CONCEPT FORMATION FROM VERY LARGE TRAINING SETS

Richard A. O'Keefe*

Department of Artificial Intelligence
University of Edinburgh, Edinburgh

Abstract
This paper proposes an alternative to
Quinlan's algorithm for forming classification

trees from
is guaranteed to terminate.
is usually faster.

large sets of examples. My algorithm
Quinlan's algorithm

I. The Nature of the Problem.

We have a population of objects which we want
to classify into two** groups. We have a set of
attributes, each with a snail finite number of
distinct values, and a set of examples whose
attributes have been measured and which have
already been classified. Our goal is to find a
rule, based on these examples, which we can use to
classify other members of the population.

In general this will lead us to statistical
methods such as cluster analysis (Everitt, 1974,
Kendall, 1975, Sturt, 1981a, Sturt, 1981b). The
larger our collection of examples, the more likely
it is that some of them are misclassified. (Sturt,
1981a) provides an excellent illustration of how
improving the fit of a rule to the training set
(beyond a certain point) can make It perform worse
on the rest of the population.

Even so, there are interesting tasks where
the domain is formal, and we can be sure that we
have all the information we need and that our
classifications are correct. There are, however,
interesting problems where the domain is formal
rather than real, and we can be sure that all the
relevant information is available and our
classifications are correct. Chess positions and
algebraic equations are two such domains.

*This work was supported by a Commonwealth
Scholarship. Computing was done on the SERC
Dec-10 under grant CR/C/20826

**ID3 and ray algorithm are both presented in
terms of two categories. The information
heuristic generalises to any fixed number of
categories, and so do the algorithms.

The 1input to a concept formation algorithm,
then, 1s

a set of attrihutes A , | = 1..M

attribute j has values l..lA |
i
a set of exanples £ , L = 1..H
i
for each example, Lts classification C in {1.2}
in
in {1..0A 1}
{] J
The training set can thus be represented by an
M % {IH]l) integer matrix.

and 1ts attributes C

Il1. The Form of a Rule.

(Quinlan, 1979, Sturt, 198la) and this paper
represent a discriminant function as a decision
tree, The deecription here is slightly different
to make the algorithm clearer.

Fach node nf a decision tree has three labels:
f=%et{Nade) 18 a set of examples
Class(Hode) is enpty, !, 2, or nixed
Attri{Node) 15 undefined, 1, ¢s., or M

am! sone sSONB
Son{Nede,1) for f = 1..|A |

Attrh{Node)

We uge a decision tree to classify examples
by applying the following alporithm teo frs
attribute measurements:

set Node = the root of the tree.

while Clagg{Node) ia mixed do
set k = the value of attribute Artrb{tlade).
set Node = Son(Node, k).

od.

if Class{Node) is enpty, fail.

report Class{Node) as the classjfication.

(Quinlan, 197%) suggests returning an arbitrary
claseification when Claes(Node) is empty. Whether
guessing is a good idea or not depends on what you
want to do with the rule. Note that Class{Node)
is redundant; it is empty, 1, 2, or mnixed
according as E-Set{Node) is empty, all class 1,
all class 2, or wone of each.

480 R. O'Keefe

I1I. Building & Rule.

The algorithn for building a decision tree is
the usuwal one:

create a tree with one tode,
set F-Set{Node) = the entire training set.
sut Clasa{Node) according to E=Set{Node).
set Attrb(Hode) = undefined,

while there is a Yode with Class{Node) = mixed
and Atcri{Hode) = undefined do
select an attribute A not tested by any

ancestor of this Hode.
set Attrb{SubNode} = j.
for k=1 .. {A | do
]

create a new SubNode.

add Sublode as Son{Note, k).

set E-Set(Sublode} = the examples in

E-Set{Node) whose A value fs k.

get Class{Sublode) fron E-Set{SubMode).
get Attrb{SubNode)} = undefined.
od,
od,

It is clear that this algorithn mnust
terminate, that each nixed Node will finally be
expanded, aml that the order of expansion doesn’t
matter, The only reom for choice in thir
algorichm is the selection of an attribute.
(Nuinlan, 1979) sugrests using the information
heutistic to choose an attribute. The entropy of
a set of exanples is defined as

= - pl.log"(pl} ~ p2.1og’ (p2)
log”(0) = 0, log"(X) = lag (X) for X > C.
2
where pl (p2) ls the proportion of exanples in
clasa ! {class 2)*, Thits 1g, roughly speaking,
the nunber of binary tests needed to discriminate
between the two classea. If we test attribute A ,

J

the average entropy of the subtrees Is

H = {(sumover k = 1..]JA | of H)/|A |
b i Ik J
B ==-p Llog"(p Y -p LJdog'{e)
ik kI k1 §k2 1k2
P = the proportion of T-Set{Node)
ke
with € =k and ¢ = ¢
3 4]
The information heuristic 18 to select the
attribute with ninipun H . It 1s & heuristic

because we are assuning that the training set i
typical of the population. For 2 claasea, M’

*this Is where the generalisation to more than
two categories is made.

candi{date attributes, and N exanples, the I can
be conputed in 1

o{2.M ,N*) time and o{2.K’) space,
where K = sun over J » 1..0F of |A

The same space can he used for all attribute
selections, since K’ can never exceed ifts initial
value,

IV. Quinlan's Iterative Dichotomiser

The algorithm described above is normally
regarded as suitable only when all the examples
(and the rule) can be fitted into main memory.
Real problems sometimes don't fit. (Quinlan, 1979)
used chess end-games. His algorithm makes concept
formation practical for such problems. In
outline, it is

select a sample of the training set.

do
Infer a rule from the sample.
check the rule against the whole training set.
exit when there are no mistakes.
select a new sample from the old sample and
the exceptions which were just discovered,
od.

In practice, ID3 works very well. Each
iteration requires only one pass over the training
set, and only changes data in main memory. If ID3
terminates, it has indeed found a rule. However,
ID3 needs some_ of the examples to be in memory. A
rule which will fit in memory may be missed
because the examples it is inferrable from will
not fit. It would be better if none of the
examples had to be kept in memory. The resampling
method as describe in (Quinlan, 1979) may fail to
realise that no possible sanple will work, and
loop forver.

It would be acceptable if ID3 spotted that it
couldn't cope and stopped. In practice a limit on
the size of the tree or the number of iterations
is enough. However, there is no guarantee that a
problem which exceeds these limits doesn't have a
simple rule.

V. Rule Building is like Radix Sort.

Quinlan made two contributions to concept
formation: the information heuristic, and his
iterative sampling method. We can retain the
former, and look for another way of handling large
training sets.

The only difference between the Concept
Formation algorithm and radix sort is that the

sons of a node nay test different attributes,
while in a left-to-right radix sort they must test
the sane attribute. We adapt the data structure
of radix sort (a pair of randomly accessed files)
to the abstract algorithn of Section 3. This is
the only nrew idea in this paper. As it keeps no
examples in memory, if it fails to find a rule,
that Is a guarantee that the information heuristic
will never generate a rule that fits in memory.
As it adds no extra choices to the abstract
algorithm, it must terminate.

We hold the examples in two files, which are
always permutations of each other. An example set
is represented by a triple

<WhichFile, First, Next>

where the WhichFile field says which of the two
files the set may be found in, First is the index
of the first example in this set, and Next is the
index of the first example following this set. An
empty set is represented by a triple with First =
Next.

Selecting an Attrb for a Node requires one
pass over E-Set(Node), where we calculate the
counts from which the p are derived. We

jkec
initialise the E-Sets for the sons as follows:

set <filel.First,Next> « E-Set(Node).

set file2 - other_file(filel).

set first - First.

for k - 1,.|Attrb(Node)| do
set E-Set(Son(Node,k)) - <file2,first,first>.
set first first+NKk.

od.

where Mk, the number of examples with attribute
value k, was determined in the first pass. We
then make one more pass over the data, doing

for place = First..Next-1 do
read an example from filel(place).
set k = the attribute value.
set <file2,first,last> - E-Set(Son(Node,k)).
write the example to file2(last).
set E-Set(Son(Node,k)) - <file2 ,first,last+I>.
od *

As we permute the examples into the same range of
records, the E-Set labels of all existing nodes
remain valid.

Main memory is needed to hold the counts for
attribute selection (less than 500 cells for

Quinlan's examples) and to hold the rule. If the
rule will not fit in main memory, this algorithm
will stop. We are assured that the algorithm

could not find any simpler rule.

R. O'Keefe 481

This algorithn nay take as many passes over
the training set as there are levels in the
decision tree, so the total cost of finding a rule
is proportional to the product

(depth of decision tree) x
(total number of attribute values) x
(number of examples in training set)

A pass of my algorithm reads a file twice and
writes another once. A pass of ID3 reads the data
file once. When ID3 discovers a simple rule, it
usually takes fewer passes than the modified radix
sort. But the point of the modified radix sort is
to cope with any sort of data. | doubt that it
can be done nore cheaply.

REFERENCES

Everitt, 3 S. Cluster Analysis. Heinemann 1974.

Kendall, U Multivariate Analysis. Charles
Criffin &'co 1975.

Quinlan, J.R. Discovering Rules by Induction from
Large Collections of Examples, pages 168-201.
Edinburg"h "University pYess," 1979.

Sturt, E. Computerized Construction in Fortran of
a Discriminant Function for Categorical Data.
Applied Statistices 1981,20. 213-222.

Sturt, E. An Algorithm to Construct a Discriminant
Function in Fortran for Categorical Data.
Applied Statistics, 1981 , 30), 313-325. This
is the'source'code" of Algorithm AS 165.

