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Abstract; Prolog is presented in a rigourous way, 
through 10 easi ly understandable f i gu res . I t s 
theoret ica l model is completly rewrought. After 
introducing i n f i n i t e trees and i nequa l i t i es , t h i s 
paper puts fo r th the minimal set of concepts 
necessary to give Prolog an autonomous existence, 
independent of lengthy considerations about f i r s t 
order logic and inference ru les . Mystery is 
sacr i f i ced in favor of c l a r i t y . 
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A r t i f i c i a l I n t e l l i g e n c e i n t e r a c t s w i t h m a n y f i e l d s 
i n c l u d i n g p s y c h o l o g y , l i n g u i s t i c s , h i s t o r y , 
g e o l o g y , b i o l o g y , med i ca l s c i e n c e . . . These 
s c i e n c e s are comp lex , and s p e c i a l t o o l s are needed 
t o r e p r e s e n t and p rocess t h e knowledge t hey dea l 
w i t h . F u r t h e r m o r e , t h e s e t o o l s s h o u l d no t 
i n t r o d u c e new p r o b l e m s , i n h e r e n t to computer 
s c i e n c e . T r a d i t i o n a l l y , t h e s c i e n c e o f knowledge 
h a s b e e n ma themat i ca l l o g i c . T h e r e f o r e it w a s 
r e a s o n a b l e t o t u r n t o l o g i c f o r h e l p i n d e v e l o p i n g 
a t o o l f o r A r t i f i c i a l I n t e l l i g e n c e : t h a t w a s h o w 
P r o l o g w a s b o r n . 

P r o l o g , deve loped in 1 9 7 2 by A.Colmerauer and 
P . R o u s s e l , w a s at f i r s t a theorem p r o v e r , based on 
A . R o b i n s o n ' s r e s o l u t i o n p r i n c i p l e (1965) w i t h 
s t r o n g r e s t r i c t i o n s t o na r row t h e s e a r c h s p a c e . 
C r e d i t is g i v e n to R.Kowalsk i and M.van E m d e n f o r 
h a v i n g p o i n t e d ou t t h e s e r e s t r i c t i o n s a s 
e q u i v a l e n t t o t h e use o f c l a u s e s h a v i n g a t l e a s t 
one p o s i t i v e l i t e r a l (Horn c l a u s e s ) , and f o r 
h a v i n g p roposed t h e f i r s t t h e o r e t i c a l model of 
what is computed by P r o l o g : a m in ima l Herb rand 
i n t e r p r e t a t i o n . 

However, P r o l o g ' s c l o s e l i n k s w i t h Log ic p roved 
somet imes t o b e i n h i b i t i n g v i s - a - v i s i t s 
i m p l e m e n t a t i o n . I t w a s necessary to r e f o r m u l a t e 
t h e t h e o r y t o t a k e i n t o account i m p l e m e n t a t i o n 
c o n s t r a i n t s : t h i s new t h e o r y i s unencumbered b y 
d i s t i n c t i o n s necessary o n l y i n l o g i c , and i s 
e n r i c h e d b y concep t s i n d i s p e n s a b l e f o r programming 
purposes (such a s i n e q u a l i t i e s ) . W e can say t h a t , 
a f t e r a c a r e f u l i m p l e m e n t a t i o n , a n e w t h e o r e t i c a l 
model of P r o l o g emerged and i t is t h i s n e w model 
t h a t we p r e s e n t he re in 10 c o m m e n t e d f i g u r e s . 

The reader i n t e r e s t e d i n f u r t h e r r e a d i n g s o n t h i s 
s u b j e c t i s r e f e r r e d t o t h e f o l l o w i n g : 

O n au toma t i c t heo rem p r o v i n g and l o g i c : 

R O B IN S O N J . A . ( 1 9 7 9 ) . " L o g i c : Form and F u n c t i o n " , 
Ed inbu rgh U n i v e r s i t y P r e s s and E l s e v i e r N o r t h 
H o l l a n d . 

O n t h e l i n k s between l o g i c and P r o l o g : 

K O W A L S K I R.A. ( 1 9 7 9 ) . " Log i c For P rob lem S o l v i n g " , 
A r t i f i c i a l I n t e l l i g e n c e s e r i e s , (Ed- N i l s s o n , 
N . J . ) , N o r t h H o l l a n d . 

O n t h e g e n e s i s o f P r o l o g : 

C O L M E R A U E R A . , KANOUI H . , P A S E R O R. et R O U S S E L P h . 
( 1 9 7 3 ) , "Un sys teme de commun ica t ion homme-machine 
e n f r a n g a i s " , Research R e p o r t , Groupe I n t e l l i g e n c e 
A r t i f i c i e l l e , F a c u l t e des Sc iences de Lum iny , 
M a r s e i l l e . 

R O U S S E L P h . ( 1 9 7 5 ) . " P r o l o g , Manuel de Re fe rence 
e t d ' U t i l i s a t i o n , G r o u p e I n t e l l i g e n c e 
A r t i f i c i e l l e , F a c u l t e des Sc iences de L u m i n y , 
M a r s e i l l e . 

A P r o l o g s y s t e m , based o n t h e i d e a s deve loped 
h e r e , a n d imp lemen ted o n s e v e r a l compute rs (App le 
I I , Vax /Vms, e t c . ) , i s d e s c r i b e d i n t h r e e I n t e r n a l 
R e p o r t s of t h e Groupe I n t e l l i g e n c e A r t i f i c i e l l e , 
F a c u l t e des S c i e n c e s d e Lum iny , M a r s e i l l e s 

C O L M E R A U E R A. ( 1 9 8 2 ) . " P r o l o g I I , Re fe rence Manual 
and T h e o r e t i c a l M o d e l " . 

V A N C A N E G H E M M. ( 1 9 8 2 ) . " P r o l o g I I , U s e r ' s 
M a n u a l " . 

K A N O U I H. ( 1 9 8 2 ) . " P r o l o g I I , Manual of Examples . 

1 . T R E E S 

From an a b s t r a c t p o i n t of v i e w , one m a y say t h a t 
t h e knowledge o f a n i n t e l l i g e n t b e i n g o n a g i v e n 
s u b j e c t , i s t h e se t o f f a c t s t h a t h e o r she can 
g e n e r a t e o n t h e s u b j e c t . T h e r e f o r e , knowledge can 
be v iewed as a se t o f f a c t s , s p e c i f i e d by a s e t o f 
r u l e s . E a c h of t h e s e f a c t s can be r e p r e s e n t e d by a 
d e c l a r a t i v e s e n t e n c e . I n our case we r e p r e s e n t a 
f a c t by a t r e e , drawn u p s i d e down, as t h e one 
s h o w n in F i g l a . E a c h l ea f a n d each node is 
l a b e l e d w i t h a n " a t o m " o f i n f o r m a t i o n : t h i s a tom 
can be a w o r d , a g roup of w o r d s , a number, or a 
s p e c i a l c h a r a c t e r . Only t h e s t r u c t u r e o f t h e t r e e 
is r e l e v a n t . T h e r e f o r e , F i g s la a n d l a ' a r e 
e q u i v a l e n t . T rees in F i g s l a , lb a n d lc a r e 
examples o f f a c t s i n t h r e e d i f f e r e n t f i e l d s : 
a r i t h m e t i c , ( s t y l i s t i c ) p e r m u t a t i o n s , a n d m e a l 
p l a n n i n g . F a c t s are a lways t r e e s , bu t no t a l l 
t r e e s are f a c t s : o b v i o u s l y t h e t r e e s i n F i g s I d 
and le are no t f a c t s in a r i t h m e t i c , even i f tree 
i n F i g I d i s a s u b - t r e e o f t h e f a c t i n F i g l a . 

T rees were p u r p o s e l y chosen a s d a t a s t r u c t u r e s : 
t hey are c a p a b l e o f e x p r e s s i n g complex i n f o r m a t i o n 
a n d , at t h e s a m e t i m e , s i m p l e e n o u g h to be hand led 
a l g e b r a i c a l l y , and by a compu te r . 

2 . T E R M S 

Formulas are used t o r e p r e s e n t t r e e p a t t e r n s . 
These f o r m u l a s c a l l e d " t e r m s " , c o n s i s t o f a toms o f 
i n f o r m a t i o n , v a r i a b l e s , pa r en thes es a n d c o m m a s . 
R e c a l l t h a t an atom o f i n f o r m a t i o n i s e i t h e r a 
g roup of w o r d s , a number, or a s p e c i a l c h a r a c t e r . 
I n t h e l e f t co lumn o f F i g 2 a t h e s y n t a c t i c 
s t r u c t u r e o f a t e r m i s d e f i n e d ; t h i s i s a 
r e c u r s i v e d e f i n i t i o n where complex te rms a r e 
d e f i n e d f r o m s i m p l e r t e r m s ; t h e s i m p l e s t t e rms a r e 
v a r i a b l e s o r atoms o f i n f o r m a t i o n . Examples o f 
t e rms can b e f o u n d i n t h e l e f t p a r t o f F i g s 2 b and 
2 c . 

Je r e m e r c i e Jacques C o h e n de m 'avo i r a i d e a 
r e d i g e r c e t a r t i c l e e n a n g l a i s . 
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Variables occurr ing in terms represent unknown 
t rees . Therefore, the tree expressed by a term 
w i l l depend upon the trees assigned to the 
var iab les . Such an assignment "X", ca l led a 
"tree-assignment", is just a set of pairs 
" x i : = a i " , ''ai" being the tree assigned to the 
var iable "x1". The r ight column of Fig 2a gives 
the t ree "a " represented by the term " t " af ter the 
app l ica t ion of tree-assignment "X". It is assumed 
that if " t " contains no va r iab le , an empty 
tree-assignment can be app l ied . 

Figs 2b and 2c depict two examples of 
tree-assignments. Example 2b shows that it is 
possible to f ind in the assignment "X", var iables 
which do not occur in the term, but the contrary 
is not poss ib le . In example 2c, the term contains 
no va r iab le ; t h i s means that the corresponding 
tree does not depend on the assignment. The last 
example shows a systematic way of coding a f i n i t e 
tree by a term without var iab les . 

3. CONSTRAINTS 

Prolog is a language which "computes" on trees 
" a j " represented by var iables ' ' x i " . This 
computation is done by accumulating const ra in ts 
that f i n a l t rees must s a t i s f y . These constra ints 
l i m i t the values var iables can take, that is the. 
tree-assignment of var iables " x i " by trees " a i " . 
As shown in Fig 3a, a constra int MC" consists of a 
set of elementary cons t ra in t s , each of them to be 
s a t i s f i e d . An elementary constra int is e i ther a 

pair of terms " < S J , S J ' > " which w i l l represent 
equal t r ees , or a pair of terms " < tk , t |< ' ) " which 
w i l l represent unequal t r ees . Fig 3a i l l u s t r a t e s 
the general condi t ion under which a 
tree-assignment "X" s a t i s f i e s a constra int "C" . 
"X" is also said to be a so lu t ion of "C" . Fig 3b 
shows an example of a const ra in t " C I " s a t i s f i a b l e 
by the tree-assignment " X I " . In Fig 3c there are 
three const ra in ts which cannot be s a t i s f i e d by any 
t ree-ass i gnment. 



During the execution of a Prolog program, the 
basic operation consists of verifying whether a 
constraint is "satisf iable" or not (by at least 
one tree-assignment). This is done by "reducing" 
i t , as seen in Fig 3d: the purpose of "reducing" 
is to simplify the constraint in order to make a l l 
i ts solutions exp l ic i t . This involves exhibiting 
variables dist inct from each other as l e f t members 
of equal i t ies. To do so, we use a specific 
property of trees: the unique decomposition of a 
tree into immediate subtrees. This property 
permits us to replace 

Note that if this property would hold for numbers, 
we would wrongly conclude that the two constraints 
" {x+3=2+y)" and "(x+3=2+y)" are equivalent! If we 
succeed in producing equalit ies where l e f t members 
are dist inct variables and where there are no 
inequal i t ies, thpn the constraint is sat is f iable . 
I ts solutions are direct ly obtained by assigning 
arbitrary trees to variables not appearing as l e f t 
members. 

If inequalit ies are l e f t , le t "n" be their number. 

Another basic property allows us to s p l i t the 
i n i t i a l problem into "n" independent and simpler 
sub-problems: a constraint of the form 
1 is satis-fiable if and only 
if each of the constraints 
"Cu{t n*t n')" is also satisfiable. Again, t h i s is 
not true in the domain of natural integers 

because it would be possible to show 
that the constraint has at 
least one solution since the constraints 
"(x+y=l,i:*0}", and 
have at least one' In order to verify that the 
constraint is satisfiable (knowing 
that "C" already is) we must check that the 
constraints and are not 
equivalent. If the constraint " C u t t ^ t j ' } " is not 
satisfiable, we can even remove the inequality 
1 as in example 3d. 

In the same way as we simplify equalities, i t is 
possible to simplify inequalities. This allows us 
to present any satisfiable constraint in a 
"reduced form": this reduced form shows that the 
constraint is satisfiable by making a l l i t s 
solutions e x p l i c i t . The general form of a reduced 
constraint containing inequalities is beyond the 
scope of this paper (see Colmerauer 1982). 
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4. INFINITE T R E E S 

As s u r p r i s i n g as it may be, it is also possible to 
handle in - f in i te t rees . Such a t ree is shown in Fig 
4a: it represents an endless path along the 
c ross- l i ke -figure shown in Fig 4b. It is possible 
to present t h i s t ree by the diagram with a loop in 
4c, obtained by merging a l l the nodes from which 
isomorphic subtrees a r i se , that i s , -from which 
equal subtrees a r i s e . If we omit to merge a -few 
nodes, we obtain the d i f fe ren t diagrams in 4c? and 
4 c ' ' which s t i l l represent the same t r e e . That Fig 
4c is a f i n i t e diagram means that the i n i t i a l t ree 
in 4a contains a f i n i t e set of conf igurat ions or, 
more p rec ise ly , that the set of i t s subtrees is 
f i n i t e : t h i s is the d e f i n i t i o n of a " r a t i o n a l " 
t r e e . Of course, a l l f i n i t e t rees are r a t i o n a l . 
Although f i n i t e trees can be defined by simple 
terms without var iab les , i n f i n i t e ra t iona l t rees 
can only be defined by the const ra in ts they must 
s a t i s f y . Taking in to account successively a l l 
sides " 1 , 2 , . . . , 1 2 " of the c ross - l i ke f igure in 4b, 
we construct the constra int 4d which is s a t i s f i e d 
only in case of the assignment of "x" by the tree 
in Fig 4a. From the diagram shown in Fig 4c, we 
can construct a simpler const ra in t 4 d ' , having the 
same proper ty . 

For the cur ious reader we provide in Fig 4e an 
example of a non- ra t iona l i n f i n i t e t r e e . After 

merging a l l possible nodes t h i s t ree y ie lds the 
i n f i n i t e diagram in Fig 4 e ' . Note that it would be 
necessary to have a c o n s t r a i n t , made from an 
i n f i n i t y of elementary cons t ra in t s , to completely 
describe t h i s type of t r e e . 
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6. FORMAL MEANING OF PR0L06 P R O G R A M S 

F ig 5 i n f o r m a l l y d e s c r i b e d a P r o l o g p rog ram. We 
now f o r m a l i z e i t s meaning. For most l anguages , t h e 
meaning of a program is g i v e n by t h e success ion of 
e l emen ta r y o p e r a t i o n s wh ich t h e computer is 
supposed to p e r f o r m . Th is is not t r u e of P r o l o g 
w h i c h , as p r e s e n t e d , is a f o r m a l i s m capab le of 
r e p r e s e n t i n g knowledge and to express q u e s t i o n s 
about i t , i n d e p e n d e n t l y of any computer . The 
c o m p u t e r ' s s i m p l y computes t h e answers to these 
q u e s t i o n s . 

In F i g 6 we d e r i v e in two s teps the set of f a c t s 
(a c i r c l e ) s p e c i f i e d by a P r o l o g program f rom the 
o r i g i n a l p rogram (a b l o c k ) . Th i s set r e p r e s e n t s 
t he p o t e n t i a l knowledge c o n t a i n e d in t he p rog ram. 
Each of t he f a c t s is a t r e e , t aken f rom a l l 

p o s s i b l e t r e e s . The f i r s t s tep is r e q u i r e d s i n c e 
the r u l e s of a P ro log program a r e , a c t u a l l y , 
p a t t e r n of r u l e s , and s i n c e it is f i r s t necessary 
to gene ra te p r e c i s e r u l e s d e a l i n g w i t h t r e e s . The 
second s tep can be per fo rmed in two ways: e i t h e r 
by c o n s i d e r i n g the r u l e s as r e w r i t i n g r u l e s 
( d e f i n i t i o n I ) , or by c o n s i d e r i n g them as l o g i c a l 
i m p l i c a t i o n s ( d e f i n i t i o n I I ) . 

F ig 6 a l s o c a r a c t e r i z e s t he set of f a c t s wh ich 
y i e l d t h e answer to a P r o l o g q u e s t i o n . A q u e s t i o n 
is a s i n g l e te rm " t " wh ich s t a t i n g : 

what are the f a c t s of the fo rm " t " ? 
The set of v a l i d answers is t he i n t e r s e c t i o n of 
the set of s p e c i f i e d f a c t s w i t h the sub -se t of 
t r e e s , o b t a i n e d by a s s i g n i n g a l l c o n c e i v a b l e t r e e s 
to t he v a r i a b l e s of te rm " tM . 



7. THE SEARCH S P A C E 

Fig 6 i l l u s t r a t e d the double d e f i n i t i o n of the 
meaning of a Prolog program. Althougt both 
d e f i n i t i o n s are conceptually s a t i s f y i n g , they 
cannot be d i r e c t l y used to compute the answer to a 
given quest ion. 

However, t h i s computation can be performed on the 
l i g h t of d e f i n i t i o n I by rewr i t i ng trees patterns 
instead of t r ees , with the use of a f i n i t e set of 
ru les patterns instead of an i n f i n i t e set of 
r u l es . A t ree pat tern is a " term-constra in t " pa i r , 
the const ra in t l i m i t i n g the represented t rees ; a 
ru le pat tern i s , in f ac t , just a Prolog r u l e . 

In Fig 7b the question on program 7a, s ta tes : 
under which const ra in ts does "meal(radishes,m,d)" 
represent only facts? To compute these constra in ts 
the computer inspects the tree-shaped search space 
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common with already e x i s t i n g variables. The 
constraints "C1" which are s a t i s f i a b l e are those 
which can be reduced; in t h i s case, we place t h e i r 
reduced forms j u s t below them. The answers are 

subparts of the reduced constraints "C1's" 
appearing in nodes which cannot longer be 
expanded, since t h e i r "T1's" are empty. The four 
v a l i d answers are found in Fig ?c. 

decreases by one u n i t . It is possible to reverse 
the time progression by crossing one of the two 
one-way bridges which l ink one c i r c l e to the 
other. 

The execution of a Prolog program consists of 
answering a question represented by a term. A l l 
answers to be computed are const ra in ts by which 
the term represents spec i f ied f a c t s . We star t wi th 
the pair " C 0 , T 0 ) " , "C0'' being empty and the 
sequence of terms "T0" being reduced to the term 
that const i tu tes the quest ion. Each turn around 
the outward c i r c l e increases the current 
constra int "Ci" and transforms the sequence " T1 ' . 
Note that if the ru le already contains a 
constra int " B " , t h i s constra int is added to the 
current set of elementary cons t ra in t s . The process 
stops as soon as a non-sa t i s f i ab le constra int is 
generated, or the sequence " Ti " becomes empty: in 
these cases, we backtrack to the "past" , to t r y 
other r u l e s . On the f l y , if " C i " is s a t i s f i a b l e , 
an answer is p r i n t e d . 

In f a c t , the above process corresponds to sweeping 
the tree-shaped search space of Fig 7, from top to 
bottom and from l e f t to r i g h t , the time " i " being 
the level of the v i s i t e d node. 

The two programs in sect ions 9 and 10 provide 
addi t iona l examples of more i n t r i c a t e Prolog 
programs. 



9. STYLISTIC P E R M U T A T I O N S 

In Mol iere 's p lay, "Le Bourgeois Gentilhomme", a 
bourgeois who wants to act as a lord (gentilhomme) 
compliments a noble w o m a n (marquise): 

"Beaut i fu l marquise, your beaut i fu l 
eyes make me die of l ove . " 

Let us construct a l l of the compliment's possible 
va r i a t i ons , as the bourgeois t r i e s to do in the 
p lay. The sentence is f i r s t decomposed into f i v e 
p a r t s , which are given in Fig 9a, each part made 
up from one, or a few unseparable words. Star t ing 
from an i n i t i a l sequence with these f i v e 
components we produce a l l var iants by generating 
a l l the permutations of the sequence. 

We f i r s t have to choose a way of coding a sequence 
by a t ree- Since it is necessary to have a 
notat ion for the empty sequence, the sequence 
"3 ,7 /2 " is represented by the t ree in Fig 9b. 

Also, since each node is labeled with a s ingle 
character, a dot , readabl i ty is improved by using 
i n f i x no ta t i on : "u .v " , instead of pref ix no ta t i on : 
' ' ( u , v ) " . To fur ther s imp l i f y , we omit parentheses 
whenever l e f t - r i g h t associat ion is imp l ied . 

To assert that sequence "y" is a permutation of 
sequence "x" we wr i te "permuta t ion(x ,y ) " . The 
f i r s t ru le of Fig 9c states that the sequence of 
length zero, that is the empty sequence, has only 
one permutat ion, i t s e l f . The second ru le speci f ies 
tha t , in order to permute a non-empty sequence, 
that is a sequence of length " n + 1 " , we remove i t s 
f i r s t element "e " and obtain a sequence "x" of 
length " n " ; we then compute any permutation "y" of 
t h i s sequence "x" and insert the element "e " in 
any pos i t ion of t h i s sequence and produce the 
desired sequence " z " . To insert an element "e " in 
a sequence "x" and obtain a sequence "y", we 
introduce the term " i n s e r t i o n ( e , x , y ) " . We ei ther 
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i n s e r t " e " be-fore " x " ( t h i r d r u l e o f F i g 9 c ) , o r have to be added to each column of t h e sum. 
we i n s e r t " e " in the sequence which has i t s - f i r s t 
element removed (-fourth r u l e of F i g 9 c ) . These The program c o n s i s t s of t h e t h r e e p a r t s shown in 
four r u l e s of F ig 9c c o n s t i t u t e the e n t i r e Figs 10b, 10c and lOd . In F ig lOd , the t a b l e of 
pe rmu ta t i on p rogram. sums up to 20 is programmed: any e lementary school 

s t u d e n t knows t h i s t a b l e by h e a r t but t h e machine 
has t o compute i t over and over again s i n c e i t F ig 9d p resen ts the compu te r ' s answers to two 
only knows how to add " 1 " to a number. We use q u e s t i o n s : 
" p l u s ( x , y , z ) " to mean " x + y = z " . Each number, is what are a l l p e r m u t a t i o n s " x " o-f t h e 
rep resen ted by two d i g i t s , w i t h a dot between them sequence " 1 , 2 , 3 " ? 
(we use i n f i x n o t a t i o n as in F ig 9 ) . F ig 10c and 
p resen ts the d e f i n i t i o n of a sequence w i thou t what are t h e v a l u e s of t h e v a r i a b l e s 
r e p e t i t i o n (note tha t the l a s t r u l e of F ig 10c " a " , " b " , " c " and " d " so t ha t " 2 , 4 , c , d " 
c o n t a i n s a non-empty c o n s t r a i n t ) . In F ig 10b, it is a pe rmu ta t i on of " 3 , a , l , b " ? 
is s t a t e d tha t to compute a s o l u t i o n it is F i n a l l y in F ig 9e , we ask the q u e s t i o n p roduc ing 
necessary to ass ign d i s t i n c t va lues to the l e t t e r s the 120 s t y l i s t i c v a r i a n t s t h a t the "bourgeo is 
" S , E , N , D , M , 0 , R , Y " , and t h a t , in each column of t h e gent i lhomme" might have s a i d ' 
sum, a p r o p e r t y c a l l e d " a d m i s s i b l e " , has to be 
s a t i s f i e d between the c a r r y - o v e r , the t h ree 
l e t t e r s of the column and the p reced ing 10. SEND M O R E M O N E Y 
c a r r y - o v e r . Of c o u r s e , t h i s p rope r t y " a d m i s s i b l e " 
is d e f i n e d us ing the p rope r t y " p l u s " and the The purpose of t h i s example is to so lve a 
p rope r t y " p l u s - o n e " . Since the numbers "SEND", c l a s s i c a l c r y p t a r i t h m e t i c p u z z l e : ass ign 8 
"MORE", and "MONEY" shou ld not begin w i t h the d i f f e r e n t d i g i t s t o the 8 l e t t e r s 
d i g i t 0, an i n e q u a l i t y c o n s t r a i n t is added to the " S , E , N , D , M , 0 , R , Y " , such t h a t the sum 
f i r s t r u l e of F ig 10b. In F ig 10e, we c h a l l e n g e "SEND+M0RE=M0NEY" becomes v a l i d . To do so , we 
t h e computer t o p r o v i d e u s w i t h t h e t h r e e mystery i n t r o d u c e in F ig 10a? the four c a r r y - o v e r s " r l " , 
numbers. " r 2 " , " r 3 " and " r 4 " which can be n u l l and which 
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