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Abstract 

This paper proposes an a l t e r n a t i v e to 
Quin lan 's a lgor i thm fo r forming c l a s s i f i c a t i o n 
t rees from large sets of examples. My a lgor i thm 
is guaranteed to te rminate . Quin lan 's a lgor i thm 
i s usua l ly f a s t e r . 

I. The Nature of the Problem. 

We have a populat ion of objects which we want 
to c l a s s i f y i n to two** groups. We have a set of 
a t t r i b u t e s , each w i th a sna i l f i n i t e number of 
d i s t i n c t va lues , and a set of examples whose 
a t t r i b u t e s have been measured and which have 
al ready been c l a s s i f i e d . Our goal is to f i nd a 
r u l e , based on these examples, which we can use to 
c l a s s i f y other members of the popu la t ion . 

In general t h i s w i l l lead us to s t a t i s t i c a l 
methods such as c l us te r analys is ( E v e r i t t , 1974, 
Kenda l l , 1975, S t u r t , 1981a, S t u r t , 1981b). The 
l a rge r our c o l l e c t i o n of examples, the more l i k e l y 
i t is that some of them are m i s c l a s s i f i e d . ( S t u r t , 
1981a) provides an exce l len t i l l u s t r a t i o n of how 
improving the f i t of a ru le to the t r a i n i n g set 
(beyond a ce r t a i n po in t ) can make It perform worse 
on the rest of the popu la t ion . 

Even so, there are i n t e r e s t i n g tasks where 
the domain is f o rma l , and we can be sure that we 
have a l l the in fo rmat ion we need and that our 
c l a s s i f i c a t i o n s are c o r r e c t . There a re , however, 
i n t e r e s t i n g problems where the domain is formal 
ra the r than r e a l , and we can be sure that a l l the 
re levant in fo rmat ion is ava i lab le and our 
c l a s s i f i c a t i o n s are c o r r e c t . Chess pos i t ions and 
a lgebra ic equations are two such domains. 

*Th is work was supported by a Commonwealth 
Scho larsh ip . Computing was done on the SERC 
Dec-10 under grant CR/C/20826 

** ID3 and ray a lgor i thm are both presented in 
terms of two ca tego r ies . The in fo rmat ion 
h e u r i s t i c genera l ises to any f i xed number of 
ca tegor ies , and so do the a lgo r i thms. 
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* t h i s Is where the gene ra l i sa t i on to more than 
two ca tegor ies is made. 

IV . Quin lan 's I t e r a t i v e Dichotomiser 

The aIgor i thm described above is normally 
regarded as su i tab le only when a l l the examples 
(and the ru le ) can be f i t t e d i n to main memory. 
Real problems sometimes don ' t f i t . (Quin lan, 1979) 
used chess end-games. His a lgor i thm makes concept 
format ion p r a c t i c a l f o r such problems. In 
o u t l i n e , i t i s 

select a sample of the t r a i n i n g se t . 
do 

I n f e r a ru le from the sample. 
check the ru le against the whole t r a i n i n g se t . 
e x i t when there are no mistakes. 
se lec t a new sample from the old sample and 
the exceptions which were j u s t d iscovered, 

od . 

In p r a c t i c e , ID3 works very w e l l . Each 
i t e r a t i o n requires only one pass over the t r a i n i n g 
s e t , and only changes data in main memory. If ID3 
terminates , it has indeed found a r u l e . However, 
ID3 needs some_ of the examples to be in memory. A 
r u l e which w i l l f i t in memory may be missed 
because the examples i t is i n f e r r a b l e from w i l l 
not f i t . I t would be be t te r i f none of the 
examples had to be kept in memory. The resampling 
method as descr ibe in (Qu in lan , 1979) may f a i l to 
r e a l i s e that no possib le sanple w i l l work, and 
loop f o r v e r . 

I t would be acceptable i f ID3 spotted that i t 
cou ldn ' t cope and stopped. In p rac t i ce a l i m i t on 
the size of the tree or the number of i t e r a t i o n s 
is enough. However, there is no guarantee that a 
problem which exceeds these l i m i t s doesn' t have a 
simple r u l e . 

V. Rule Bu i ld ing is l i k e Radix Sor t . 

Quinlan made two con t r i bu t i ons to concept 
fo rmat ion : the in fo rmat ion h e u r i s t i c , and h is 
i t e r a t i v e sampling method. We can r e t a i n the 
former, and look f o r another way of handl ing la rge 
t r a i n i n g s e t s . 

The only d i f f e rence between the Concept 
Formation a lgor i thm and rad ix sor t is that the 
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sons of a node nay test different attr ibutes, 
while in a le f t - to- r ight radix sort they must test 
the sane attr ibute. We adapt the data structure 
of radix sort (a pair of randomly accessed f i les) 
to the abstract algorithn of Section 3. This is 
the only new idea in this paper. As it keeps no 
examples in memory, if it fa i ls to find a rule, 
that Is a guarantee that the information heuristic 
w i l l never generate a rule that f i t s in memory. 
As it adds no extra choices to the abstract 
algorithm, it must terminate. 

We hold the examples in two f i l es , which are 
always permutations of each other. An example set 
is represented by a t r ip le 

<WhichFile, First , Next> 

where the WhichFile f ield says which of the two 
f i les the set may be found in , First is the index 
of the f i r s t example in this set, and Next is the 
index of the f i r s t example following this set. An 
empty set is represented by a t r ip le with First ■ 
Next. 

Selecting an Attrb for a Node requires one 
pass over E-Set(Node), where we calculate the 
counts from which the p are derived. We 

jkc 
in i t ia l i se the E-Sets for the sons as follows: 

set <fi lel.First,Next> « E-Set(Node). 
set f i l e 2 - o t h e r _ f i l e ( f i l e l ) . 
set f i r s t - F i r s t . 
f o r k - 1 , . |A t t rb (Node) | do 

set E-Set(Son(Node,k)) - <file2 , f i r s t , f i r s t > . 
set f i r s t first+Nk. 

od. 

where Mk, t.he number of examples with attribute 
value k, was determined in the f i r s t pass. We 
then make one more pass over the data, doing 

for place = First..Next-1 do 
read an example from f i le l (p lace) . 
set k = the attribute value. 
set < f i le2, f i rs t , las t> - E-Set(Son(Node,k)). 
write the example to f i le2( las t ) . 
set E-Set(Son(Node,k)) - <file2 , f i rs t , las t+ l> . 

od • 

As we permute the examples into the same range of 
records, the E-Set labels of a l l existing nodes 
remain va l id . 

Main memory is needed to hold the counts for 
attr ibute selection (less than 500 cells for 
Quinlan's examples) and to hold the rule. If the 
rule w i l l not f i t in main memory, this algorithm 
w i l l stop. We are assured that the algorithm 
could not find any simpler rule. 

This algorithn nay take as many passes over 
the training set as there are levels in the 
decision tree, so the total cost of finding a rule 
is proportional to the product 

(depth of decision tree) x 
( total number of attr ibute values) x 
(number of examples in training set) 

A pass of my algorithm reads a f i l e twice and 
writes another once. A pass of ID3 reads the data 
f i l e once. When ID3 discovers a simple rule, it 
usually takes fewer passes than the modified radix 
sort. But the point of the modified radix sort is 
to cope with any sort of data. I doubt that it 
can be done nore cheaply. 
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