibutes,
while in a le f t - to- r ight radix sort they must test
the sane attr ibute. We adapt the data structure
of radix sort (a pair of randomly accessed f i les)
to the abstract algorithn of Section 3. This is
the only new idea in this paper. As it keeps no
examples in memory, if it fa i ls to find a rule,
that Is a guarantee that the information heuristic
w i l l never generate a rule that f i t s in memory.
As it adds no extra choices to the abstract
algorithm, it must terminate.

We hold the examples in two f i l es , which are
always permutations of each other. An example set
is represented by a t r ip le

<WhichFile, First , Next>

where the WhichFile f ield says which of the two
f i les the set may be found in , First is the index
of the f i r s t example in this set, and Next is the
index of the f i r s t example following this set. An
empty set is represented by a t r ip le with First ■
Next.

Selecting an Attrb for a Node requires one
pass over E-Set(Node), where we calculate the
counts from which the p are derived. We

jkc
in i t ia l i se the E-Sets for the sons as follows:

set <fi lel.First,Next> « E-Set(Node).
set f i l e 2 - o t h e r _ f i l e (f i l e l) .
set f i r s t - F i r s t .
f o r k - 1 , . |A t t rb (Node) | do

set E-Set(Son(Node,k)) - <file2 , f i r s t , f i r s t > .
set f i r s t first+Nk.

od.

where Mk, t.he number of examples with attribute
value k, was determined in the f i r s t pass. We
then make one more pass over the data, doing

for place = First..Next-1 do
read an example from f i le l (p lace) .
set k = the attribute value.
set < f i le2, f i rs t , las t> - E-Set(Son(Node,k)).
write the example to f i le2(las t) .
set E-Set(Son(Node,k)) - <file2 , f i rs t , las t+ l> .

od •

As we permute the examples into the same range of
records, the E-Set labels of a l l existing nodes
remain va l id .

Main memory is needed to hold the counts for
attr ibute selection (less than 500 cells for
Quinlan's examples) and to hold the rule. If the
rule w i l l not f i t in main memory, this algorithm
w i l l stop. We are assured that the algorithm
could not find any simpler rule.

This algorithn nay take as many passes over
the training set as there are levels in the
decision tree, so the total cost of finding a rule
is proportional to the product

(depth of decision tree) x
(total number of attr ibute values) x
(number of examples in training set)

A pass of my algorithm reads a f i l e twice and
writes another once. A pass of ID3 reads the data
f i l e once. When ID3 discovers a simple rule, it
usually takes fewer passes than the modified radix
sort. But the point of the modified radix sort is
to cope with any sort of data. I doubt that it
can be done nore cheaply.

REFERENCES

Everi t t , 3 S. Cluster Analysis. : Heinemann 1974.

Kendall, U Multivariate Analysis. : Charles
Cr i f f in &'co 1975.

Quinlan, J.R. Discovering Rules by Induction from
Large Collections of Examples, pages 168-201.
Edinburg"h "University pYess," 1979.

Sturt, E. Computerized Construction in Fortran of
a Discriminant Function for Categorical Data.
Applied Statistices 1981,20. 213-222.

Sturt, E. An Algorithm to Construct a Discriminant
Function in Fortran for Categorical Data.
Applied Stat ist ics, 1981 , 30), 313-325. This
is the'source'code" of Algorithm AS 165.

