
THE XCALIBUR PROJECT:

A Natura l Language In te r face To Exper t Sys tems

Ja ime G. C a r b o n e l l , W. Mark Boggs , M ichae l L. Mau ld in
Computer Science Department, Carnegie-Mellon University,

Pittsburgh, PA 15213

Abs t rac t

The inevitable proliferation of expert systems underscores the
need for robust, friendly interfaces requiring minimal user
training. The objective of the XCALIBUR project is to meet this
need by providing natural comprehension and generation in the
context of a focused mixed-initiative dialog. The XCALIBUR
architecture is discussed, including its three central components
(parser, generator and information manager), its methods of
handling ellipsis and imperfect input, and its relation to the
underlying expert system.

1. In t roduc t ion
As expert systems mature into software products for a wide

spectrum of users, the availability of flexible user interfaces
becomes critically important. Natural language interfaces
become particularly appropriate for the following reasons:

© No extra cognitive demands are placed on the user,
allowing him or her to focus on the problem at hand.

• The domain specificity of most expert systems provides
strong constraints on the vocabulary, actions and
concepts that may be expressed in natural language. This
renders an otherwise open-ended task tractable.

• Recent advances in multi-strategy parsing, fail-soft
recovery techniques, ellipsis handling and the like, help to
make flexible natural language communication a practical
reality [2, 6].

This paper describes the XCALIBUR project, whoso objective
is to provide flexible natural language access (comprehension
and generation) to the XSEL expert system [11]. XSEL, the Digital
Equipment Corporation's automated salesman's assistant,
advises on selection of appropriate VAX components and

P e t e r G . A n i c k
Digital Equipment Corporation

Hudson, MA 01749

produces a sales order for automatic configuration by the R1
system [10]. Part of the XSEL task is to provide the user with
information about DEC components, subsuming the data-base
query task. However, unlike a pure data base query system, an
expert system interface must also interpret imperatives
requesting actions, understand assertions of new information,
and carry out task-oriented dialogs (such as those discussed by
Grosz [5]). XCALIBUR, in particular, deals with commands to
modify an order, as well as information requests about its present
task or its data base of VAX component parts. XCALIBUR will
also process clarificational dialogs when the underlying expert
system (i.e. XSEL) requires additional information or advice, as
illustrated in the sample dialog below:

>What is the largest 11730 fixed disk under $40,000?

The rp07 aa is a 516 MB fixed pack. disk that costs
$38,000.

>Add /wo rp07-aa disks to my order.

Line item 1 added: (2 rp07-aa)

>Add a printer with graphics capability

fixed or changeable font?

>fixed font

lines per minute?

>make it at least 200, upper/lowercase.

Ok. Line item 2 added: (1 Ixy11 -sy)

>Tell me about the Ixyl 1
The Ixyl 1 is a 240 LPM line printer with plotting capability

Except for the system-driven clarification interchange, which is
beyond XCALIBUR's present capabilities, this dialog is indicative
of the present state of our system.

654 J. Carbonell et al.

The rest of this paper discusses the major modules of
XCALIBUR: the DYPAR II parsing system, the information
manager and the natural language generator. Since the major
contribution of XCALIBUR thus far is perhaps the integration of
diverse techniques into a working system, we focus more on the
engineering aspects of our project. We do mention, however,
some advances we have not reported elsewhere, including
expectation-based error-recovery, case-frame ellipsis resolution,
and focused natural language generation. Figure 1 provides a
schematic view of XCALIBUR, and the following sections present
some details of the internal workings of XCALIBUR as it
processes a sample information request.

2.The DYPAR-ll Module
The original DYPAR natural language parser [2] was built to

test the feasibility of incorporating multiple parsing strategies into
a uniform computational framework. DYPAR-II is an extension of
the DYPAR parser that incorporates recursive case-frame
instantiation, in addition to the semantic-grammar, pattern
matching and global transformation strategies present in the
original system. Through multi-strategy parsing, a measure of
flexibility, robustness and conciseness can be achieved that is
not exhibited in more rigid single-strategy systems.1 In this
section we mention some of the highlights of the DYPAR II
system.

2 . 1 . The Recurs i ve Case Frame M e t h o d

A case frame consists of a header pattern and a set of marked
or positional cases with (semantic and syntactic) expectations for
possible case fillers. Cases and case frames correspond to
semantic units in the problem domain. Although different classes
of case frames, such as action-verb case frames and
complex-noun case frames, play different syntactic roles, all are
recognized by the same interpreter.

Efficiency and robustness is achieved by combining bottom up
recognition of semantic patterns (corresponding to case
headers, for instance), with top down expectation-driven
instantiation once a case-frame has been recognized. Moreover,
discourse level expectations and constraints can easily be
integrated into the expectation and recognition mechanisms.

The parsing method used by DYPAR-II is summarized below:2

1. If dialog expectations exist at the case-frame level, activate
those case frames and skip to step 3. (Then, if step 3 fails
— i.e., no expectations are confirmed — return to step 2).

2. Apply a fast scanning unanchored match of the input (or
input fragment) against a set of header patterns, which
have been cross-referenced and precompi led into a
discrimination network for efficiency. Each pattern is
associated with one or more case frames, and serves to
stait a complete parse attempt in that frame's context.
Failure of this step may indicate that the utterance is an
ellipsed phrase.

3. If steps 1 or 2 succeeded, use the Case frame (and
syntactic transformations) in a top down fashion to
generate syntactic and semantic expectations to recognize
the rest of the input. Here is where the system recurses into
embedded patterns or case frames and where expectation-
driven error recovery comes into play [1].

The reader is referred to [7] and [6] for a discussion of the multi-strategy
approach. DYPAR-II is a step on the way to the as yet unfinished MULTIPAR
system, which carries the multi strategy approach to its logical conclusion —
applying problem solving techniques to select dynamically the appropriate
knowledge and strategy to apply as the parse unfolds.

2
The computational mechanisms and knowledge structures of DYPAR-II are

reported in greater depth in [7] and [3].

4. Finally, the completed parse is mapped into a form suitable
for the information manager. This second mapping gives
the system a measure of portability to different domains.

2 .2 . Expec ta t i on -Based Error Recovery

In the absence of a globally consistent parse of the input
utterance, an expectation-based error recovery process is
triggered, similar to the methods proposed by Granger [4] and
Carbonell [I] . Errors can range from ungrammaticalities and
interjections to unknown words and misspellings. Our scheme
calls for attempting corrections that satisfy pending expectations
— and these can be ranked according to the strength of the
expectation and the likelihood of occurrence for that particular
error. Thus far, spelling correction is our only fully operational
recovery strategy. A word that can be corrected to fulfill an
expectation receives much higher priority than a context-free
spelling correction. For instance, the correction prot -> port in
"Add a dual prot disk" is made because a disk descriptor is
expected.3 Furthermore, semantically anomalous but "correctly
spelled" words can be considered as candidates for correction
(as in "Copy the flies in my directory to the backup tape"), but
these corrections are more risky.

3. The Information Handler
The information handler mediates the communications

between the parser, the underlying expert system, and the
natural language generator. Currently, the underlying system is a
stripped-down version of the real XSEL, including access to a
relational database of component descriptions, and the capability
to create and modify a dynamic database of ordered "l ine-items"
(quantily-partname pairs), but lacking the expertise to suggest
components to the user or check an order for configurability.

3 . 1 . I n te rna l Rep resen ta t i on

When XSEL is ready to accept input, the information handler is
passed a message indicating the case frame or class of case
frames expected as a response. For our example, assume that a
command/query is expected, the parser is notified, and the user
enters

>What is the price of the 2 largest dual port fixed media
disks?

This representation embeds the case frame information
extracted during the parse within primitives understood by the
information-handling routines and XSEL data adapter. The
SELECT field describes the selection criteria for a set of
database items; the OPERATION field describes operations to be
performed on the set, such as ordering and truncating, the
PROJECT field contains the attribute(s) of principal interest; and
the INFO-SOURCE field contains the database from which the
objects are to be selected. In the example, the query does not
explicitly name an INFO-SOURCE, which could be the
component database, the current set of line-items, or a set of
disks brought into focus by the preceding dialog.

Using a small dictionary, the TOPS20 SPFLL program generated 13 possible
corrections to the word "prot" Clearly expectations reduce search, especially in
the presence of compound errors or potentially ambiguous input.

J. Carbonell et al. 655

The information handler is responsible for filling in defaults,
modifying, and adding fields to the parser output to satisfy the
needs of the expert system routines that execute the commands.
It contains tables for mapping ambiguous attribute names (eg.
"s ize", "speed") into the field names appropriate to the selected
object case frames, and for applying default database matching
functions when these are not explicitly mentioned in the input.
For example, in most contexts, "300 MB disk" means a disk with
"greater than or equal to" 300 MB, not strictly "equal t o " . A
" large" disk refers to ample memory capacity in the context of a
functional component specification, but to large physical
dimensions during site planning. We plan to extend the
knowledge sources available to the information handler to
support anaphora resolution and the more subtle pragmatic
decisions that interfaces to expert systems require. We are also
in the process of augmenting the internal representation
language with recursion to handle joins/composit ion of
attributes, as in "the cost of the controller for the disk."

4. Case-frame ellipsis
The XCALIBUR parser handles ellipsis at the case-frame level.

Its coverage appears to be a superset of the LIFER/LADDER
system [8, 9] and the PLANES ellipsis module [13]. Although it
handles most of the ellipsed utterances we encountered, it is not
meant to be a general linguistic solution to the ellipsis
phenomenon.

4 . 1 . Examples

The following examples illustrate the types of sentence
fragments our case-frame algorithm can parse. For brevity,
assume that each sentence fragment occurs immediately
following the initial query

INITIAL QUERY: "What is the price of the three largest
single port fixed media disks?"

"Speed?"

"Two smallest?"

"How about the price of the two smallest?"

"smallest with dual port"

"Speed with two ports?"

"Disks with two ports."

In the representative examples above, punctuation is of no help,
and syntax alone is of limited utility. For instance, the last three
phrases are syntactically similar (indeed, the last two are
indistinguishable), but each requires that a different substitution
be made on the preceding query. All three substitute the number
of ports in the original SELECT field, but the first substitutes
"ascending" for "descending" in the OPERATION field, the
second substitutes "speed" for "pr ice" in the PROJECT field, and
the third merely repeats the case header of the SELECT field filler.

4 . 2 . The El l ips is Reso lu t ion Me thods

». Ellipsis is resolved differently in the presence or absence of
strong discourse expectations. In the former case, the discourse
expectation rules are tested first, and, if they fail to resolve the
sentence fragment, the contextual substitution rules are tried. If
there are no strong discourse expectations, the contextual
substitution rules are invoked directly.

Exemplary discourse expectat ion rule:

I F : The system genera ted a query f o r c o n f i r m a t i o n or
d i s c o n f I r m a t i o n o f a proposed va lue o f a f i l l e r o f
a case in a case frame in f o c u s ,

THEN: EXPECT one or more of the f o l l o w i n g :
1) A c o n f i r m a t i o n or d i s c o n f I r m a t i o n p a t t e r n .
2) A d i f f e r e n t but s e m a n t i c a l l y p e r m i s s i b l e f i l l e r o f

the case frame 1n q u e s t i o n (o p t i o n a l l y naming the

a t t r i b u t e o r p r o v i d i n g the case m a r k e r) .
3) A comparat ive or e v a l u a t i v e p a t t e r n .
4) A query f o r p o s s i b l e f i l l e r s or c o n s t r a i n t s on

p o s s i b l e f i l l o r s o f the case i n q u e s t i o n . [I f
t h i s e x p e c t a t i o n i s c o n f i r m e d , a s u b - d i a l o g i s
e n t e r e d , where p r e v i o u s l y focused e n t i t i e s romain
i n f o c u s .]

The following dialog fragment, presented without further
commentary, illustrates how these expectations come into play in
a focused dialog:

>Add a line printer with graphics capabilities.

Is 150 lines per minute acceptable?

>No, 320 is better Expectations 1, 2 & 3
(or) other options for the speed? Expectation 4
(or) Too slow, try 300 or faster Expectations 2 & 3

The contextual substitution rules exploit the semantic
representation of queries and commands discussed in the
previous section. The scope of these rules, however, is limited to
the last user interaction of appropriate type in the dialog focus,
as illustrated in the following example:

Exemplary Contextual Subst i tu t ion Rulo:

I F : An a t t r i b u t e name (o r c o n j o i n e d l i s t o f a t t r i b u t e
names) i s p rosent w i t h o u t any co r respond ing f i l l e r
or case header, and the a t t r i b u t o is a s e m a n t i c a l l y
p e r m i s s i b l e d e s c r i p t o r of the case frame 1n the SELECT
f i e l d o r the l a s t query i n f ocus ,

THEN: S u b s t i t u t e the new a t t r i b u t e name f o r the o l d f i l l e r
o f the PROJECT f i e l d of the l a s t quory .

For example, this rule resolves the ellipsis in the following
utterances:

>What is the size of the 3 largest single port fixed media
disks?

>And the price and speed?

XCALIBUR currently has eight rules similar to the one above,
and we have found several additional ones to extend the
coverage of ellipsed queries and commands (see [3] for a more
extensive discussion). It is significant to note that a small set of
general rules exploiting the case frame structures covers most
instances of commonly occurring ellipsis, including all the
examples presented earlier in this section.

5. The Natural Language Generator
Generation proceeds in three phases: (1) a request from the

parser or information handler is converted into a conceptual
dependency graph, (2) the verb is selected and the slots of the
CD graph are mapped into a case frame, and (3) the case frame
is rendered into English. Only the first stage of this process is
domain dependent. Stage two is performed by a case frame
builder similar to that in Goldman's BABEL system [12]. The third
stage includes dialogue modeling of objects already mentioned,
and pronominal references are built for noun phrases that have
already been said. Throughout these stages, focus information is
used to guide the generation process.

5 . 1 . Why Na tu ra l Language O u t p u t

XCALIBUR chooses sentential output over a tabular form when
a table would be degenerate. For example, suppose the user
requests the price of all 120 volt graphics terminals costing less
than 3200 dollars. There is only such terminal, the vt105-ma, so
XCALIBUR prints:

The vt105-ma is a 120 volt terminal with graphics
capability that costs 3100 dollars.

656 J. Carbonell et al.

5 .2 . An Example

Consider the following user input:

"What is the price of the largest dual port fixed
media disks?"

After parsing and database look up, the information handler
passes the following request to the generator:

(r e n d e r - r e s u l t
(c l a s s (d i s k))
(a c t o r - l i s t (rp07 ba))
(p r o j e c t i o n - a t t r (p r i c e))
(f ocus (p o r t s d i s k - p a c k - t y p e

number -o f -megaby tes)))

The domain adaptor then constructs the following conceptual
dependency graph. CD macros such as CD-BE or CD-CONNECT
are used to represent concepts that are not CD primitives. The
following CD graph is generated:

(cd-be
(a c t o r (rpO7-ba (r e f (d e f))))
(o b j e c t

(d i s k (f ocus (p o r t s media number-of-megabytes p r i c e))
(r e l (c d - c o s t (a c t o r (d i s k))

(o b j e c t (d o l l a r (coun t (43140))
(focus (c o u n t))))))))

(tense (p r e s)))

To prevent noun phrases from accreting large adjective lists,
some information is placed into relative clauses. The generator
uses focus information to determine the placement of various slot
fillers. Hers the price of the disk has been moved into a relative
clause for emphasis. Currently there are three levels of focus:
out of focus, in focus, and explicitly requested by user.

After the request structure has been converted into a CD
graph, the case frame builder selects a verb using rules similar to
Goldman's BABEL generator, and maps the CD slot fillers into
individual cases. The sentence structure is then generated using
a recursive ATM grammar. Finally the individual noun phrases
are filled out, and any relative clauses are generated by recursive
calls to the generator.

The rp07-ba is a dual port fixed pack 516 MB disk
that costs $43.140 dollars.

5.3 . P ronom ina l i za t i on

Simple pronominalization is performed by the noun phrase
builder. As each object is rendered into a noun phrase, a
database of all ob ject /noun phrase mappings is checked, and
the shortest unique form of the noun phrase is used if the
information has already been rendered in the current session.
Thus a v t 1 0 0 - a a might be represented by any cf the following
noun phrases:

• the soft copy terminal with optional advanced video.
• the soft copy terminal.
• the terminal.
• it.

6. Concluding Remark
XCALIBUR is still in its early stages of development, but it

already surpasses the capabilities of most if not all existing
natural language systems as a flexible expert systems interface.
Future developments are governed by the dual (and
complementary) objectives of providing the requisite functionality
for a robust expert system interface, and investigating focused
task-oriented mixed initiative dialogs with users of differing
abilities and interests.

7. References
1. Carbonell, J. G., "Towards a Self-Extending Parser,"

Proceedings of the 17th Meeting of the Association for
Computational Linguistics, 1979, pp. 3-7.

2. Carbonell, J. G. and Hayes, P. J., "Dynamic Strategy
Selection in Flexible Parsing," Proceedings of the 19th
Meeting of the Association for Computational Linguistics,
1981.

3. Carbonell, J. G., Boygs, W. M., Mauldin, M. L. and Anick,
P. G., "XCALIBUR Progress Report '/ 1: Overview of the
Natural Language Interface," Tech. report, Carnegie-
Mellon University, Computer Science Department, 1983.

4. Granger, R., "FOUL-UP: A Program that Figures Out
Meanings of Words from Context," Proceedings of
IJCAI-77, 1977, pp. 172-178.

5. Grosz, B. J., The Representation and Use of Focus in
Dialogue Understanding, PhD dissertation, University of
California at Berkeley, I977, SRI Tech. Note 151.

6. Hayes. P. J., and Carbonell, J. G., "Multi-Strategy
Construction-Specific Parsing for Flexible Data Base
Query and Update," Proceedings of the Seventh
International Joint Conference on Artificial Intelligence,
August 1981, pp. 432-439.

7. Hayes. P. J. and Carbonell, J. G., "Multi-Strategy Parsing
and it Role in Robust Man-Machine Communicat ion,"
Tech. report CMU-CS-01-118, Carnegie-Mellon University,
Computer Science Department, May 1981.

8. Hendrix, G. G., Sacerdoti, E. D. and Slocum, J.,
"Developing a Natural Language Interface to Complex
Data," Tech. report Artificial Intelligence Center., SRI
International, 1976.

9. Hendrix, G. G., "The LIFER Manual: A guide to Building
Practical Natural Language Interfaces," Tech.
report Tech. note 138, SRI, 1977.

10. McDermott, J., " R 1 : A Rule-Based Configurer of
Computer Systems," Tech. report, Carnegie-Mellon
University, Computer Science Department, 1980.

11. McDermott, J., "XSEL: A Computer Salesperson's
Assistant," in Machine Intelligence 10, Hayes, J., Michie,
D. and Pao, Y-H., eds., Chichester UK: Ellis Horwood Ltd.,
1982", pp. 325-337.

12. Schank, R. C, Conceptual Information Processing,
Amsterdam: North-Holland, 1975.

13. Waltz, D. L. and Goodman, A. B., "Writ ing a Natural
Language Data Base System," Proceedings of the Fifth
International Joint Conference on Artificial Intelligence,
1977, pp. 144-150.

