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- Abstract -

Narrative structures can only be defined in 
terms of some internal memory representation, but 
narrative complexity is more properly characterized 
by information processing requirements. Story 
grammars, plan and goal hierarchies, and causal 
chain representations a l l provide a sense of 
structure which is largely removed from the 
processes that produce or access that memory 
representation. In th is paper we introduce the 
notion of algorithmic equivalence as a means of 
generating more algori thmical ly-oriented taxonomies 
for memory representations. Using memory 
representations based on plot un i ts , we define two 
narratives to be algori thmical ly equivalent if they 
can be ef fect ive ly summarized by the same re t r ieva l 
process. This perspective on representational 
strategies is an especially natural one from a 
processing point of view, since the computational 
complexity of a part icular information processing 
task must be measured in terms of the algorithms 
involved . 

1. The Plot Unit Approach to Summarization 

A representational strategy for narrative text 
has been developed to account for summarization 
behavior using re la t i ve ly simpl ist ic re t r ieva l 
algorithms. When the memory representation for a 
narrative is encoded in terms of plot units 
[Lehnert 1980; 1981], it is possible to invoke 
re t r ieva l algorithms that locate the central most 
important concepts of the narrative by examining 
structural features of cycl ic graphs. Each node in 
the graph corresponds to a plot unit ins tan t ia t ion , 
and two nodes are connected by an arc when they 
share a common internal component. 

A plot unit is a fixed configuration of 
smaller components called affect states. There are 
three affect state types designed to d i f fe rent ia te 
gross subjective states within a single character: 
posit ive states, negative states, and neutral 
mental states. These affect states emphasize 
emotional reactions to events and states rather 
than goal-oriented planning behavior, and each 
character in a narrative can be tracked in terms of 
an "af fect state map" which chronologically records 
the subjective mental states for that character. 

Once an affect state map has been produced 
which tracks the major characters of a narrat ive, 
we can look for instances of specif ic plot units 
within that representation. A "top leve l " plot 
unit instant iat ion is one that is not subsumed 
( f u l l y contained) by any other plot unit 
ins tant ia t ion . When a l l the top level units are 
recognized, we create a plot unit graph in which 
the nodes of the graph correspond to top level plot 
unit ins tant ia t ions. Two nodes of the graph are 
then connected by an arc whenever they share at 
least one common affect state. This graph 
structure provides a level of memory representation 
that is especially well-suited for text 
summarization [Lehnert, Black, & Reiser 1981; 
Reiser, Lehnert & Black 1981; Gee & Grosjean 1982; 
Reiser, Black & Lehnert 1982; Lehnert, Alker, & 
Schneider 1983]. Nodes which are s t ruc tura l ly 
central to th is graph are expected to provide us 
with the conceptual content for a good summary. 

For example, suppose John asks Susan to marry 
him and she says no. This episode would be 
represented by the denied request un i t : 
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John Susan Karen 

I t i s d i f f i c u l t to argue fo r the power o f t h i s 
represen ta t ion when we are summarizing a two 
sentence s t o r y , but p l o t u n i t graphs can invo lve 
hundreds of u n i t s . For such complex n a r r a t i v e s , we 
r e l y on s t r u c t u r a l fea tu res o f the p l o t u n i t graph 
to t e l l us which nodes conta in the concepts tha t 
are most cen t ra l and c r i t i c a l to the s t o r y . For 
example, if a graph conta ins a unique node of 
maximal degree, we want to examine the contents of 
t ha t node in order to produce a summary of the 
s t o r y . I f a graph conta ins m u l t i p l e nodes of 
maximal degree, we w i l l have to reso r t to a 
d i f f e r e n t r e t r i e v a l a l g o r i t h m . We can the re fo re 
pursue a not ion of n a r r a t i v e equivalence wherein 
two n a r r a t i v e s are a l g o r i t h m i c a l l y equ iva len t 
(a -equ iva len t ) i f t h e i r p l o t u n i t graphs can be 
processed by the same summarization r e t r i e v a l 
a l g o r i t h m . I t fo l l ows t ha t n a r r a t i v e s w i th 
isomorphic p lo t u n i t graphs are a -equ i va len t , 
a l though n a r r a t i v e p l o t u n i t graphs can be 
a-equ iva lent w i thou t being s t r u c t u r a l l y isomorphic . 
This no t ion of a l go r i t hm ic equivalence creates a 
weaker p a r t i t i o n than the more t r a d i t i o n a l r e l a t i o n 
o f isomorphic equ iva lence. 

2. Nar ra t ive Equivalence Classes 

Any p a r t i t i o n o f a -equ iva len t p l o t u n i t graphs 
determines a corresponding p a r t i t i o n of n a r r a t i v e 
source t e x t s . This in t u rn c o n s t i t u t e s a taxonomy 
of n a r r a t i v e complex i ty . To i d e n t i f y such 
a l g o r i t h m i c a l l y - m o t i v a t e d equivalence c lasses , we 
must i d e n t i f y ca tegor ies o f graph s t r uc tu res t h a t 
can be associated w i th s p e c i f i c r e t r i e v a l 
a lgo r i thms. Any systemat ic development of such 
equivalence c lasses must be based on a la rge set of 
n a r r a t i v e represen ta t ions t h a t inc ludes a wide 
v a r i e t y of graph s t r u c t u r e s . This work is now in 
progress, but we have compiled enough n a r r a t i v e 
represen ta t ions a t the l e v e l o f p l o t u n i t graphs to 
suggest some p re l im ina ry taxonomies. We are also 
developing a methodology f o r the i d e n t i f i c a t i o n of 
graph equ iva lenc ies which w i l l a l low us to proceed 
in a systematic manner. 

The general s t ra tegy we are using to* discover 
p l o t u n i t graph equ iva lenc ies is a combinat ion of 
bottom-up exp lo ra to ry work and top-down hypothesis 
t e s t i n g . In tue bottom—up pusss We collect and 
analyze random n a r r a t i v e s , to create a l i b r a r y of 
p l o t u n i t graph rep resen ta t i ons . We w i l l l a t e r 
draw from t h i s l i b r a r y f o r s u b s t a n t i a t i n g evidence 
and counterexamples, but the f i r s t phase of our 
research is simple c o m p i l a t i o n . We are using 
n a r r a t i v e s t h a t come from AI work in n a t u r a l 
language process ing , c o g n i t i v e psychology research 
on t e x t comprehension, and publ ished short s t o r i e s 
by popular au thors . The source t e x t s range in 

complex i ty from a s i ng le paragraph to about 50 
pages. Our most complex n a r r a t i v e thus far is 
Arnold Toynbee's synopsis of the s to ry of Jesus. 

For each n a r r a t i v e we must hand-code a 
ch rono log i ca l l y -o rde red rep resen ta t ion o f a f f e c t 
s ta te maps. We cannot automate t h i s process w i th 
any g e n e r a l i t y because the t e x t processing 
techniques invo lved are h igh l y domain-dependent and 
would requ i re extens ive knowledge encoding fo r each 
n a r r a t i v e attempted [see Dyer 1982 for a good 
d iscuss ion of what would be i n v o l v e d ] . The 
graduate students who produce our hand-coded 
representa t ions work together to assure u n i f o r m i t y 
in t h e i r encoding techn iques, and we are developing 
encoding h e u r i s t i c s to aid o thers ou ts ide our 
immediate research group who would l i k e to 
experiment w i th p l o t u n i t graphs. 

Once a hand-coded a f f e c t s ta te map has been 
produced, we process the rep resen ta t i on w i th PUGG 
(the Plot Unit Graph Generator) . Pugg is designed 
to accept any set of p l o t u n i t s as our set of 
un iversa l un i t s t r u c t u r e s , and any a f f e c t s ta te 
maps t h a t are cons is ten t w i th the s t r u c t u r a l 
convent ions for l e g a l a f f e c t s ta te c o n f i g u r a t i o n s . 
PUGG r e t u r n s an adjacency mat r ix fo r a l l t o p - l e v e l 
un i t s along w i th other usefu l i n fo rmat ion about 
d i s j o i n t subgraphs and immediate u n i t f a m i l i e s . 

One of the important parameters in t h i s work 
is the s p e c i f i c a t i o n of a universa] set of 
t o p - l e v e l p lo t u n i t s . Graph s t ruc tu res w i l l vary 
according to our s e l e c t i o n of lega l u n i t 
c o n f i g u r a t i o n s , but we would i d e a l l y l i k e to a r r i v e 
at a taxonomy of graph s t r uc tu res t h a t remains 
v a l i d over a v a r i e t y of un ive rsa l se ts . As a 
psycholog ica l theory of c o g n i t i o n and memory, we 
expect un ive rsa l sets to vary across i n d i v i d u a l s . 
This var iance could account fo r i n d i v i d u a l 
d i f f e rences in summarization behavior as we l l as 
developmental d i f f e rences between c h i l d r e n and 
a d u l t s . I t i s t he re fo re important to analyze each 
n a r r a t i v e w i th respect to more than one un iversa l 
s e t , indexing each r e s u l t i n g graph w i th respect to 
i t s un ive rsa l con tex t . 

To assure f l e x i b i l i t y in t h i s rega rd , we are 
analyz ing each n a r r a t i v e w i th respect to three 
un ive rsa l con tex t s . Context A is r e s t r i c t e d to 
un i t s i n v o l v i n g no more than one or two cha rac te r s . 
Context B is a subset of contex t A t h a t conta ins 
on ly the simpler p l o t u n i t s of set A (most u n i t s in 
set B conta in less than 10 a f f e c t s ta tes ) . Context 
C departs from sets A and B inso fa r as it conta ins 
u n i t s t ha t i nvo l ve more than two cha rac te rs . 
Context C consequently conta ins p l o t un i t 
c o n f i g u r a t i o n s t h a t are more complicated than those 
found in context A. We do not requ i re a l l th ree 
encodings f o r any given s t o r y to be a -equ iva len t 
according to our p a r t i t i o n of graphs. I t seems 
qu i te p l a u s i b l e t ha t some s t o r i e s w i l l be easier to 
summarize under one un ive rsa l set than another 
( t h i s should be e s p e c i a l l y t rue i f one set i s 
r e l a t i v e l y impover ished) . 

In the course o f compi l ing t h i s l i b r a r y o f 
r ep resen ta t i ons , we are seeing some pat te rns 
emerge: 
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(1) Most graphs are f u l l y connected. 3. Graph Types and Summarization Algorithms 

(2) If a graph contains a unique node of maximal 
degree, it is probably small (containing < 15 
units) . 

(3) Two d is t inc t clusters that are strongly 
connected often describe the same events from 
di f ferent perspectives. 

(4) If a graph can be parti t ioned into maximal 
c lusters, boundary units between the clusters 
tend to be important. 

With each new graph we generate, we must 
examine that graph to see where i t s c r i t i c a l nodes 
are located. Sometimes the c r i t i c a l nodes are 
s t ructura l ly conspicuous. In these cases we can 
associate a plausible re t r ieva l algorithm which 
appears to be appropriate for that graph. The same 
algorithm typ ica l ly applies to a number of graphs, 
in which case we must ident i fy necessary and 
suf f ic ient conditions for the application of that 
algorithm. In other cases we may not be able to 
ident i fy a simple algorithm, or a simple algorithm 
applies but does not produce a satisfactory 
summary. These apparent fa i lures may force us to 
revise a previous summarization algorithm, or 
revise the necessary and suf f ic ient conditions that 
signal the app l icab i l i t y of a part icular algorithm. 

The necessary and suf f ic ient conditions that 
ident i fy appropriate algorithms w i l l define our 
graph equivalence classes. Hypothetical 
equivalence classes arise every time we propose a 
possible summarization algorithm, but we must be 
careful to maintain consistency throughout the 
system whenever a new class is proposed or an old 
class is altered. If we begin to amass a large 
number of equivalence classes, we w i l l watch for 
hierarchical relationships among possible 
par t i t ions . From a developmental perspective it 
seems quite l i ke l y that simple par t i t ions might be 
refined into more complex par t i t ions , and that such 
refinements would be associated with improvements 
in summarization behavior. With th is in mind, we 
expect to find simpl ist ic c lassi f icat ions that 
produce in fer io r summaries for some stor ies. 

As our l ib rary grows, we w i l l track error 
rates for each equivalence class as well as error 
rates for each set of universal plot uni ts. In an 
ideal pa r t i t i on , the error rate across equivalence 
classes should be roughly uniform with respect to 
each universal context. On the other hand, the 
overall error rate across d i f ferent universal 
contexts may vary considerably, in which case we 
w i l l learn something about ef fect ive plot unit 
configurations. For example, if the error rate 
associated with context C is s ign i f icant ly higher 
than the rates for contexts A and B, we w i l l have a 
strong argument against the inclusion of plot units 
involving more than two characters. 

Thus fa r , we have analyzed about 20 narratives 
with respect to universal contexts A and B, and we 
have not yet formulated the units for context C. 
We need to look at more narratives before we 
propose a set of equivalence classes, but on the 
basis of th is i n i t i a l l ib rary we have ident i f ied 
three core equivalence classes which appear to 
produce reasonable summaries for a majority of the 
narrat ives. We w i l l summarize these categories 
b r i e f l y . 

A. Simple Graphs with Unique Pivots 

One class of graphs exhibit unique nodes of 
maximal degree. While th is class seems to be 
restr ic ted to smaller graphs, we can re l iab ly look 
to such pivotal nodes for the concepts most central 
to the narrative as a whole. This was the f i r s t 
algorithm we iden t i f i ed , and is therefore discussed 
in some ear l ier publications (e.g. see Lehnert 
1981). While our i n i t i a l work suggests that it is 
very d i f f i c u l t for a long narrative to f a l l into 
th is category, we may see a higher frequency of 
stories in th is class as our universal set of plot 
units expands. For example, it should be easier to 
create graphs of th is type within Context C than 
Context A. 

B. Complex Graphs with Multiple Pivots 

This group of graphs is quite large and must 
be divided into smaller subsets for ef fect ive 
categorization. In some cases we see two nodes of 
maximal degree whose immediate famil ies par t i t ion 
the entire graph into two subgraphs. The maximal 
nodes on the boundary of th is par t i t ion then serve 
to give us a one-sentence summary for the whole 
story. In other cases, we see graphs where the 
maximal nodes themselves provide c r i t i c a l concepts 
for summarization. This is especially common when 
the two maximal nodes are adjacent to one another, 
in which case they are frequently of equal 
importance. 

As we investigate th is class fur ther , we may 
find it necessary to assign re lat ive weights to 
nodes which vary with the surrounding environment. 
For example, suppose a node of degree 10 has 9 
neighbors that a l l have degree 6 ( th is sort of 
dense connectivity is rarely encountered). We may 
want to assign a lesser salience to such a node, 
favoring instead a node of degree 9 whose neighbors 
a l l have a degree of 2. A par t icu lar ly elegant 
solution for these larger graphs would be to simply 
locate the subgraph composed of nodes with minimal 
eccentr ic i ty , where the eccentr ic i ty of a node is 
defined to be the largest distance from that node 
to any other node of the graph [Proskurowski 1980]. 
There are many such poss ib i l i t i es , and our i n i t i a l 
explorations have not adequately d i f ferent iated 
their strengths and weaknesses. 
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C. Separable Graphs 

This category contains large graphs (> 50 
nodes) composed of subgraphs that can be separated 
by deleting a single node. While it may seem that 
the nodes central to each potential component of 
the graph might be good candidates for conceptual 
salience, we have found that the best results are 
obtained by looking at the "delet ion" nodes which 
keeps the graph from separating. If there are 
mult iple deletion nodes, we look for a path 
containing a l l the deletion nodes. The shortest 
path seems to be preferred, although maximal degree 
can enter in as a factor when more than one path is 
possible. These graphs tend to be associated with 
the longest and most complex narratives (see 
[Lehnert, Alker, and Schneider 1983] for a detailed 
discussion of one such graph). 

***** 

As we consider these three preliminary 
a-equivalence classes, we see that processing 
complexity is determined to some extent by the size 
of the memory representation (or plot unit graph). 
This is hardly surpr is ing, although the concept of 
a-equivalence suggests that there should be 
d is t inc t plateaus of summarization competence, with 
severe drops in performance whenever a 
representation is incorrect ly categorized. This 
provides us with a set of performance predictions 
which w i l l be d is t inc t from any models that predict 
s t r i c t l y l inear complexities based on the length of 
the input text or the size of an internal memory 
representation alone. 

4. Conclusions 

Our work to ident i fy a-equivalent narratives 
continues on many f ronts. We are expanding our 
l ib ra ry of affect state maps and the corresponding 
l ib rary of plot unit graphs. At th is stage it 
seems appropriate to concentrate primari ly on the 
taxonomy of necessary summarization algorithms, and 
secondarily on issues concerning universal sets of 
plot uni ts. We hope to concentrate more f u l l y on 
the question of universal sets after we have a 
firmer footing on the issue of algorithmic 
equivalence. It is too early to say anything about 
the status of algorithmic equivalence as a concept 
of psychological import, but a plot unit approach 
to human text comprehension may dovetail very 
natural ly with a developmental study of human 
summarization behavior. We might, for example, 
expect to see competent summarization behavior in 
some classes before others, in which case the 
notion of a-equivalence would provide a simple 
measure of narrative complexity in terms of human 
information processing capabi l i t ies . 

On a more general l eve l , we note that plot 
units are applicable to narrative texts with human 
(or anthropomorphized characters) for whom an 
affect state analysis is possible. It is not 
obvious that an analogous system of memory 

representation can be applied to expository or 
purely instruct ional texts . At the very least , our 
approach suggests that the cognitive processes 
underlying summarization s k i l l s for narratives is 
very d i f ferent from the processes of summarization 
required for other types of text . Narratives and 
expository texts may therefore reside within two 
basical ly d is jo in t a-equivalence classes, in which 
case competence in one area may not correlate very 
strongly with competence in the other. Such a 
si tuat ion would have immediate consequences for 
educators as well as other computational models of 
text comprehension. 
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