PROLOG IN 10 FIGURES
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Abstract; Prolog is presented in a rigourous way,
through 10 easily understandable figures. Its
theoretical model is completly rewrought. After
introducing infinite trees and inequalities, this
paper puts forth the minimal set of concepts
necessary to give Prolog an autonomous existence,
independent of lengthy considerations about first
order logic and inference rules. Mystery is
sacrificed in favor of clarity.
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Artificial Intelligence interacts with many fields

including psychology, linguistics, history,
geology, biology, medical science These
sciences are complex, and special tools are needed
to represent and process the knowledge they deal
with. Furthermore, these tools should not
introduce new problems, inherent to computer

science. Traditionally, the science of knowledge
h asbeen mathematical |l o gi c . Thereforeitw a s
reasonable to turn to logic for help in developing
a tool for Artificial Intelligence: that was how
Prologwasborn.

Prolog, developed in 1 9 7 2 by A.Colmerauer and
P.Roussel, was at first a theorem prover, based on
A.Robinson's resolution principle (1965) with
strong restrictions to narrow the search space.
Credit is given to R.Kowalski and M.van Emden for
having pointed out these restrictions as
equivalent to the use of clauses having at least
one positive literal (Horn clauses), and for
having proposed the first theoretical model of
what is computed by Prolog: a minimal Herbrand
interpretation.

Prolog's close links with Logic proved
inhibiting vis-a-vis its
necessary to reformulate
account implementation

However,
sometimes to be
implementation. It was
the theory to take into
constraints: this new theory is unencumbered by
distinctions necessary only in logic, and is
enriched by concepts indispensable for programming
purposes (such as inequalities). We can say that,
after a careful implementation, a new theoretical
model of Prolog emerged and it is this new model
that we present herein1l0commentedfigures.

The reader interested in further readings on this
subject is referred to the following:

On automatic theorem proving and logic:

ROBINSON J.A. (1979). "Logic: Form and Function",
Edinburgh University Press and Elsevier North
Holland.

On the links between logic and Prolog:

KOWALSKI R.A. (1979). "Logic For Problem Solving",
Artificial Intelligence series, (Ed- Nilsson,
N.J.), North Holland.

On the genesis of Prolog:

COLMERAUERA.,KANOUIH.,PASEROR.etROUSSELPh.
(1973), "Un systeme de communication homme-machine
en frangais", Research Report, Groupe Intelligence
Artificielle, Faculte des Sciences de Luminy,
Marseille.

ROUSSEL Ph. (1975). "Prolog, Manuel de Reference

et d'Utilisation, Groupe Intelligence
Artificielle, Faculte des Sciences de Luminy,
Marseille.

A Prolog system, based on the ideas developed

here, and implemented on several computers (Apple
I'l, Vax/Vms, etc.), is described in three Internal
Reports of the Groupe Intelligence Artificielle,
Faculte des Sciences de Luminy, Marseilles

COLMERAUER A. (1982). "Prolog 11, Reference Manual
and Theoretical Model".

VAN CANEGHEM M. (1982). "Prolog Il, User's
Manual”.
KANOUI H. (1982). "Prolog Il, Manual of Examples.
1.TREES

From an abstract point of view, one may say that
the knowledge of an intelligent being on a given
subject, is the set of facts that he or she can
generate on the subject. Therefore, knowledge can
be viewed as a set of facts, specified by a set of
rules. E a ¢ h of these facts can be represented by a
declarative sentence. In our case we represent a
fact by a tree, drawn upside down, as the one
s h ownin Fig la. E a ¢ h leaf a n d each node is
labeled with an "atom" of information: this atom
can be a word, a group of words, a number, or a

special character. Only the structure of the tree
is relevant. Therefore, Figs la a n d | a ' are
equivalent. Trees in Figs | a , Ib a n d Ic are
examples of facts in three different fields:

arithmetic, (stylistic) permutations,andmeal
planning. Facts are always trees, but not all
trees are facts: obviously the trees in Figs Id
and le are not facts in arithmetic, even if tree
in Fig Id is a sub-tree of the fact in Fig la.

Trees were purposely chosen as data structures:
they are capable of expressing complex information
and, at the s am e time, simple en o u g h to be handled
algebraically, and by a computer.

2.TERMS

Formulas are wused to represent tree patterns.
These formulas called "terms", consist of atoms of
information,variables, parenthesesandcommas.
Recall that an atom of information is either a
group of words, a number, or a special character.
In the left column of Fig 2a the syntactic
structure of a term is defined; this is a
recursive definition where complex terms are
defined from simpler terms; the simplest terms are
variables or atoms of information. Examples of
terms can be found in the left part of Figs 2b and
2c.

Je remercie Jacques C o h e n de m'avoir aide a
rediger cet article en anglais.
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Variables occurring in terms represent unknown Figs 2b  and 2c depict two examples of
trees. Therefore, the tree expressed by a term tree-assignments. Example 2b shows that it s
will depend upon the trees assigned to the possible to find in the assignment "X", variables
variables.  Such ~an assignment "X", called a which do not occur in the term, but the contrary
‘tree-assignment”, is just a set of = pairs is not possible. In example 2c, the term contains
xi:=ai", "al" being the tree assigned to the no variable; this means that the corresponding
variable ~ "x;".  The right column of Fig 2a gives tree does not depend on the assignment. The last
the tree "a" represented by the term "t" after the example shows a systematic way of coding a finite
application of tree-assignment "X". It is assumed tree by a term without variables.
that if "t" contains no variable, an empty
tree-assignment can be applied.
2a X2 9y
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lefe I right in the
sequence  of sob-freeg
T LI -
whwe "™ s an ILI-J le'Jrhn ou'm.ﬁ
oftom of information N ;!_;y Kad ication ""t{.' X
and where the ki’ o £,y P
are bterms  produced «
following the abow —r T
3 roles. DL
b,_ 2 n
3 times
x = ‘}l“é . ~
2 muu:i JAuSs
— . Ve AN
X= Xg:= t}m\q_'. bimes 3 2
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eqmls(l'-nlsLS , Punvs (hmq(.f” 3),1.-)),10) == Q,/ \3
pair of terms "<SJ,SJ'>" which will represent
3. CONSTRAINTS equal trees, or a pair of terms " <tk,t|<')" which
will represent unequal trees. Fig 3a illustrates
Prolog is a language which "computes" on trees the general condition under which a
"aj" represented by variables XAt This tree-assignment "X" satisfies a constraint "C".
computation is done by accumulating constraints "X" is also said to be a solution of "C". Fig 3b
that final trees must satisfy. These constraints shows an example of a constraint "Cl" satisfiable
limit the values variables can take, that is the. by the tree-assignment "XI1". In Fig 3c there are
tree-assignment of variables "xi" by trees "ai". three constraints which cannot be satisfied by any

As shown in Fig 3a, a constraint C" consists of a
set of elementary constraints, each of them to be
satisfied. An elementary constraint is either a

tree-assi gnment.
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During the execution of a Prolog program, the Anot her basic property allows us to split the
basic operation consists of verifying whether a initial problem into "n" independent and sinpler
constraint is "satisfiable” or not (by at least sub- probl ens: a constraint of the form
one tree-assignment). This is done by "reducing" *Culty¥ty’,... . tp#fta" 2" is satis-fiable if and only
it, as seen in Fig 3d: the purpose of "reducing" if each of the constraints "Cufty®#tsa "y o &
is to simplify the constraint in order to make all "Cu{t,*t," )" is also satisfiable. Again, this is
its solutions explicit. This involves exhibiting not true in the domain of nat ur al integers
variables distinct from each other as left members *0,1,2,...", because it woul d be possibleto show
of equalities. To do so, we use a specific that the constraint *fxey=2,%#0,x#1,x223% has at
property of trees: the unique decomposition of a least  one  solution since the  constraints
tree into immediate subtrees. This property "(xry=1,i0)", "Ineysl,x# 13" and  "{uey=1,x#2R0
permits us to replace have at least one” 1n order to verify that the
constraint "Qui{ty#t;"3" is satisfiable (knowing
(pair (equal (v, 10) ,yimparr (x, times (5,2} ) that "C already is) we nust check that the
by constraints e and "Eufty=t;’i" are not
{ogual (y, 10 =x, ystames(5,7)3, equivalent. |f the constraint "Cutt™tj'}" is not
satisfiahle, we can even renove the inequality

Note that if this property would hold for numbers, “tj#ti""“, as in exanple 3d.

we would wrongly conclude that the two constraints

" {x+3=2+y)" and "(x+3=2+y)" are equivalent! If we Inthe sane way as we sinplify equalities, it is
succeed in producing equalities where left members possible to simplify inequalities. This allows us
are distinct variables and where there are no to present any satisfiable constraint in a
inequalities, thpn the constraint is satisfiable. "reduced fornt: this reduced form shows that the
Its solutions are directly obtained by assigning constraint is satisfiable by mking all its
arbitrary trees to variables not appearing as left solutions explicit. The general formof a reduced
members. constraint containing inequalities is beyond the

scope of this paper (see Col nerauer 1982).

If inequalities are left, let "n" be their number.

3a

{ x:-‘/511'” fi-/‘m, t, #-'EE y oo, ta # i:u. x‘{‘.”‘“ia"‘)ﬁ:""“p}
i d. at %&, d(a:":u.ut
S‘Nt tree same N {:::\ o-!cwmtlm frwen ou“ anetherv
bx‘z{\’:z‘}qg R w:=899 y X% eq»al > 5;:}-’.::,: , 3= m/mos }
timeés 1o 5 /miws /f"(.\gs &
57 miges tmee & £ 3
fmcs & / “\
wl " zhm 5 ggirc\rl mno:(lfm&ihﬂ!],
% zﬁ X,
,.u-
TS times &
h.ls/ \"lo 5/ k""“’ 3w /w
o e imes
5 ™invs times & )\.
tinG 4 AN )
‘/ ‘---.3 2 3

s (oo (e St

58)), pe (X, him‘h\ts!zfallaj) = poir{n,4) ) nfs}

C:z{«: < equal(yt0) H = hnes (5,3) ) v = misw(tna(2, %)"')]

3dcl ={P" famity t0),




492 A. Colmerauer

tark
ba is- endless. poth bb £/’—1|——!')
!!-u o 2 2 L
feft Tyequence s " N
hskt “scqveuw. 4 "
left~  sequence 5 s |
tefe < stquence W 3, >
v.'ght sequence 8
l‘Ft A L. 1 j
“e . "‘1‘“‘ - path 4 c:s-c diess-path .
Seqotace sequence
Bgequence lefe®” F}fcqggce
h-s“_ Sequence Wﬁ‘lt }tqos{:c o
Ld (¢ a i5-endless - poth (3,3 ) e o/F\ $
4= $¢@th&([¢‘k’ gz) ?/ H/FM{F
Yo = sequence (right, 35) ° ? 3' ..
D + . + O g
Y, ssequence(Fight, u,e) ? L ;
| nll = S¢queme cl‘p‘-J 3:) J |°

l,,d’{ T = is-endless - path ('a) > 4 = sequemce (left, sequomce (Fight, sequence (left TRl }

4. INFINITETREES

Assurprisingasitmay be, it is also possible to

handle in-finite trees. Such a tree is shown in Fig
4a: it represents an endless path along the
cross-like -figure shown in Fig 4b. It is possible

to present this tree by the diagram with a loop in
4c, obtained by merging all the nodes from which
isomorphic subtrees arise, that s, -from which
equal subtrees ar i s e . If we omit to merge a -few
nodes, we obtain the different diagrams in 4c? and
4c'' which still represent the same tree. That Fig
4c is a finite diagram means that the initial tree
in 4a contains a finite set of configurations or,
more precisely, that the set of its subtrees is
finite: this is the definition of a “rational"
tree. Of course, all finite trees are rational.
Although finite trees can be defined by simple
terms without variables, infinite rational trees
can only be defined by the constraints they must
satisfy. Taking into account successively all
sides "1,2,...,12" of the cross-like figure in 4b,
we construct the constraint 4d which is satisfied
only in case of the assignment of "x" by the tree
in Fig 4a. From the diagram shown in Fig 4c, we
can construct a simpler constraint 4d', having the
same property.

curious reader
non-rational

For the
example of a

we provide in Fig 4e an
infinite tree. After

merging all possible nodes this tree yields the
infinite diagram in Fig 4e'. Note that it would be
necessary to have a constraint, made from an
infinity of elementary constraints, to completely
describe this type of tree.

S. A PROLOG PROGRAM: LET'S ERT WELL

We now i1nterrupt our theoretical develppmant tao
present an example of & Prolog program. The
program computes the composition af "light" meals

and consists of the three parts shown i1n Figs Sa,
Sb and Sc.

In Fig Sa we describw, by i} rules, a possible set
of mwals, regardless of their dietetic gualities.
The first rulas states that:

~ if "a" is an appetizer and,

= if "m" iw a main couras and,

- if "d" is a dessert,

then the triplet "a,m,d" is a meal,
The next two rules state that:

= if "a" iz a fish, "n" i a main course and,

- if "m" is a neat, "n" ix a main coursse.
The resaining sight rules classify & few courses.
In Fig Sa’, the computer answers two guastions
based on tha knowladge described in Fig Ja. The



first question is:
what are the values of “m",
that make “m* a main course?
There are several possible answers and each ANEWET
15 given as a reduted constraint on "m", The
serond questian 1s:
what are the triplets "a,m,d"
which constitute a meal?

The rcorresponding answers are alsg presented 1n
Fig 3a’.

In Fig 5b we introduce a3 minimal tnowledge of
arithmetic of positive integers: the addition
“uky=z? with “r10m, dengted by
"small-sumiz,y, 20", The fact that "x+y=z" implies
"ix+l)+y=iz241)" is used to define the notion

"small-sum” from the notion
utilizing two rules. The notion “small-successor"
15 defined by eight rules 50 that
"small-successar {x,y)" corresponds to the equality
“y=x+l"  with  t"ydI0". Fig ob’ presents the

“small-successor”,
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computer’s answers to a few questions about
arithmetic. Observe that, according to  the
formulated questiang, the same small Prolog

program of Fig 5b also computes the sum, the
difference, or decomposes a number 1n all possible
sums of two numbers.

Fig 5c defines a light meal (based on Figs 3a and
Sb) by assigning a certain amount of caloric units
to each course, and restricting to meals which add
up to a number of units smaller than {0. The main
rule of Fig 5c states that:

~ if the triplet "a,m,d" is a meal and,

- if the number of units of “a" 1s “x" and,

- if the number of units of "m" is "y* and,

~ if "x+y=u" and "u{l0" and,

- 1f the number of units of "d* is "z* and,

= 1f "z+u=v" and “"wii0%,

then the triplet "a,m,d" is a light meal.
In Fig %5c¢', the camputer lists the seven allowed
meals!

Sa 5b

meal {a,m,d} -,
appetizerial

mainim)
dessert (d) } little-sumil, sy} -3 meal {a,m,d)
little—successor (x,y}; units{a,x)
mainim) -> fish(m); little-sumix’,y,27) > units(m,y)
main(ml - meat(mls little~successor (x,x") little-sumis,y,u)
little~sumix,y,z) unitedd,z}

appetizer iradishes) --}
appetizer (pate! -}

fish(spole) ->3
fishitunal -3;

meat (porc) -3
meat (heef) ->}

dessert (cake) —ij
dessert (fruit) ->;

little-successoriz,z’ls

Jittle-successoril,2} ->;
little-successor (2,3) ->j
little—surcessor (3,4) ->;
littie—successor{4,5) ->;
jittle~successor (3,6) =>;
little-successor (&,7) =3
little—successor (7,8) -3
little-successar (B, 9) —3;

light-meal (a,m,d) ->

little—sum(z,u,v);

units{beef,3) -
units{fruit, ) ->;
unitsicake,S) ->;
unitsipate,&) ->;
units{pore,7} -»;
units{radishes,1} ->;
units(sole,2) ~»;
units{tuna, 4} ->;

) ¥
S5a maihim}? 5b

{m=splegl
im=tuna?
{m=porcl
{m=beef}

{n=72

meal {a,m,d)? {x=33

{asradishes, m=tcle, d=cakel
{asradishes, m=sole, dafruit}

little—sum{d,3,x17

littie—sumid,x,?)?

{ittle—sumix,y,5)7

5¢

light-~maal {a,m,d)”

{azradishes, s=sole, d=cake}
{acradishes, mcscle, dofruitl
{a=sradishes, ms=tuna, d=fruit}
{a=radishes, m=porc, dafruit}
{a=radishes, msbesf, d=cake}
{a=radishes, me=bpef, d=fruitl

{a=radishes, m=tuna, d=cake} {xfl’ y=4)

: - {(x=2, y=3}
{a=radishes, m=tuna, d=fruit} _ _

X {x=3, y=2}
{a=radishes, m=porc, d=caks} =4, w=l3
{a=radishes, m=porc, defruitl » ¥
{a=radishes, m=heef, d=cake’

{a=radishes, m=beef, d=fruitl

{ampate, m=sple, d=ca
{a=pate, a=cole, d=fr
{a=pate, m=tuna, d=ca

kel
uit}
kel

(a=pate, m=tuna, d=fruit}

{a=pate, m=porc, d=ca

kel

{aspate, m=porc, d=fruit}

{a=pate, w=hwef, d=ca
(aspate, m=bmaf, defr

kel
uit}

{a=pate, m=sole, dzfruit}
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6. FORMAL MEANING OF PROLOGPROGRAMS

Fig 5 informally described a Prolog program.
now formalize its meaning.
meaning of a program is given by

elementary operations

supposed to perform. This

which, as presented,

about it, independently of any computer.
computer's simply computes the answers
questions.

In Fig 6 we derive in two steps the set

(a circle) specified by a Prolog program from
original program (@ block). This set

the potential knowledge contained in the

Each of the facts s

is

For most languages,
the succession of

which the
is not true

a tree, taken from all

a formalism capable of
representing knowledge and to express

possible trees. The first step is required since
the rules of a Prolog program are, actually,
pattern of rules, and since it is first necessary
to generate precise rules dealing with trees. The
second step can be performed in two ways: either

by considering the rules as rewriting rules
(definition 1), or by considering them as logical
implications (definition 11).

Fig 6 also caracterizes the set of facts which
yield the answer to a Prolog question. A question
is a single term "t" which stating:
what are the facts of the form "t"?

The set of valid answers is the intersection of
the set of specified facts with the sub-set of
trees, obtained by assigning all conceivable trees
to the variables of term "t“.
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7. THESEARCHSPACE

Fig 6 illustrated the double definition of the
meaning of a Prolog program. Althougt both
definitions are conceptually satisfying, they
cannot be directly used to compute the answer to a
given question.

However, this computation can be performed on the
light of definition | by rewriting trees patterns
instead of trees, with the use of a finite set of
rules patterns instead of an infinite set of
rules. A tree pattern is a "term-constraint" pair,
the constraint limiting the represented trees; a
rule pattern is, in fact, just a Prolog rule.

In Fig 7b the question on program 7a, states:
under which constraints does "meal(radishes,m,d)"
represent only facts? To compute these constraints
the computer inspects the tree-shaped search space

angwer 3 - { w z Sole, d = cake]

of Fig 7d. At each node there is a pair "(C;,Tj}",
"Ci" being & constraint to be satisfied, and "T;"
being a sequence of terms to be erassd. At the
root of the tree we have the pair "(Cp,Tgl", whare
"Ca" is empty and the sequence "Tp" is the ters
which constitutes the Prolog question. If at a
given node the constraint "C;” is not satisfiable,
this node bheroses a dead end. I not, there will
be as aany Jrrows omanating from this node,
Labeled “€Cj,7i}", to nodes labeled *(Ci+q,Tieg?"s
as thare are rules. In this particular exasple
there are seven arrows. The constraint "Ci«" is
obtained by adding to the constraint “C;" the
constraint "{bg=ay}", where “by" is the first
elemant of seguence "T;" and "ap~ the left ssaber
of the rule which one attespts to apply. "Tin" is
obtained by replacing the first elssent of "Ti" by
the right mesbar of the rules which is being
applied. Before considering a ruls, it is
important to renass variasbies (e.g. by adding
prises}, %o that the rule has no variables in
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coomon with already existing variables. The
constraints "Cl" which are satisfiahle are those
whi ch can be reduced; inthis case, we placetheir
reduced forms just below them The answers are

subparts of the reduced constraints "Cl's"
appearing in nodes which cannot longer be
expanded, since their "Tl's" are enpty. The four
valid answers are found in Fig ?c.

8 CSTART

Ci is sohsfiable
Sl T, (s not emply

in tnge Ci
is sol'-'sl-;':.bh.

8. THE PROLOG CLOCK

The best way of explaiming 1n detai] how a Froliog
program runs on a computer 1s to 1d@alize this
computer by a simple abstract machine. We call our
abstract machine “"the Prolog clock” because its
basic +unction 1s to Feep track of the time. This
sachine consists of:

1. a cell ™™, containing a non negative integer
representing the time;

2, an 1nfinity of cells “C,,Cq,Ce,..."
containing the constraints to be satisfied
at times 0,1,2,...3

2. an infinity of cells "T5.T7,,74,..."
containing the sequences of teres which, at
times 0,1,2,...y, remain to be erased;

4, an infinity of tells "Rgo.,Rq Rqysvee”
containing the nusbers of the rules which
have been chosen at times 0,1,2,...

The rules are numbered "1” to "reax" and the
sachine has seans of acessing thes.

The machine’'s operation is depicted by two
concentric circles in Fig G: one of them is swept
clockwise as time increases by one unit, the other
is swapt in the opposite Oirection as tise

yes

L confains on inbteqer
Nprunting time
Ci: containg the comstraint to
be sabishied af time L,
Tl tombaing Hhe Sequence of
terms which Femain to be
erased ob bEime &,
Ri. Contnins the number 9&&:
ie chowrn at bime ¢,
Fmox: (S the humber of the
last nie,
the mlevans
port o Ci: is the subconstrant 'n a
Rduced [orm concerning
the veriables owvring in
Hhe oueshon .

decreases by one unit. It is possible to reverse
the time progression by crossing one of the two
one-way bridges which link one circle to the
other.

The execution of a Prolog program consists of
answering a question represented by a term. All
answers to be computed are constraints by which
the term represents specified facts. We start with
the pair "Cy,To)", "Cor being empty and the
sequence of terms "To" being reduced to the term
that constitutes the question. Each turn around
the outward circle increases the current
constraint "C" and transforms the sequence "T;'.
Note that if the rule already contains a
constraint "B", this constraint is added to the
current set of elementary constraints. The process
stops as soon as a non-satisfiable constraint is
generated, or the sequence "T;" becomes empty: in
these cases, we backtrack to the "past", to try
other rules. On the fly, if "Ci" is satisfiable,
an answer is printed.

In fact, the above process corresponds to sweeping
the tree-shaped search space of Fig 7, from top to
bottom and from left to right, the time "i" being
the level of the visited node.

The two programs in sections 9 and 10 provide
additional examples of more intricate Prolog
programs.
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9.STYLISTICPERMUTATIONS Also, since each node is labeled with a single
character, a dot, readablity is improved by using
In Moliere's play, "Le Bourgeois Gentilhomme", a infix notation: "u.v”, instead of prefix notation:
bourgeois who wants to act as a lord (gentilhomme) (u,v) To further simplify, we omit parentheses

compliments a noble w o m a n (marquise): whenever left-right association is implied.

"Beautiful marquise, your beautiful . )

eyes make me die of love." To assert that sequence "y" is a permutation of
Let us construct all of the compliment's possible sequence "x" we write “permutation(x,y) The
variations, as the bourgeois tries to do in the first rule of Flg 9c states that the sequence of
play. The sentence is first decomposed into five length zero, that is the empty sequence, has only

p arts , which are given in Fig 9a, each part made
up from one, or a few unseparable words. Starting
from an initial sequence  with these five
components we produce all variants by generating
all the permutations of the sequence.

We first have to choose a way of coding a sequence

by a tree- Since it is necessary to have a
notation for the empty sequence, the sequence
"3,7/2" is represented by the tree in Fig 9b.

one permutation, itself. The second rule specifies

that, in order to permute a non-empty sequence,
that is a sequence of length "n+1", we remove its
first element "e" and obtain a sequence "x" of
length "n"; we then compute any permutation "y" of
this sequence "x" and insert the element "e" in
any position of this sequence and produce the
desired sequence "z". To insert an element "e" in
a sequence "x" and obtain a sequence "y", we
introduce the term "insertion(e,x,y)". We either
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insert "e be-fore "x" (third rule of Fig 9c), or
we insert "e" in the sequence which has its -first
element removed (-fourth  rule of Fig 9c). These
four rules of Fig 9c <constitute the entire
permutation program.

Fig 9d presents the computer's answers to two
questions:
what are all permutations "x" of the
sequence "1,2,3"?
and
what are the values of the variables
"a","b","c" and "d" so that "2,4,c,d"
is a permutation of "3,a,l,b"?
Finally in Fig 9e, we ask the question producing
the 120 stylistic variants that the "bourgeois
gentilhomme" might have said’

10.SENDMOREMONEY

The purpose of this example is to solve a
classical cryptarithmetic puzzle: assign 8
different digits to the 8 letters
"S,E,N,D,M,0,R,Y", such that the sum

"SEND+MORE=MONEY" becomes valid. To do so, we
introduce in Fig 10a’ the four carry-overs "rl",
"r2", "r3" and "r4" which can be null and which

have to be added to each column of the sum.

The program consists of the three parts shown in
Figs 10b, 10c and 10d. In Fig 10d, the table of
sums up to 20 is programmed: any elementary school

student knows this table by heart but the machine
has to compute it over and over again since it
only knows how to add "1" to a number. We use
"plus (x,y,z)" to mean "x+y=z". Each number, is

represented by two digits, with a dot between them
(we useinfixnotationasinFig 9 ) . Fig 10c
presents the definition of a sequence without
repetition (note that the last rule of Fig 10c
contains a non-empty constraint). In Fig 10b, it
is stated that to compute a solution it is
necessary to assign distinct values to the letters
"S,E,N,D,M,0,R,Y", and that, in each column of the

sum, a property called "admissible", has to be
satisfied between the carry-over, the three
letters of the column and the preceding

carry-over. Of course, this property "admissible"
is defined using the property "plus" and the
property "plus-one". Since the numbers "SEND",
"MORE", and "MONEY" should not begin with the
digit 0, an inequality constraint is added to the
first rule of Fig 10b. In Fig 10e, we challenge
the computer to provide us with the three mystery
numbers.
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100 10 % EeR 10 d
+ ﬁﬁ:@ SEND PIUS(0.0,%, K} =)
_____ + MORE less—than-twenty(x};
- plusix’,y,z") -»
roNEY MONEY plus=pne(x,x")
plusix,y,2)
0k 10 ¢ plus-one(z,z’);

solution(S.E.N.D,M.D.R.E,M.0.N.E.¥) —>

without-repetition(S.E,N.D.M.0.R.Y.nil)

admissibleirl,0,0,M,0)
admissible(rZ,5,m,0,r11)
admissible(r3,E,0,N,r2)
admissibleird4,N,R,E, r3l
admissibled 0,D,E,¥,rd;,
{5=0, M=0>;

admissible(Q,ul,u2,u3, r) -5
plus{0.ut,C.u2,r,u3);
admissiblefl,ul,u2,u3,r} ->
plusiC.ul,0.u2, )
plus—one{x,r.ul);

without-repetitioninil) =33

withogut-repetitien{u.l? -
out—of lu,l}
without-repetitiontl);

out-of tu,nil} =23

out—of luyv.1) =~
out-of {u,l7,
{u=vl;

0 e

solutionix,y,z)?

(xx9.5.6.7, y=1.0.B.5, z=1.0.6.5.2}

less—than-twenty (0.0} -3
less~than—twenty(y) -2
plus—anelx,yl;

plus-one(0.0,0.1) =>;
plus—one(0.1,0,2) =>;
plus—one{0.2,0,3} —33
plus—one(0.3,0,4) ->;
plus-one(0.4,0.5) ->;
plus—one (0.5,0.8) ->3
plus-one (0.4,0.7) —3;
plus—ane(0.7,0.8) =>;
plus—one(0.8,0.9) -i;
plus—one(0.%9,1.0) -i;
plus-ocnef1.0,1.1} ->%
plus—onre{1.1,1,2) ~2>;
plus—one(3.2,1.Z2) -3;
pius-onefl.3,1.4} -3
pius—oneil.4,1.9} -;
plus—one(i.3,1.8) -
plus-one{l.&,1.7) -3
plus-one(1.7,1,.8) ->;
plus—one(l1.B,1.7} ->;




