
Represen ta t i on in a D o m a i n - I n d e p e n d e n t P l a n n e r

David E. Wilkins
Artificial Intelligence Center

SRI International
Menlo Park, California

ABSTRACT
The representation used in a domain-independent planning

program that supports both automatic and interactive genera-
tion of hierarchical, partially ordered plans is described. An
improved formalism for representing domains and actions is
presented. The formalism makes extensive use of constraints,
offers efficient methods for representing properties of objects
that do not change over time, allows specification of plan rationale,
allows specification of resources for efficiently detecting and
remedying harmful parallel interactions, and provides the ability
to express deductive rules for deducing the effects of actions.

1. Overview

The automation of planning in a computer program in­
volves representing the world, representing actions and their
effects on the world, reasoning about the effects of sequences of
such actions, reasoning about the interaction of actions that are
taking place concurrently, and controlling the search so that
plans can be found with reasonable efficiency. Planners de­
signed to work efficiently in a single problem domain, though
desirable, often depend on the structure of that domain to such
an extent that the underlying ideas cannot be readily used in
other domains. This paper discusses domain-independent plan­
ners that are of particular interest, since they yield planning
techniques that are applicable in many domains and provide
a general planning capability. Such a commonsense planning
capability is likely to require different techniques from those
used by an expert planning in his particular domain of exper­
tise, but it is nonetheless essential for people in their daily
lives and for intelligent programs. Of course, a general plan­
ner should provide representations and methods for including
domain specific knowledge and heuristics. This paper describes
an implemented planning program that expands the core of
domain-independent planning techniques as it builds on and ex­
tends such previous domain-independent planning systems as
Sacerdoti's NOAH [4], Tate's NONLIN [7], Sridharan's PLANXIO
[5], Vere's DEVISER [8], and SRI's STRIPS [1].

*The research reported here is supported by Air Force Office of Scientific
Research Contract F4962O-79-C-0188.

We have designed and implemented (in INTERLISP) a sys-
tem, SIPE (System for Interactive Planning and Execution Mon­
itoring), that supports domain-independent planning. The pro-
gram has produced correct parallel plans for problems in four
different domains (the blocks world, cooking, aircraft opera-
tions, and a simple robotics assembly task). The system allows
for hierarchical planning and parallel actions. Development of
the basic planning system has led to several extensions of pre-
vious systems. These include the development of a perspicuous
formalism for encoding descriptions of actions, the use of con­
straints to partially describe objects, the creation of mecha­
nisms that permit concurrent exploration of alternative plans,
the incorporation of heuristics for reasoning about resources,
mechanisms that make it possible to perform simple deductions,
and advanced abilities to reason about the interaction among
parallel actions. SIPE can automatically generate plans, but,
unlike its predecessors, SIPE is designed to also allow interaction
with human users throughout the planning and plan execution
processes, if this is desired. The user is able to watch and, when
he wishes, guide and/or control the planning process.

In SIPE, a plan is a set of partially ordered goals and ac­
tions, which is composed by the system from operators (the
system's description of actions that it may perform). By simply
applying operators, plans that do not achieve the desired goal
may sometimes be generated, so the system has critics that find
potential problems and attempt to avert them. In particular,
most of the reasoning about interactions between parallel ac­
tions is done by the critics. The plans are represented in pro-
cedural nets [4], primarily for graceful interaction between man
and machine. Invariant properties of objects in the domain are
represented in a tree-structured sort hierarchy, which allows in­
heritance of properties and the posting of constraints on the
values of attributes of these objects. The relationships that
change over time - and therefore all goals - are represented in
a version of first-order predicate calculus that is typed and in­
teracts with the knowledge in the sort hierarchy. Operators are
represented in an easily understood formalism, developed by us,

734 D. Wilkins

in which the ability to post constraints on variables is a primary
feature. Each of these parts of the system will be described in
more detail later.

It should be noted here that, like most domain-independent
planning systems (DEVISER being an exception), ours assumes
discrete time, discrete states, and discrete operators. These
assumptions are acceptable in many real-world domains, even
though they are restrictive and prevent many real-world phenom­
ena from being adequately represented. For example, sophisti­
cated reasoning about time and modelling of dynamic processes
are not possible within our present framework. Few artificial in­
telligence programs have addressed these problems (McDermott's
recent work being a notable exception [2]).

The planning-representation problem involves representing
the domain, goals, and operators. Operators are the system's
representation of actions that may be performed in the domain
or, in the hierarchical case, abstractions of actions that can be
performed in the domain. An operator includes a description
of how each action changes the state of the world. In a logical
formalism such as Rosensebein's adaptation of dynamic logic to
planning [3], the same representational formalism may be used
for representing the domain, goals, and operators; however, in
many planners more concerned with efficiency, including SIPE,
there is a different representation for each. The goal is to have
a rich enough representation so that many interesting domains
ran be represented (an advantage of logical formalisms), but this
must be measured against the ability of the system to deal with
its representations efficiently during the planning process.

This paper describes SIPE's solution to the problem of
representing the domain, goals, and operators. (Other aspects of
the system are described in [11].) A central concern in designing
a representation for a planning system is how to represent the
effects an action has on the state of the world. This means that
the frame problem [l] must be solved in an efficient manner.
Since we intend that many domains will be encoded in the
planning system, it is also necessary that the solution to the
frame problem not be too cumbersome. For example, one does
not want to have to write a large number of frame axioms for
each new action that is defined.

2. Representation of Domain and Goals

The system provides for representation of domain objects
and their invariant properties by nodes linked in a hierarchy.
This permits SIPE to incorporate the advantages of frame-based
systems (primarily efficiency), while retaining the power of the
predicate calculus for representing properties that do vary. In­

variant properties do not change as actions planned by the
system are performed (e.g., the size of a frying pan does not
change when you cook something in it). Each node can have
attributes associated with it, and can inherit properties from
other nodes in the hierarchy. The values of attributes may
be numbers, pointers to other nodes, key words the system
recognizes, or any arbitrary string (which can only be used by
checking if it is equal to another such string). The attributes
are an integral part of the system, since planning variables
arc also nodes in the hierarchy and contain constraints on the
values of attributes of possible instantiations. Constraints are an
important part of the system and are discussed in considerable
detail later. There are different node types for representing
variables, objects, and classes, but these will not be discussed
in detail here, since they are similar to those occurring in many
representation formalisms - for example, semantic networks and
UNITS[6].

A restricted form of first-order predicate calculus is used
to represent properties of domain objects and the relationships
among them that may change with the performance of actions;
it is also therefore used to describe goals as well as the precondi­
tions and effects of operators. Quantifiers are allowed whenever
they can be handled efficiently. Universal quantifiers are always
permitted in effects, and over negated predicates in precondi­
tions. Existential quantifiers can occur in the preconditions of
operators, but not in the effects. Disjunction is not allowed.
These restrictions result from using "add lists'' to solve the
frame problem. (Why this is so is described in the next sec­
tion). By representing the invariant properties of the domain
separately, SIPE reduces the number of formulas in the sys­
tem and makes deductions more efficient. There is currently
no provision for creating or destroying objects as actions are
executed, although in some domains this would be useful (e.g.,
after an omelet has been made, do the original three eggs still
exist as objects?).

3. Representation of Operators

Operators representing actions the system may perform
contain information about the objects that participate in the
actions (represented as resources and arguments of the actions),
what the actions are attempting to achieve (their goals), the
effects of the actions when they are performed, and the con­
ditions necessary before the actions can be performed (their
preconditions). Before SIPE's representation is described in
detail, some basic assumptions made by SIPE about the effects
of actions need to be presented.

D. Wilkins 735

Determining the state of the world after actions have been
performed (e.g., the planner must ascertain whether the in­
tended goals have been achieved), involves solving the frame
problem. Here we make what Waldinger [9] has called the
STRIPS assumption, which is that all relations mentioned in
the world model remain unchanged unless an action in the plan
specifies that some relation has changed. In STRIPS, an action
specifies that a relation has changed by mentioning it on an
"addlist" or "deletelist". Alternatively, relations that change
might be deduced from general frame axioms as long as the
deduction is tightly controlled.

Muking this assumption imposes requirements on the for­
malism used for representing the domain, since it must support
the STRIPS assumption. While the STRIPS assumption may
be very limiting in the representation of rich domains, such as
automatic programming, there are many domains of interest
for which it causes no problems. For example, the fairly simple
environments in which robot arms often operate appear ade­
quately represent able in a system embodying the STRIPS as-
sumption. SI PIC currently makes the closed-world assumption:
any negated predicate is true unless the unnegated form of the
predicate is explicitly given in the model or in the effects of an
action that has been performed. This is not critical; the system
could be changed to assume that a predicate's truth-value is
unknown unless an explicit mention of the predicate is found in
either negated or unnegated form. (Although in large domains,
there may be an enormous number of predicates that are not
true.) Deduction in SIPE does not violate the closed-world as­
sumption; it is used only to deduce effects of an action when
the action is added to a plan (thus sparing the operator that
represents the action from having to specify these effects).

Many features combine to make SIPE's operator descrip-
tion language an improvement over operator descriptions in pre­
vious systems. These features will be presented by discussing
the sample operator given in Figure 1, with subsections devoted
to the more important features. The SIPE system has produced
correct parallel plans for problems in four different domains,
one of which is the blocks world (described in [4]) for which
many domain-independent planning systems (e.g., NONLIN and
NOAH) have presented solutions. To facilitate comparison with
these systems, a PUTON operator for the blocks world in the
SIPE formalism is shown in Figure 1.

The operator's effects, preconditions, and purpose are all
encoded as first-order predicates on variables and objects in the
domain. (In this case, BLOCK1 and OBJECTl are variables.)
Negated predicates that occur in the effects of an operator es­
sentially remove from the model a fact that was true before, but

OPERATOR: PUTON
ARGUMENTS: BLOCK 1, OBJECTl IS NOT BLOCK1;
PURPOSE: (ON BLOCK1 OBJECTl);
PLOT:

PARALLEL
BRANCH 1:

GOALS: (CLEARTOP OBJECTl);
ARGUMENTS: OBJECTl;

BRANCH 2:
GOALS: (CLEARTOP BLOCK 1);
ARGUMENTS: BLOCKl;

END PARALLEL

PROCESS
ACTION: PUTON.PRIMITIVE;
ARGUMENTS: OBJECTl;
RESOURCES: BLOCKl;
EFFECTS: (ON BLOCKl OBJECTl);

END

Figure 1
A PUTON Operator in SIPE

is no longer true.

Operators contain a plot that specifies how the action is to
be performed in terms of actions and goals at either the current
level or some lower level of the hierarchy. Like plans, plots are
represented as procedural networks. When used by the planning
system, the plot can be viewed as instructions for expanding a
node in the procedural network to the next level. The plot of an
operator can be described either in terms of goals to be achieved
(i.e., a predicate to make true), or in terms of processes to be
invoked (i.e., an action to be performed). (NOAH represented a
process as a goal with only a single choice of action.) Encoding
a step as a process implies that only the action it defines can be
taken at that point, while encoding a step as a goal implies that
any action can be taken that will achieve the goal. Another
less explicit difference between encoding a step as a goal or
as a process is whether the emphasis is on the situation to be
achieved or the actual action being performed.

During planning, an operator is used to expand an already
existing GOAL or PROCESS node in the procedural network
to produce additional procedural network structure at the next
level. For example, the PUTON operator might be applied to
a GOAL node in a plan whose goal predicate is (ON A B).
Operators may specify preconditions that must obtain in the
world state before the operator can be applied. (The operator
in Figure 1 has no precondition.) Operators contain lists of
resources and arguments to be matched with the resources and
arguments of the node being expanded. In our example, A and
B in the GOAL node are matched with BLOCKl and OBJECTl
in the PUTON operator when the operator is used to expand

736 D. Wilkins

the node. The plot of the operator is used as a template for
generating two COAL nodes and one PROCESS node in the
plan.

Operators in SIPE provide for posting of constraints on
variables, specification of resources, and the use of deduction
to determine the effects of actions. Each feature is described
below in some detail. SIPE also provides the ability to explicitly
represent the rationale behind each action (this is mentioned
briefly below), and to apply the plots of operators iteratively to
sets (this is not discussed in this paper).

3.1 SIFE's Constraint Language
SIPE's ability to construct partial descriptions of unspecified

objects is one of its most important advances over previous
domain-independent planning systems. This ability is important
both for domain represention (e.g., objects with varying degrees
of abstractness can be represented in the same formalism) and
for finding solutions efficiently (since decisions can be delayed
until partial descriptions provide more information). Almost no
previous domain-independent planning systems have used this
approach (e.g., NOAH cannot partially describe objects) so the
constraints in SIPE will be documented in some detail.

Planning variables that do not yet have an instantiation
ran be partially described by setting constraints on the possible
values an instantiation might take. This allows instantiation of
the variable to be delayed until it is forced or until as much
information as possible has been accumulated, thus prevent­
ing incorrect choices from being made. Constraints may place
restrictions on the properties of an object (e.g., requiring certain
attribute values for it in the sort hierarchy), and also require
that certain relationships exist between an object and other ob­
jects (e.g., predicates that must be satisfied in a certain world
state). SIPE provides a general language for expressing these
constraints on variable bindings so they can be encoded as part
of t the operator. During planning, the system also generates con­
straints that are basted on interactions within a plan, propagates
them to variables in related parts of the network, and finds vari­
able bindings that satisfy all constraints.

The allowable constraints in SIPE on a variable V are listed
below:

• CLASS. This constrains V to be in a specific class in the
sort hierarchy. In SIPE's operator description language there
is implicit typing based on the variable name; therefore, in the
PUTON operator in Figure 1, the variable created for BLOCK1
has a CLASS constraint that requires the instantiation for the
variable to be a member of the class BLOCKS. Similarly, the
OBJECT1 variable has a CLASS constraint for class OBJECTS.

• NOT-CLASS. V must be instantiated so that it is not a
member of a given class.

• PR ED. V must be instantiated so that a given predicate (in
which V is an argument of the predicate), is true. This results
in an explicit number of choices for V's instantiation, since all
true facts are known (by the closed-world assumption).

• NOT-PRED. V must be instantiated so that a given predi­
cate (in which V is an argument of the predicate), is not true.

• SAME. Y must be instantiated to the same object to which
some other given variable is instantiated.

• NOT-SAME. Y must not be instantiated to the same ob-
ject to which some other given variable is instantiated. In the
PUTON operator in Figure 1, the phrase "IS NOT BLOCK 1"
results in a NOT-SAME constraint being posted on both BLOCK 1
and OB.JECTl that requires they not be instantiated to the
same thing. Thus, if SIPE is looking for a place to put block A,
it will not choose A as the place to put it.

• INS TAN. V must be instantiated to a given object. This
could be represented by using SAME applied to objects as well
as variables (or using PRED with an EQ predicate), but instan­
tiation is a basic function of the system and warrants its own
constraint for a slight gain in efficiency.

• NOT-IN STAN. V must not be instantiated to a given ob-
ject.

• OPTIONAI,-SAME. This is similar to SAME, but merely
specifics a preference and is not binding. For example, one would
prefer to conserve resources by making two variables be the
same object, but, if this is not possible, then different objects
are acceptable.

• OPTIONAL-NOT-SAME. This is similar to NOT-SAME,
but is not binding. If SIPE notices that a conflict will occur
between two parallel actions if two variables are instantiated to
the same object, then it will post an OPTIONAL-NOT-SAME
constraint on both variables. If it is possible to instantiate them
differently, a conflict is avoided. If it is not, they may be made
the same but the system will have to resolve the ensuing
conflict (perhaps by not doing things in parallel).

• Any attribute name. This requires a specific value for a
specific attribute of an object. For example, the PUTON opera­
tor could have specified "BLOCK 1 WITH COLOR RED". This
would create a constraint on BLOCK 1 requiring the COLOR
attribute (in the sort hierarchy) of any possible instantiation
to have the value RED. For attributes with numerical values,
"greater than" and "less than" can also be used. In planning

D. Wilkins 737

an airline schedule, for example, the operator used for cross­
country flights might contain the following variable declaration:
"PLANEl WITH RANGE GREATER THAN 3000''

Constraints add considerably to the complexity of the plan­
ner because they interact with all parts of the system. For
example, to determine if a goal predicate is true, SIPE must
verify whether it matches predicates that arc effects earlier in
the plan. This may require matching variables that are argu­
ments to the two predicates, which in turn involves determining
whether the constraints on the two variables are compatible.
In a similar way, constraints also interact with the deductive
capability of the system (to be described later). Constraints also
affect critics, since determining if two concurrent actions inter-
art may depend on whether their constraints are compatible.
SIPE must also solve a general constraint satisfaction problem
with reasonable efficiency, though how to control the amount of
processing spent on constraint satisfaction is an open and im­
portant question. SIPE's method of propagating and checking
constraints is described in more detail in [11].

The use of constraints is a major advance over previous
domain-independent, planning systems. NOAH, for example,
would have to represent every property of an object as a predi­
cate and then, to get variables properly instantiated, would have
each such predicate as either a precondition of an operator or
a goal in the plan. In SIPE an operator might declare a vari­
able as "CARGOPLANEl WITH RANGE 3000" and the plan
using this variable can assume it has the proper type of aircraft.
In NOAH, goals similar to (CARGOPLANE X) and (RANGE X
3000) would have to be included in the operator and achieved as
part of the plan. This makes both the operators and plans much
longer and harder to use and understand. In addition to syn­
tactic sugar, constraints in SIPE improve efficiency and express-
ibility. The OPTIONAL-SAME and OPTIONAL-NOT-SAME
constraints used in resource reasoning cannot be expressed as
goals or preconditions in a system like NOAH. The constraint
satisfaction algorithm used in SIPE takes advantage of the fact
that invariant properties of objects are stored directly in the
sort hierarchy. The lookup of such properties in SIPE is much
more efficient than the process of looking through the plan to
determine which predicates are currently true, as would have to
be done in systems like NOAH and NONLIN.

Some domain-dependent systems make use of constraints.
Stefik's system [6], one of the few existing planning systems with
the ability to construct partial descriptions of an object without
identifying the object, operates in the domain of molecular ge­
netics. Our system extends Stefik's approach in three ways. (1)
We provide an explicit, general set of constraints that can be

used in many domains. Stefik does not present a list of allowable
constraints in his system; moreover, some of them that are
mentioned seem specifically related to the genetics domain. (2)
Constraints on variables can be evaluated before the variables
are fully instantiated. For example, a set can be created that
is constrainable to be only bolts, then to be longer than one
inch and shorter than two inches, then to have hex heads. This
set can be used in planning before its members are identified in
the domain. (3) Partial descriptions can vary with the context,
thus permitting simultaneous consideration of alternative plans
involving the same unidentified objects (see [11]).

3.2 Resources
Parallelism is considered beneficial since optimal plans in

many domains require it. (Two segments of a plan are in parallel
if the partial ordering of the plan does not specify that one
segment must be done before the other.) The approach used
in SIPE, therefore, is to keep as much parallelism as possible
and then to detect and respond to interactions between parallel
branches of a plan. SIPE provides the ability to reason about
resources, which is a powerful mechanism both for detecting
parallel interactions and remedying them.

The formalism for representing operators in SIPE includes
a means of specifying that some of the variables associated with
an action or goal will actually serve as resources for that ac­
tion or goal (e.g., BLOCK 1 is declared as a resource in the
PUTON.PRIMITIVE action of the PUTON operator in Figure
1). Resources are to be employed during a particular action and
then released, just as a frying pan is used while vegetables are
being sauteed in it. Reasoning about resources is a common
phenomenon. It is a useful way of representing many domains,
a natural way for humans to think about problems, and, conse­
quently, an important aid to interaction with the system.

SIPE has specialized knowledge for handling resources; dec­
laration of a resource associated with an action is a way of saying
that one precondition of the action is that the resource be avail­
able. Mechanisms in the planning system, as they allocate and
deallocate resources, automatically check for resource conflicts
and ensure that these availability preconditions will be satisfied.

Resources enable SIPE's operators and plans to be more
succinct and easier to understand than similar operators and
plans in domain-independent parallel planning systems, such as
NOAH and NONLIN. In the latter systems, resource availability
would hav? to be correctly axiomatized, checked, and updated
in the preconditions and effects of the operators. It is not clear
that it would be possible to do this so that the critics would
recognize only the intended conflicts. If it were indeed possible,

738 D. Wilkins

the resource reasoning in S1PE would be much more efficient
than such an axiomatization in the other systems. For example,
in NOAH (he resolve-conflicts c/itic would eventually have to
notice that posted "available-resource" effects are in conflict.
This could be done only after the entire plan had been expanded
and the critics applied. Even then, conflicts between uninstan-
tiated variables might not be detected, since only in an attempt
to instantiate them would an actual conflict arise. In SIPE it is
known which resources an operator needs before it is applied, so
conflicts can be detected even before the plan is expanded. This
can result in choosing operators that do not produce conflicts,
thereby pruning the search space. SIPE avoids not only the im­
mediate incorrect operator expansion, but also both the entire
expansion to the next level and the application of the critics
after that. The savings can be considerable in domains that
use resources heavily. SIPE can also detect conflicts between
uninstantiated variables; if a plan requires two arms as resources
and only one arm exists in the world, SIPE can detect this
conflict even though the two arm variables have not been in­
stantiated.

This section only summarizes the resource reasoning abilities
provided by SlPE's representation. Details of how resources are
actually implemented are given in [l l] and [10]. These papers
include examples of problems solved with and without reasoning
about resources, as well as a general description of the parallel
interaction problem and SIPE's solution to it.

3.3 Plan Rationale

SIPE provides more flexibility in specifying the rationale
behind a plan than many domain-independent planners. (The
rationale for an action in a plan is "why" the action is in the
plan.) This is needed for determining how long a condition must
be maintained, what changes in the world cause problems in the
plau, and what the relationship is among different levels in the
hierarchy. SIPE constructs links, both between the levels of a
plan and within a level, that help express the rationale behind
t he actions. The system has reasonable defaults for constructing
these links, but also provides the flexibility for operators to
specify how these links should be constructed (thus permitting a
larger class of phenomena to be represented). This is described
in more detail in [11].

3.4 Deductive Operators

In addition to operators describing actions, SIPE allows
specification of deductive operators that deduce facts from the
current world state. This provides a deductive capability that

is useful, but nevertheless keeps deduction under control by
severely restricting the deductions that can be made. As more
complex domains are represented, it becomes increasingly im­
portant to deduce the effects of actions from axioms about the
world, rather than explicitly representing these effects in opera­
tors. For example, the PUTON operator in Figure 1 lists only
(ON BLOCK 1 OBJECTl) as an effect. It does not mention
which objects are or are not now CLEARTOP, since that is
deduced by deductive operators. Because deductive operators
in SIPE may include both existential and universal quantifiers,
they provide a rich formalism for deducing (possibly conditional)
effects of an action. Effects that are deduced in SIPE are con­
sidered to be side effects. (Operators can also specify effects as
either main effects or side effects.) Knowing which effects are
merely side effects is important in handling parallel interactions.

Figure 2 shows one of the deductive operators in the SIPE
blocks world for deducing CLEARTOP relationships. Deductive
operators are written in the same formalism as other operators
in SIPE, thus permitting the system to control deduction with
the same mechanisms it uses to control the application of opera­
tors. This also allows constraints to be used and, as this example
shows, they play a major role in SIPE's deductive capability.

All deductions that can be made are performed at the time
an operator is expanded. The deduced effects are recorded in
the procedural net, and the system can proceed just as if all
the effects had been listed in the operator. Deductions are not
attempted at other points in the planning process. Deductive
operators have triggers for controlling their application. The
DCLEAR operator in Figure 2 is applied when OBJECTl is
placed on OBJECT2. Deductive operators have no instructions
for expanding a node to a greater level of detail. Instead, if
the precondition of a deductive operator holds, its effects can
be added to the world model (in the same context in which the
precondition matched) without changing the existing plan. This
may "achieve" some goal in the plan (by deducing that it has
already been achieved), thereby making it unnecessary to plan
actions to achieve it. In Figure 2, matching the precondition
will bind BLOCK3 to the block that OBJECTl was on before
it moved to OBJECT2. Since OBJECT4 is constrained to be in
the EXISTENTIAL class (see below) and is constrained to not
be OBJECTl, the precondition will match (and CLEARTOP
of BLOCK3 deduced) only if OBJECTl is the only object on
BLOCK3 (just before moving OBJECTl to OBJECT2).

The method used for specifying variables as existentially
quantified (i.e., constraining them to be in the EXISTENTIAL
class) does not provide scoping information. Since only certain
types of quantifiers are permitted for efficiency reasons, SIPE in-

D. Wilkins 739

DEDUCT1VE.OPERATOR: DCLEAR
ARGUMENTS: OBJECTl, 0BJECT2,

BLOCK3 IS NOT OBJECT2,
OBJECTl CLASS EXISTENTIAL IS NOT OBJECTl;

TRIGGER: (ON OBJECTl OBJECT2);
PRECONDITION: (ON OBJECTl BLOCK3),

(NUT (ON OBJECT4 BLOCK3));
EFFECTS: (CLEAR BLOCK3);

Figure 2
A Deductive Operator in SIPE

terprets preconditions according to defaults that are somewhat
non-standard. The scope of each EXISTENTIAL variable ap-
pearing as an argument in a predicate is local to that predicate.
Each predicate effectively gets a different existential variable.
In addition, negated predicates are interpreted as having the
quantifier within the scope of the negation. Thus, the variable
is effectively universally quantified for negated predicates. As
an example, with x declared EXISTENTIAL, the precondition
P(1)A-Q[x) is interpreted as 3 x.P(x) A -3 x.Q(x) (or equiv-
alently, 3 1.P{x) A Vz. -» Q(x)). These restrictions make use of
SIPE's representation (e.g., the fact that negated predicates are
treated differently) to permit handling quantifiers efficiently.

Besides simplifying operators, deductive operators are im­
portant in many domains for their ability to represent condi­
tional effects. In NOAH's blocks world, only one block may be
on top of another; consequently, whenever a block is moved, the
operator for the move action can be written to state explicitly
the effect that the block underneath will be clear. In the more
general case in which one large block might have many smaller
blocks on top of it, there may or may not be another block on
the block underneath, so the effects of the action must be condi­
tional upon this. Since systems like NOAH and NONLIN must
mention effects explicitly (universally or existentially quantified
variables are not allowed in the description of effects), they can­
not represent this more general case with a single move operator.
These systems would need two move operators - one for the
one-block-on-top case, another for the many-blocks-on-top case.
Furthermore, the preconditions for separation of the cases would
add an undesirable complication to the representation of the
operators.

As the above example shows, SIPE's deductive operators
allow certain quantifiers and are powerful enough to handle
this case. Since SIPE can deduce all the clearing and unclear-
ing effects that occur in the blocks world, the operators them­
selves do not need to represent them. As domains grow to in­
clude many operators, this becomes very convenient. Deductive
operators provide a way to distinguish side effects, which can
be important. By using deduction, more complicated blocks

worlds can be represented more elegantly in SIPE than in pre-
vious domain-independent planners.

4. Performance of SIPE
SIPE has been tested in four different domains: the blocks

world, cooking, aircraft operations, and a simple robotics as­
sembly task. These domains do not have large branching fac­
tors or search spaces so that the automatic search can find
solutions. The cooking domain was encoded to demonstrate
resource reasoning. SIPE operators naturally represented re-
quirements for frying pans and burners during the cooking of
a dish. Problems such as cooking four dishes with three pans
on two burners were handled efficiently by the resource reason­
ing mechanisms in SIPE. Handling a problem means producing
plans for cooking as many dishes as possible in parallel, with
enough serialization to get the task accomplished with the avail­
able resources. Such plans consisted of dozens of nodes in our
simple cooking world.

The standard blocks world was encoded in SIPE, with some
enrichments (e.g., more than one block could be on top of another).
Use of deductive operators made the PUTON operator more
readable. Resource reasoning enabled SIPE to quickly find and
correct parallel interaction problems. A number of other prob­
lems involving properties of the blocks and quantifiers were also
handled elegantly (making use of the constraints in SIPE). For
example, the problem of getting some red block on top of some
blue block is easily represented and solved. (SIPE will choose a
red block and a blue block that are already clear, if such exist.)

5. Conclusion
SIPE's operator description language was designed to be

perspicuous (to enable graceful interaction) while being more
powerful than those found in previous domain-independent plan­
ners. Constraints, resources, and deductive operators all con­
tribute to the power of the representation. Deductive operators
allow quantified variables and can therefore be used to make
fairly sophisticated deductions, thus eliminating the need to ex­
press effects in operators when they can be deduced. They are
also useful in distinguishing main effects from side effects.

One of the most important features of SIPE is its ability to
constrain the possible values of variables. It is well known that
this enables more efficient planning, since choices can be delayed
until information has been accumulated. Other advantages of
constraints, however, are also critical. A key consideration is
that constraints allow convenient expression of a much wider
range of problems. Constraint satisfaction finds variable in-

740 D. Wllkins

stand ations efficiently by taking advantage of the fact that in-
variant properties of objects are encoded in the sort hierarchy.
Constraints also help prevent harmful parallel interactions.

SIPE provides the ability to reason about resources which is
important both for representation of domains and the handling
of parallel interactions. Combined with the system's ability
to post constraints, resource reasoning helps the system avoid
many harmful interactions, helps it recognize sooner those in­
teractions that do occur, and helps the system solve some of
these interactions more quickly. SIPE'S handling of interactions
is also improved by its ability to differentiate side effects and to
correctly determine the rationale behind actions.

ACKNOWLEDGMENTS
Many people influenced the ideas expressed in this paper.

Special thanks go to Ann Robinson who helped design and
implement SIPE, and to Nils Nilsson, Mike Georgeff, and Stan
Roscnschein for many enlightening discussions.

REFERENCES
1. Fikes, R., Hart, P., and Nilsson, N., "Learning and

Executing (Generalized Robot Plans", Readings in Artificial In­
telligence, Nilsson and Webber, ed., Tioga Publishing, Palo Alto,
California, 1981, pp. 231 249.

2. McDermott, D., ''A Temporal logic for Reasoning About
Processes and Plans" , Cognitive Science, forthcoming.

3. Roseuscbein, S., "Plan Synthesis: A Logical Perspective",
Proceedings IJCAI 81, Vancouver, British Columbia, 1981, pp.
331-337.

4. Sacerdoti, E., A Structure for Plans and Behavior, Elsev­
ier, North-Holland, New York, 1977.

5. Sridharan, N., and Bresina, J., "Plan Formation in
Large, Realistic Domains", Proceedings CSCSI Conference, Sas­
katoon, Saskatchewan, 1982, pp. 12-18.

6. Stefik, M., "Planning with Constraints", Report STAN-
CS-80-784, Computer Science Dept., Stanford University, 1980.

7. Tate, A., "Generating Project Networks", Proceedings
IJCAI-77, Cambridge, Massachusetts, 1977, pp. 888-893.

8. Vere, S., "Planning in Time: Windows and Durations for
Activities and Goals", Jet Propulsion Lab, Pasadena, California,
November 1981.

9. Waldinger, R., "Achieving Several Goals Simultaneously",
Readings in Artificial Intelligence, Nilsson and Webber, ed.,
Tioga Publishing, Palo Alto, California, 1981, pp. 250-271.

10. Wilkins, D. E., "Parallelism in Planning and Problem
Solving: Reasoning About Resources", Proceedings CSCSI Con­
ference, Saskatoon, Saskatchewan, 1982, pp. 1-7.

11. Wilkins, D. E., "Domain-independent Planning: Rep-
resentation and Plan Generation", Technical Note 266R, SRI
International Artificial Intelligence Center, Menlo Park, California,
May 1983.

