Varieties of User Misconceptions:

Detection and Correction

Bonnie Lynn Webber and Eric Mays
Department of Computer & Information Science
University of Pennsylvania
Philadelphia PA 19104

Abstract

This paper discusses some of our research

into detecting and reconciling critical
differences between a user's view of the world and
the system's. We feel there is benefit to be

gained by separating misconceptions into two main
classes: misconce.pt ions about what is the case
and misconceptions about what can be the case. We
review some initial work in both areas and discuss
our work in progress.

1.0 INTRODUCTION

For the past several years, we have been
engaged in research aimed at extending the scope
of Natural Language (NL) interaction with database
systems beyond that of factual requests
[Webber83], One important sub-area is that of
detecting and reconciling critical differences
between the user's and the system's views of the
world. If not done, the result may be that the
user is confused, or worse, misled by the
information the system is trying to convey.

Our goal is to identify the information a
system must have and use in order to detect and
rectify various belief disparities, in the context
of Natural Language database (db)
question-answering. In this paper we review some
earlier work which we now see as user
misconceptions about what s the <case in the
database, as well as discussing more recent work
on user misconceptions about what can be the case.

2.0 MISCONCEPTIONS ABOUT WHAT IS THE CASE

A user can hold many different kinds of
incorrect beliefs about what is the case in the
world. One type that has received initial
computational attention towards its detection and
correction consists of misconceptions that
something exists which is describable by a
particular description. If that description
doesn't in fact describe anything, any question
concerning additional properties true of such a
thing is misguided, based as it is on a
misconception. For example, consider the question

1. Which female employees work in the shoe
department?

For a person to want to know the answer to this
question, s/he must believe that there are some
employees, that there are some female employees,
and that there is a shoe department. Any one of
these beliefs may be inconsistent with what is
known to the system s/he is asking the question
of. Recognizing and correcting such
misconceptions was the aim of the COOP system
[Kaplan79].

The problem with not doing this in responding
to a user's question is the false inferences the
user may otherwise draw from the answer. If the
system answers "None" to the above question, the
user may conclude that all female employees work
in some other department, that the shoe department
discriminates against female employees, etc., even
though the answer may actually follow from there
being no female employees or no shoe department
i.e., from one of his/her "is" beliefs being
wrong.

Now the type of "is"-misconception that COOP
handles is only one of several that a user might
have. For example, s/he may believe that an
object has a particular attribute when it just
doesn't (example 2) or that one thing depends on
another when it doesn't (example 3) -

2. U: What's the maximum age for opening a Keogh

account?
S: There Is no maximum age: you can open one
as long as you have income from

self-employraent.

3. U: What are profit margins as a percentage of
sales for each installation?

S: Margins don't depend on sales. They are

calculated as the difference between unit
product cost and list price.

Such misconceptions about objects and the
relationships among them is the subject of a new
research effort reported on in [McCoy83].

3.0 MISCONCEPTIONS ABOUT WHAT CAN BE THE CASE

In addition to misconceptions about what s
actually the case in the world, a user might have
misconceptions about what can be the case. There
are at least two types of such misconceptions.
The first, given a database of entities and
relations, is that some entity or subset of

entities can participate in a particular relation.
As with type constraints and type violations in
programming languages, this may not be the case
because the entity is the wrong type. Initial
work in this area is reported in [Mays 80]. The
knowledge needed to recognize such type failures
in users' queries consists of entity-relation
information, hierarchical (subset-superset)
information, as well as partition information as
to what subsets of a given set are mutually
exclusive. It is the last factor that is critical
for distinguishing between a non-deviant request
like

Which women teach courses?
and a deviant one like
Which undergraduates teach courses?

where the "teach" relation holds between "faculty"
and "courses" (Figure 1). As Figure 1 shows, the
entity "people" has two different partitions

one between "men" and "women", the other between
"faculty" and "student". Assuming a relation s
always asserted at the most general point in the
hierarchy, the configuration means that only
faculty can be the first argument to teach, and

only courses, the second. Since "faculty" and
"student"” have an empty intersection and
"undergraduates” is a subset of "student", the
implication is that "teach" cannot hold between
"undergraduate" and "course". The same is not

true of "women", as "women" and "faculty" can have
a non-empty intersection.

Mays' system detects such misconceptions in
the course of transforming a parse structure into
a database query. At that point it verifies that
the given arguments satisfy the constraints
specified in the data model. One problem with
this method is that it cannot correctly detect
misconceptions in negative questions like (5).

4. Which faculty do not teach courses?
5. Which courses are not taught by faculty?

The simple check of relation/argument constraints
would find both questions acceptable, and both
would be translated (including negation) into
database queries. Yet (5) actually reveals the
user's misconception that courses can be taught by
people other than faculty. (Example (4) reveals
no such misconception: faculty do not have to
teach courses.)

Negation has often been a source of problems
for question-answering systems, but in a
cleaned-up version of Mays' system, we hope to be
able to deal correctly with detecting
misconceptions in negative questions, as well as
in positive ones.
The second type of "can be" misconception
involves violating another type of constraint -
constraints between events and states and their
relationship over time. It is possible for a user
to be mistaken about what can be true now or what
could have been true (or happened) in the past,

B. Webber and E. Mays 651

(1) because s/he is unaware of the occurrence (or
non-occurrence) of some event or of its
consequences or (2) because s/he believes some
event has occured when it hasn't. Again, if the
user's question reveals such a misconception, it
should be corrected Ilest the user draw a false
conclusion from the system's answer. The kind of
behavior we are aiming for is as follows:

6. U: Is John registered for CSE2207?
S: No. He can't be registered for it because
he has already advance placed it.

7. U: Is John registered for CSE220?
S: No. He can't be registered for it because
he hasn't yet taken CSE121.

The knowledge needed to recognize and square
away such misconceptions consists of a knowledge

of past events (or states of the dbs) — often
preserved in back-up files but not accessible to
the db system — and of the relationship between
past events and what can be true afterwards,
including possibly the present. The latter s
very much like update constraints used to maintain

db consistency. However, in general update
constraints are not expressed in a form that
admits reasoning about possible change. Something
more is needed. What we have chosen to use
instead is an extension of the propositional
branching time temporal logic [BenAri], as
documented in [Mays82,Mays831.

Our original impetus into this area was a
desire to give a db system the ability to take the
initiative and offer to monitor for Information of
which it was currently unaware. For example,

8. U: Has John checked in yet?
S: No - shall | let you know when he has?
9. U: Has John checked in yet?
S: Yes - shall | let you know when the rest of

the committee members do?

Work on producing monitor offers that are both
competent (i.e., that correspond to a possible
future state of the database) and relevant (l.e.,
that the user would be interested in) s
proceeding concurrently with the work reported on
here. We have termed systems which can reason
about possible future states of the db "dynamic
database systems".

We do not have the space here to explain in
detail the logical system we are using (but see
[Mays83]). In brief, the system treats the past
as a linear sequence of time points up to and
including a reference point that, for simplicity,
we can call NOW. The future is treated as a
branching structure of time points that go out
from (and include) the reference point. A set of
complex operators Is available to quantify
propositions as to the points they are asserted to
hold over - e.g.,

AGq - proposition q holds at every time of
every future
EXq - proposition g holds at the next point in

652 B. Webber and E. Mays

some future

Pq - proposition q holds at some time in the
past

etc.

Two classes of axioms describe the relationship
between events/states in the past, present and
future. The first class contains logical axiom
schemas that apply to temporal assertions in
general - e.g., if prior to NOW, Pq was true
(i.e., LPqg), then Pq is still true NON (i.e., LPq
-> Pqg). There are also "specialization" axioms
relating general and more specific operators -
e.g., if for all times in every future q will be
true (i.e., AGq) then, more specifically, q will
be true at the next time in every future (i.e.,
AX -> AXq).

The second class of axioms are non-logical
axioms that describe relationships that hold in
the particular domain. Here we have taken a

university domain of students and courses. Let

the propositional letter 'a' stand for 'student
advance places course' and 'r', for 'student is
registered for course'. Then the following

non-logical axiom states that a student who has
advance placed a course (some time in the past) is
not now registered for it: H[AG[Pa -> ~r]].
(Most non-logical axioms are taken to have held
and to continue to hold forever. Hence the
complex operator HAG around the implication.)

Our problem, given the two registration
examples above (6 and 7) to distinguish whether it
is accidental that John is not registered for
CSE220 now (he could be, only he's not) or
foreordained (some event has taken place that
precludes registering or some enabling event has
not yet occured) requires the system to suppress
its knowledge of John's current status and
consider whether it could provably believe the
opposite - i.e., that John is registered now for
CSE220. If it couldn't, then not only is John not
registered for CSE220, the system should have
identified at least one basis for why he couldn't
be. By the above axiom, it is clear that it Is
not accidental that John isn't registered, because
r (being registered for CSE220) is inconsistent
with Pa (having advance placed GSE220)

Pa -> ~r. This is the knowledge and reasoning on
which we are basing the recognition of such "could
be" misconceptions.

4.0 CONCLUSION

We have discussed recent work on detecting and
correcting two main classes of user misconceptions

misconceptions about what is the case and
misconceptions about what could be the case,
There is other research which is strongly relevant
to this, in particular recent work by Mercer and
Reiter on using default logic to represent the
potential presuppositions of certain lexical items
and syntactic constructions [Mercer82]. This is
an area of great importance for interactive
systems because of the «critical consequences of
user confusion and misunderstanding. We are

continuing our efforts on it and encourage others

to do so as well.

References

[BenAri] Ben Ari, M., Manna, Z. & Pneuli, A.
"The Temporal Logic of Branching Time". 8th
Annual ACM Symposium on Principles of
Programming Languages, Williamsburg VA, January
1981.

[kaplan79] Kaplan, S.J., "Cooperative Responses
from a Portable Natural Language Data Base
Query System", Ph.D. dissertation, Department

of Computer and Information Science, University
of Pennsylvania, Philadelphia, Pa. June 1979.
[Mays80] Mays, E.

"Failures in Natural Language

Systems: Applications to Data Base Query
Systems". Proc. 1980 National Conference on
Artificial Intelligence, Stanford CA, August
1980.

[Mays82] Mays, E. "Monitors as Responses to
Questions: Determining competence". Proc.
1982 National" Conference on Artificial
Intelligence, Pittsburgh PA, August 1982.

[Mays83] Mays, E. "A Modal Temporal Logic for

Reasoning about Change". Proc. 1983

Association for Computational Linguistics

Conference, Cambridge MA, June 1983.

[McCoy83] McCoy, K. "Correcting Misconceptions:
What to say when the wuser is mistaken".
Submitted to CHI '83, Human Factors in
Computing Systems, Boston MA, December 1983.

[Mercer82] Mercer, R. & Reiter, , R. "The
Representation of Presuppositions Using
Defaults". Proc. CSCSI-82, Saskatoon, Sask.,
Canada, May 1982.

[Webber83] Webber, B., Joshi, A., Mays, E. &

McKeown, K. "Extended Natural Language
Database Interaction". Int. J. Computers &

Mathematics, Spring 1983.

Figure 1

