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- Abstract -

Narrative structures can only be defined in
terms of some internal memory representation, but
narrative complexity is more properly characterized

by information processing requirements. Story
grammars, plan and goal hierarchies, and causal
chain representations all provide a sense of
structure which is largely removed from the
processes that produce or access that memory
representation. In this paper we introduce the
notion of algorithmic equivalence as a means of

generating more algorithmically-oriented taxonomies
for memory representations. Using  memory
representations based on plot units, we define two
narratives to be algorithmically equivalent if they
can be effectively summarized by the same retrieval
process. This perspective on representational
strategies is an especially natural one from a
processing point of view, since the computational
complexity of a particular information processing
task must be measured in terms of the algorithms
involved .

1. The Plot Unit Approach to Summarization

A representational strategy for narrative text
has been developed to account for summarization
behavior using relatively simplistic retrieval
algorithms.  When the memory representation for a
narrative is encoded in terms of plot units
[Lehnert  1980; 1981], it is possible to invoke
retrieval algorithms that locate the central most
important concepts of the narrative by examining
structural features of cyclic graphs. Each node in
the graph corresponds to a plot unit instantiation,
and two nodes are connected by an arc when they
share a common internal component.

A plot wunit is a fixed configuration of
smaller components called affect states. There are
three affect state types designed to differentiate
gross subjective states within a single character:
positive states, negative states, and neutral
mental states. These affect states emphasize
emotional reactions to events and states rather
than goal-oriented planning behavior, and each
character in a narrative can be tracked in terms of
an "affect state map" which chronologically records
the subjective mental states for that character.
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Once an affect state map has been produced
which tracks the major characters of a narrative,
we can look for instances of specific plot units
within that representation. A "top level" plot
unit instantiation is one that is not subsumed

(fully  contained) by any other plot unit
instantiation. When all the top level wunits are
recognized, we create a plot unit graph in which

the nodes of the graph correspond to top level plot
unit instantiations. Two nodes of the graph are
then connected by an arc whenever they share at
least one ocommon  affect state. This graph
structure provides a level of memory representation

that is especially  well-suited for text
summarization [Lehnert, Black, & Reiser 1981;
Reiser, Lehnert & Black 1981; Gee & Grosjean 1982;
Reiser, Black & Lehnert 1982; Lehnert, Alker, &

Schneider  1983]. Nodes which are structurally
central to this graph are expected to provide us
with the conceptual content for a good summary.

For example, suppose John asks Susan to marry
him and she says no. This episode would be
represented by the denied request unit:

John Susan
wants to get married M \\\
a.( H)“ doesn't want to
+ says no
o

she =aya no -

Now suppose John asks Karen to marry him and she

says yes. This involves three more top level
units:
giving up honored request success born of
adversity
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If we check for overlapping plot units, we find
that our plot wunit graph of four units involves
five arcs;
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It is difficult to argue for the power of this
representation when we are summarizing a two
sentence story, but plot unit graphs can involve
hundreds of units. For such complex narratives, we
rely on structural features of the plot unit graph
to tell wus which nodes contain the concepts that
are most central and critical to the story. For
example, if a graph contains a unique node of
maximal degree, we want to examine the contents of

that node in order to produce a summary of the
story. If a graph contains multiple nodes of
maximal degree, we will have to resort to a
different retrieval algorithm. We can therefore
pursue a notion of narrative equivalence wherein
two narratives are algorithmically equivalent
(a-equivalent) if their plot unit graphs can be
processed by the same summarization retrieval

algorithm. It follows that narratives with

isomorphic plot unit graphs are a-equivalent,
although narrative plot unit graphs can be
a-equivalent without being structurally isomorphic.
This notion of algorithmic equivalence creates a
weaker partition than the more traditional relation
of isomorphic equivalence.

2. Narrative Equivalence Classes

Any partition of a-equivalent plot unit graphs
determines a corresponding partition of narrative
source texts. This in turn constitutes a taxonomy
of narrative complexity. To identify such
algorithmically-motivated equivalence classes, we
must identify categories of graph structures that
can be associated with specific retrieval
algorithms. Any systematic development of such
equivalence classes must be based on a large set of
narrative representations that includes a wide
variety of graph structures. This work is now in
progress, but we have compiled enough narrative
representations at the level of plot unit graphs to
suggest some preliminary taxonomies. We are also
developing a methodology for the identification of
graph equivalencies which will allow us to proceed
in a systematic manner.

The general strategy we are using to* discover
plot unit graph equivalencies is a combination of
bottom-up exploratory work and top-down hypothesis
testing. In tue bottom—up pusss We collect and
analyze random narratives, to create a library of
plot unit graph representations. We will later
draw from this library for substantiating evidence
and counterexamples, but the first phase of our
research is simple compilation. We are using
narratives that come from Al work in natural
language processing, cognitive psychology research
on text comprehension, and published short stories
by popular authors. The source texts range in

complexity from a single paragraph to about 50
pages. Our most complex narrative thus far s
Arnold Toynbee's synopsis of the story of Jesus.

narrative we must hand-code a
representation of affect
state maps. We cannot automate this process with
any generality because the text processing
techniques involved are highly domain-dependent and
would require extensive knowledge encoding for each
narrative attempted [see Dyer 1982 for a good
discussion of what would be involved]. The
graduate students who produce our hand-coded
representations work together to assure uniformity
in their encoding techniques, and we are developing
encoding heuristics to aid others outside our
immediate research group who would like to
experiment with plot unit graphs.

For each
chronologically-ordered

Once a hand-coded affect state map has been
produced, we process the representation with PUGG
(the Plot Unit Graph Generator). Pugg is designed
to accept any set of plot wunits as our set of
universal unit structures, and any affect state
maps that are consistent with the structural
conventions for legal affect state configurations.
PUSG returns an adjacency matrix for all top-level
units along with other useful information about
disjoint subgraphs and immediate unit families.

One of the important parameters in this work

is the specification of a universa] set of
top-level plot units. Graph structures will vary
according to our selection of legal unit

configurations, but we would ideally like to arrive
at a taxonomy of graph structures that remains
valid over a variety of wuniversal sets. As a
psychological theory of cognition and memory, we
expect universal sets to vary across individuals.
This variance could account for individual
differences in summarization behavior as well as
developmental differences between children and
adults. It is therefore important to analyze each
narrative with respect to more than one universal
set, indexing each resulting graph with respect to
its universal context.

To assure flexibility in this regard, we are
analyzing each narrative with respect to three
universal contexts. Context A is restricted to
units involving no more than one or two characters.
Context B is a subset of context A that contains
only the simpler plot units of set A (most units in
set B contain less than 10 affect states). Context
C departs from sets A and B insofar as it contains
units that involve more than two characters.
Context C consequently contains plot unit
configurations that are more complicated than those
found in context A. We do not require all three
encodings for any given story to be a-equivalent
according to our partition of graphs. It seems
quite plausible that some stories will be easier to
summarize under one universal set than another
(this should be especially true if one set s
relatively impoverished).

library of
patterns

compiling this
seeing some

In the course of
representations, we are
emerge:



(1) Most graphs are fully connected.

(2) If a graph contains a unique node of maximal
degree, it is probably small (containing < 15
units) .

(3) Two distinct clusters that are strongly
connected often describe the same events from
different perspectives.

(4) If a graph can be partitioned into maximal
clusters, boundary units between the clusters
tend to be important.

With each new graph we generate, we must
examine that graph to see where its critical nodes
are located. Sometimes the critical nodes are
structurally conspicuous. In these cases we can
associate a plausible retrieval algorithm which
appears to be appropriate for that graph. The same
algorithm typically applies to a number of graphs,
in which case we must identify necessary and
sufficient conditions for the application of that
algorithm. In other cases we may not be able to
identify a simple algorithm, or a simple algorithm
applies but does not produce a satisfactory
summary. These apparent failures may force us to
revise a previous summarization algorithm, or
revise the necessary and sufficient conditions that
signal the applicability of a particular algorithm.

The necessary and sufficient conditions that
identify appropriate algorithms will define our
graph equivalence classes. Hypothetical
equivalence classes arise every time we propose a
possible summarization algorithm, but we must be
careful to maintain consistency throughout the
system whenever a new class is proposed or an old
class is altered. If we begin to amass a large
number of equivalence classes, we will watch for
hierarchical relationships among possible
partitions. From a developmental perspective it
seems quite likely that simple partitions might be
refined into more complex partitions, and that such
refinements would be associated with improvements
in summarization behavior. With this in mind, we
expect to find simplistic classifications that
produce inferior summaries for some stories.

As our library grows, we will track error
rates for each equivalence class as well as error
rates for each set of universal plot units. In an
ideal partition, the error rate across equivalence

classes should be roughly uniform with respect to
each universal context. On the other hand, the
overall error rate across different universal

contexts may vary considerably, in which case we
will learn something about effective plot unit
configurations. For example, if the error rate
associated with context C is significantly higher
than the rates for contexts A and B, we will have a
strong argument against the inclusion of plot units
involving more than two characters.
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3. Graph Types and Summarization Algorithms

Thus far, we have analyzed about 20 narratives
with respect to universal contexts A and B, and we
have not yet formulated the units for context C.
We need to look at more narratives before we
propose a set of equivalence classes, but on the
basis of this initial library we have identified
three core equivalence classes which appear to

produce reasonable summaries for a majority of the
narratives. We will summarize these categories
briefly.

A. Simple Graphs with Unique Pivots

Ore class of graphs exhibit wunique nodes of
maximal degree. While this class seems to be
restricted to smaller graphs, we can reliably look
to such pivotal nodes for the concepts most central
to the narrative as a whole. This was the first
algorithm we identified, and is therefore discussed
in some earlier publications (e.g. see Lehnert
1981). While our initial work suggests that it is
very difficult for a long narrative to fall into
this category, we may see a higher frequency of
stories in this class as our universal set of plot
units expands. For example, it should be easier to
create graphs of this type within Context C than
Context A.

B. Complex Graphs with Multiple Pivots

This group of graphs is quite large and must
be divided into smaller subsets for effective
categorization. In some cases we see two nodes of
maximal degree whose immediate families partition
the entire graph into two subgraphs. The maximal
nodes on the boundary of this partition then serve
to give us a one-sentence summary for the whole
story. In other cases, we see graphs where the
maximal nodes themselves provide critical concepts
for summarization. This is especially common when
the two maximal nodes are adjacent to one another,
in  which case they are frequently of equal
importance.

As we investigate this class further, we may
find it necessary to assign relative weights to
nodes which vary with the surrounding environment.
For example, suppose a node of degree 10 has 9
neighbors that all have degree 6 (this sort of
dense connectivity is rarely encountered). We may
want to assign a lesser salience to such a node,
favoring instead a node of degree 9 whose neighbors
all have a degree of 2. A particularly elegant
solution for these larger graphs would be to simply
locate the subgraph composed of nodes with minimal
eccentricity, where the eccentricity of a node is
defined to be the largest distance from that node
to any other node of the graph [Proskurowski 1980].
There are many such possibilities, and our initial
explorations have not adequately differentiated
their strengths and weaknesses.
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C. Separable Graphs

This category contains large graphs (> 50

nodes) composed of subgraphs that can be separated
by deleting a single node. While it may seem that
the nodes central to each potential component of

the graph might be good candidates for conceptual

salience, we have found that the best results are
obtained by looking at the "deletion" nodes which
keeps the graph from separating. If there are
multiple deletion nodes, we look for a path
containing all the deletion nodes. The shortest

path seems to be preferred, although maximal degree
can enter in as a factor when more than one path is
possible. These graphs tend to be associated with
the longest and most complex narratives (see
[Lehnert, Alker, and Schneider 1983] for a detailed
discussion of one such graph).

*kkkk

As we consider these three preliminary
a-equivalence classes, we see that processing
complexity is determined to some extent by the size
of the memory representation (or plot unit graph).
This is hardly surprising, although the concept of
a-equivalence  suggests that there should be
distinct plateaus of summarization competence, with
severe drops in performance  whenever a
representation is incorrectly categorized. This
provides us with a set of performance predictions
which will be distinct from any models that predict
strictly linear complexities based on the length of

the input text or the size of an internal memory
representation alone.
4. Conclusions

Our work to identify a-equivalent narratives

continues on many fronts. We are expanding our
library of affect state maps and the corresponding
library of plot unit graphs. At this stage it
seems appropriate to concentrate primarily on the
taxonomy of necessary summarization algorithms, and
secondarily on issues concerning universal sets of

plot units. We hope to concentrate more fully on
the question of universal sets after we have a
firmer footing on the issue of algorithmic

equivalence. It is too early to say anything about
the status of algorithmic equivalence as a concept
of psychological import, but a plot unit approach

to human text comprehension may dovetail very
naturally with a developmental study of human
summarization behavior. We might, for example,

expect to see competent summarization behavior in
some classes before others, in which case the
notion of a-equivalence would provide a simple
measure of narrative complexity in terms of human
information processing capabilities.

On a more general level, we note that plot
units are applicable to narrative texts with human
(or anthropomorphized characters) for whom an
affect state analysis is possible. It is not
obvious that an analogous system of memory

can be applied to expository or

representation
At the very least, our

purely instructional texts.
approach suggests that the cognitive processes
underlying summarization skills for narratives is
very different from the processes of summarization
required for other types of text. Narratives and
expository texts may therefore reside within two
basically disjoint a-equivalence classes, in which
case competence in one area may not correlate very
strongly with competence in the other. Such a
situation would have immediate consequences for
educators as well as other computational models of
text comprehension.
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