
A Framework for Processing Correct ions 
in Task-Oriented Dialogues 

Phi l ip J . Hayes and Ja i rnc G . C a r b o n o l l 

Carnegie-Mellon University 

Pittsburgh, PA 15213 

A b s t r a c t 

Mundane discourse abounds with utterances referring to other 
utterances. These meta-language utterances appear with 
surprising frequency in task-oriented dialogues, such as those 
arising in the context of a natural language interface to an 
operating system. This paper identifies some simpler types of 
dialogue-level meta language utterance and provides a 
computational framework to process such phrases in the context 
of a case-frame parser exploiting strongly-typed domain 
semantics. 

1 . I n t r o d u c t i o n 
ivteta-language utterances, i.e. utterances about other 

utterances in the discourse context, have received little attention 
in the computational linguistic literature. Yet, as a recent attempt 
[1] to create a taxonomy of discourse-level metal inguist ic 

devices shows, such utterances are ubiquitous in all kinds of 
dialogues, including task-oriented man-machine dialogues 
through a natural language interface. Indeed, in a recent 
informal experiment with a simulated natural language command 
interface to a computer operating system, we found that one out 
of every twelve inputs was a meta language utterance of one type 
or another. 

Meta language utterances fall into two primary categories, 
intra sentential and extra sentential (dialogue level) utterances. 
The former class may be divided into referential and interpretive 
meta-linguistic devices. For instance: 

"Load, read and rewind the tape in tha t o rde r . " 

is a typical referential intra-sentential meta language utterance of 
the kind that has received some attention in the linguistics 
literature [8, 6]. "In that order" refers to the surface structure 
sequencing of the lexical items denoting the commands. 
Interpretive meta language utterances make a statement about 
how another portion of that utterance should be interpreted, for 
instance: 

" M e t a p h o r i c a l l y s p e a k i n g , John's ideas are 

out of this wor ld. " 

Discourse-level metal inguist ic utterances refer to utterances 
or portions of utterances outside the scope of the immediate 
sentence. For instance, the third utterance in the dialogue 
fragment below is essentially a correction of a previous 
utterance. 

USER: Print gauss.rel on the diablo printer. 
SYSTEM: GAUSS.REL is not a printable file. 
USER: Oops, I meant gauss.for 

This paper focuses on developing a process model for certain 
classes of dialogue-level meta language utterances, which occur 
in task-oriented dialogues with greater frequency than intra-
sentential ones. With the exception of the analysis and 
classification of dialogue-level metal inguist ic utterances i n [1 ] , 
there is little prior analysis of this phenomenon, although work in 

discourse focus [2, 10] and indirect speech acts [9, 7] is of direct 
relevance in analyzing the general phenomenon. 

We currently have no general process-level theory for meta­
language comprehension, but we have developed a framework 
for dealing with an important common subset of discourse-level 
meta language utterances: those that repair errors or 
misunderstandings that arose earlier in the dialogue, such as 

"I meant to say transfer, not copy" , 

or 

"Cancel that!". 

in respose to an undesired action or a misinterpretation. 

This class of utterances, which we call correction utterances, is 
particularly important for applied natural language because, at 
the present state of the art, we must expect a natural language 
interface to misint3rpret its user from time to time, and in any 
case, a friendly interface should always provide its user with an 
easy way to change his mind. In fact, in the informal experiment 
mentioned above, corrections accounted for more than half of all 
the metalanguage utterances. 

The rest of this paper, then, will describe a framework for the 
recognit ion and interpretation of correction utterances in applied 
natural language systems, making clear the assumptions on 
which it is based that make it less than adequate as a model of 
correction in unrestricted dialogue. The techniques described 
here apply in the context of a case-frame parser with bottom-up 
constituent recognition and strong semantic typing, such as 
those described in [4, 3]. 

2. Types of Co r rec t i on and the i r 
I n te rp re ta t i on 

Suppose the following interaction occurs with a natural 
language interface to a computer operating system: 

USER: Transfer report.mss to the backup directory 
SYSTEM: REPORT.MSS inserted in the backup, 

and removed from the current directory. 
USER: I meant copy not transfer 

The intention of the user's second input is clear: he wishes the 
system to behave as though his previous input had been "copy 
report.mss to the backup directory". To comply with this wish, 
the system has not only to execute the new command the user is 
specifying, but it also has first to undo the consequences of the 
original command that is being overridden. We call this kind of 
correction a replacement. The general form of a replacement is 
that the user specifies an earlier command and a change to be 
made to it, and the corresponding response from the system is to 
undo the effects of the specified command and to execute the 
changed version. 

Note that while this response is the appropriate one from the 
computer system in this situation, this would not be the case in 
general. An instructor trying to teach the user how to use the 
system or a casual observer would react in quite different ways to 



P. Hayes and J. Carbonell 669 

the same utterance. In general, as Carbonell [1] observes, the 
response to a meta-language utterance will be determined by 
many factors including the relative social roles of the dialogue 
participants and their relative capability for action. In our 
framework for interpreting correction utterances, we avoid 
having to deal with these complications by assuming the frozen 
social relation of master/slave between user and computer, and 
assuming that the computer is the only one with direct capability 
for action. It is these built-in assumptions that make the 
framework we are presenting somewhat less than a general 
solution of the interpretation of referential inter-sentential 
correction utterances, much less all meta language utterances. 
However, the simplifying assumptions do enable us to develop a 
computationally tractable model for a subset of meta-language 
constructions of considerable practical importance. 

Means of identifying prior utterances and signalling desired 
replacement operations are not always as straightforward as in 
the example above. Consider, for instance: 

USER: transfer report.mss to the backup directory 
SYSTEM: REPORT.MSS inserted in the backup, 

and removed from the current directory. 
USER: I meant report.press 

In this case, the command to be replaced is the same, but the 
user identifies it and the change to be made to it implicitly. A 
paraphrase of what he intended is "I meant to type 'report.press' 
instead of 'report.mss' in the previous command" . It is very 
common to specify a replacement by mentioning a replacement 
object without mentioning the command in which the 
replacement is to be done, and often as in the example above 
without even mentioning the object to be replaced. In general, 
this can provide rather difficult reference problems requiring the 
use of intention modelling and focus tracking, but for applied 
natural language systems where the objects typically fall into one 
of a small number of distinct semantic types, the reference 
problem is considerably simplified. Our method for finding an 
object to be replaced where none is mentioned simply consists of 
selecting the last mentioned object whose semantic type is 
compatible with the replacement object, and selecting the 
utterance in which it participates as the one on which the 
replacement is to be done. This process is analogous to 
Henndrix's simple method of resolving ellipsis ; in the 
LADDER/LIFER data-base query interface [5]. 

A second broad class of correction utterances is that of 
cancellations. Examples are: 

USER: Transfer report.mss to the backup directory 
SYSTEM: REPORT.MSS inserted in the backup, 

and removed from the current directory. 
USER: No, cancel that transfer! 

Just like replacements, cancellations refer to a previous 
command which the user wishes undone, the difference being 
that there is no new changed command to be executed in its 
place. In both cases, the reference may either be explicit or by 
mention of an object that was part of the command or (for 
replacements) by mention of an object of similar type. 

3. Implementing the Framework 
This section presents our plans for an implementation to deal 

with correction utterances in the context of a limited-domain 
natural language system. The algorithm we propose has four 
main steps: 

1. Identify the input as a replacement or cancellation, and 
isolate the specif ication of what is to be replaced or 
cancelled. 

2. Identify the earlier input upon which the replacement or 

cancellation operation will be performed. And, in the case 
of replacement, determine what part of the utterance 
should be replaced. 

3. Determine whether the earlier input caused lasting effects, 
and undo them if possible and necessary1. 

4. In the case of a replacement, redo the earlier input after 
making the appropriate modifications. 

Let us consider each of these steps in turn. 

To identify meta-language utterances and isolate their 
important constituents, we plan to use the same case-frame 
based parsing procedure we have been developing for general 
use in restricted domain natural language interfaces [4 ,3 ] . 
Essentially the parser combines a top-down case frame 
instantiation process exploiting strongly typed semantic 
constituents in restricted domains, with a flexible bottom-up 
pattern matcher that recognizes individual constituents 
according to the semantic constraints attached to the slots of the 
case frames. The pattern matcher may recurse in its 
constituents, thereby providing at least the power of a context-
free grammar. 

For correction utterances, there would be two case frames, 
Replace and Cancel, which would be identified by sets of 
patterns instantiated by phrases such as "I meant to say", "It 
should have been" for Replace, and "Forget it", "I didn't intend 
t o " for Cancel. Replace has two slots, Replacement and 
ToBeReplaced; the former is mandatory and unmarked; the latter 
is optional and marked by such phrases as "in place of" and 
"rather than" . Cancel has only one optional unmarked slot, 
ToBeCancelled. 

The parsing process would involve translating inputs with 
phrases that identified them as one of the two types of correction 
utterances into instantiated versions of these case frames, thus 
"I meant edit rather than delete" would result in 

[CaseFrame: Rep lace 
R e p l a c e m e n t : " e d i t " 
ToBeRep laced : " d e l e t e " ] 

while "Forget it!" would result in 

[CaseFrame: Cance l 
T o B e C a n c e l l e d : UNSPECIFIED-REFERENT] 

The details of the notation are not important here, just the 
observation that the relevant parts of the input are being isolated. 

After parsing, the next step is to identify which prior input is 
being replaced or cancelled, and in the case of replacement to 
decide how it should be modified. The procedure is different 
depending on whether the ToBeReplaced (ToBeCancelled) slot 
of the input parse is specified. If this slot is specified, then the 
previous input being modified is taken to be the last one in which 
the slot filler was mentioned, and for a Replace, the input is 
modified by replacing ToBeReplaced by Replacement. Thus for 
"I meant foo.bar rather than bar. foo", the last operation involving 
bar.foo would be replaced by one with foo.bar substituted in 
place of bar.foo. While for "I didn't mean to delete i t" , the last 
delete operation would be indicated. If, on the other hand, the 
ToBeReplaced (ToBeCancelled) slot is not specified, there are 
several possible methods of identifying the input to be modified: 

• If it is a Replace, take the most recent input involving an 
object of the same semantic type as the Replacement slot, 
which must always be specif ied, and substitute the 
Replacement for that object. So in "I meant to say 

If the user wanted a different directory typed and has so specified via his 
meta utterance, no 'undoing' operation is required. However, if he wanted a 
different file copied, the new copy of the file should be deleted in order to undo 
the consequences of the previous action. 



670 P. Hayes and J. Carbonell 

foo.bar", the Replacement is foo.bar, a file, and so the 
input to be modified is the last input mentioning a file, and 
the modification is to substitute foo.bar for that file. 

• If there is a recent error message, modify the input that 
generated the error message, replacing the object of 
corresponding semantic type in the parse of the input 
utterance that generated the error. So, if "edit bar.foo" 
generates the error message "Non-Existent File: bar.foo", 
an input of "I meant to say foo.bar" would modify the edit 
operation by replacing the offending object, bar.foo, with 
the Replacement filler, foo.bar. 

• Otherwise, modify the last input. In a case like "I didn't 
mean that", there seems little other choice. 

After identifying and. if appropriate, modifying the relevant 
previous input, the next step is to undo any lasting effects of the 
action taken. Just what this means will vary depending on the 
operation specified by the input, and we will maintain a table of 
inverse operations, so that determination of the appropriate 
inverse will be straightforward. There are three main classes: 

c There is no inverse and there are no harmful side-effects, 
e.g. type (a file on the terminal). 

• There is a direct inverse, e.g. copy (a file) would have 
deleting the copy as its inverse. In this case, there would 
also be a mapping specifying how the arguments of the 
inverse operation would correspond to those of the original 
operation. 

• The operation had significant, lasting side-effects that 
cannot be undone, e.g. list (a file on the line printer). In this 
case, the only thing that can be done is to tell the user the 
sad news, and ask if he wants to proceed with the modified 
operation anyway. 

The final step in the overall algorithm applies only to 
replacements, and not to cancellations. It simply consists of 
executing the modified operation that was constructed in the 
second step. Because of the heuristic nature of the entire 
procedure, this execution of the modified operation and/or the 
undoing of the consequences of the modified operation should 
always for safety's sake be preceded by a request for the user's 
approval. 
4. Problems 

The procedure described in the previous section will handle as 
it stands most of the replacements and cancellations that we 
have encountered. Nevertheless, there are still many loose ends 
to be tied down and some problems to be solved, such as: 

• Deep semantics of actions: A few instances of meta­
language utterances require a much deeper understanding 
of non-linguistic actions and reasoning about their 
consequences than our present systems can handle. For 
instance, consider the following dialogue fragment: 

USER: List gauss.for in the diablo printer. 
SYSTEM: GAUSS.FOR queued for printing. 
USER: Is GAUSS.FOR being printed? 
SYSTEM: GAUSS.FOR is 25th on the queue. 
USER: Forget it then! 

The action that must be 'forgotten' is printing the file, not 
the last request for information about the status of the print 
queue. Clearly, knowledge of pending actions with 
irreversible consequences versus completed actions 
without physical consequences is necessary to resolve this 
example. 

• Scope of the Undoing: If the user has performed several 
consecutive operations on file foo.bar, and says, "No, I 
meant bar.foo", he probably intends the whole sequence 
of operations to be undone and repeated for bar.foo, rather 

than just the last one. While this would be relatively 
straightforward modification to the existing scheme, there 
are more difficult cases. Whai happens, for instance, if all 
the operations on foo.bar are not consecutive? 

• Undoing versus Repetition: If the user says "Use 
foo.bar instead of bar.foo", does he mean that the last 
operation on bar.foo should be undone, or merely repeated 
using foo.bar in place of bar.foo? It is clear that a system at 
the level we are proposing cannot hope to make the 
appropriate selection in a consistent manner, where 
'appropriate' is defined to be the choice made by a human 
in the same situation. However, if all the alternate.s in an 
ambiguity are recognized and represented, user queries to 
resolve the interpretation problems could be generated in a 
focused manner [4]. 

• Level of ell ipsis: With such a facility, a user might be 
tempted to use ellipsis at a level below the normal lexical 
level of the parser. For instance, he might follow "delete 
foo.mss" with "No, I meant .press", meaning undelete 
foo.mss and delete foo.press. Here .press may well be a 
unit smaller than the lexical items the system is capable of 
handling. He might even say, "No, I meant the press file", 
the proper processing of which would entail the system 
knowing that files with extensions '.mss' are often 
processed into files with the same name, but extension 
'.press', by a certain text formatting program, and that the 
latter kind of files are called press files. 

5. References 
1. Carbonell, J. G., "Beyond Speech Acts: Meta-Language 

Utterances, Social Roles, and Goal Hierarchies," 
Preprints of the Workshop on Discourse Processes, 
Marseilles, France, 1982. 

2. Grosz, B. J., The Representation and Use of Focus in 
Dialogue Understanding, PhD dissertation, University of 
California at Berkeley, 1977, SRI Tech. Note 151. 

3. Hayos, P. J., and Carbonell, J.G., "Multi-Strategy 
Construction Specific Parsing for Flexible Data Base 
Query and Update," Proceedings of the Seventh 
International Joint Conference on Artificial Intelligence, 
August 1981, pp. 432-439. 

4. Hayes, P.J. and Carbonell, J. G., "Multi-Strategy Parsing 
and its Role in Robust Man-Machine Communication," 
Tech. report CMU-CS 81 -118, Carnegie-Mellon University, 
Computer Science Department, May 1981. 

5. Hendrix, G. G., Sacerdoti, E. D. and Slocum, J., 
"Developing a Natural Language Interface to Complex 
Data," Tech. report Artificial Intelligence Center., SRI 
International, 1976. 

6. Joshi, A. K., "Use (or Abuse) of Metalinguistic Devices", 
Unpublished Manuscript. 

7. Perrault, C. R., Allen, J. F. and Cohen, P. R., "Speech 
Acts as a Basis for Understanding Dialog Coherence," 
Proceedings of the Second Conference on Theoretical 
Issues in Natural Language Processing, 1978. 

3 Ross, J. R., "Metaanaphora," Linguistic Inquiry, 1970. 

9. Searle, J. R., "Indirect Speech Acts," in Syntax and 
Semantics, Volume 3: Speech Acts, P. Cole and J. L. 
Morgan, eds., New York: Academic Press, 1975. 

10. Sidner, C. L., Towards a Computational Theory of Definite 
Anaphora Comprehension in English Discourse, PhD 
dissertation, MIT, 1979, AI-TR 537. 


