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ABSTRACT 
The representation used in a domain-independent planning 

program that supports both automatic and interactive genera-
tion of hierarchical, partially ordered plans is described. An 
improved formalism for representing domains and actions is 
presented. The formalism makes extensive use of constraints, 
offers efficient methods for representing properties of objects 
that do not change over time, allows specification of plan rationale, 
allows specification of resources for efficiently detecting and 
remedying harmful parallel interactions, and provides the ability 
to express deductive rules for deducing the effects of actions. 

1. Overview 

The automation of planning in a computer program in­
volves representing the world, representing actions and their 
effects on the world, reasoning about the effects of sequences of 
such actions, reasoning about the interaction of actions that are 
taking place concurrently, and controlling the search so that 
plans can be found with reasonable efficiency. Planners de­
signed to work efficiently in a single problem domain, though 
desirable, often depend on the structure of that domain to such 
an extent that the underlying ideas cannot be readily used in 
other domains. This paper discusses domain-independent plan­
ners that are of particular interest, since they yield planning 
techniques that are applicable in many domains and provide 
a general planning capability. Such a commonsense planning 
capability is likely to require different techniques from those 
used by an expert planning in his particular domain of exper­
tise, but it is nonetheless essential for people in their daily 
lives and for intelligent programs. Of course, a general plan­
ner should provide representations and methods for including 
domain specific knowledge and heuristics. This paper describes 
an implemented planning program that expands the core of 
domain-independent planning techniques as it builds on and ex­
tends such previous domain-independent planning systems as 
Sacerdoti's NOAH [4], Tate's NONLIN [7], Sridharan's PLANXIO 
[5], Vere's DEVISER [8], and SRI's STRIPS [1]. 

*The research reported here is supported by Air Force Office of Scientific 
Research Contract F4962O-79-C-0188. 

We have designed and implemented (in INTERLISP) a sys-
tem, SIPE (System for Interactive Planning and Execution Mon­
itoring), that supports domain-independent planning. The pro-
gram has produced correct parallel plans for problems in four 
different domains (the blocks world, cooking, aircraft opera-
tions, and a simple robotics assembly task). The system allows 
for hierarchical planning and parallel actions. Development of 
the basic planning system has led to several extensions of pre-
vious systems. These include the development of a perspicuous 
formalism for encoding descriptions of actions, the use of con­
straints to partially describe objects, the creation of mecha­
nisms that permit concurrent exploration of alternative plans, 
the incorporation of heuristics for reasoning about resources, 
mechanisms that make it possible to perform simple deductions, 
and advanced abilities to reason about the interaction among 
parallel actions. SIPE can automatically generate plans, but, 
unlike its predecessors, SIPE is designed to also allow interaction 
with human users throughout the planning and plan execution 
processes, if this is desired. The user is able to watch and, when 
he wishes, guide and/or control the planning process. 

In SIPE, a plan is a set of partially ordered goals and ac­
tions, which is composed by the system from operators (the 
system's description of actions that it may perform). By simply 
applying operators, plans that do not achieve the desired goal 
may sometimes be generated, so the system has critics that find 
potential problems and attempt to avert them. In particular, 
most of the reasoning about interactions between parallel ac­
tions is done by the critics. The plans are represented in pro-
cedural nets [4], primarily for graceful interaction between man 
and machine. Invariant properties of objects in the domain are 
represented in a tree-structured sort hierarchy, which allows in­
heritance of properties and the posting of constraints on the 
values of attributes of these objects. The relationships that 
change over time - and therefore all goals - are represented in 
a version of first-order predicate calculus that is typed and in­
teracts with the knowledge in the sort hierarchy. Operators are 
represented in an easily understood formalism, developed by us, 



734 D. Wilkins 

in which the ability to post constraints on variables is a primary 
feature. Each of these parts of the system will be described in 
more detail later. 

It should be noted here that, like most domain-independent 
planning systems (DEVISER being an exception), ours assumes 
discrete time, discrete states, and discrete operators. These 
assumptions are acceptable in many real-world domains, even 
though they are restrictive and prevent many real-world phenom­
ena from being adequately represented. For example, sophisti­
cated reasoning about time and modelling of dynamic processes 
are not possible within our present framework. Few artificial in­
telligence programs have addressed these problems (McDermott's 
recent work being a notable exception [2]). 

The planning-representation problem involves representing 
the domain, goals, and operators. Operators are the system's 
representation of actions that may be performed in the domain 
or, in the hierarchical case, abstractions of actions that can be 
performed in the domain. An operator includes a description 
of how each action changes the state of the world. In a logical 
formalism such as Rosensebein's adaptation of dynamic logic to 
planning [3], the same representational formalism may be used 
for representing the domain, goals, and operators; however, in 
many planners more concerned with efficiency, including SIPE, 
there is a different representation for each. The goal is to have 
a rich enough representation so that many interesting domains 
ran be represented (an advantage of logical formalisms), but this 
must be measured against the ability of the system to deal with 
its representations efficiently during the planning process. 

This paper describes SIPE's solution to the problem of 
representing the domain, goals, and operators. (Other aspects of 
the system are described in [11].) A central concern in designing 
a representation for a planning system is how to represent the 
effects an action has on the state of the world. This means that 
the frame problem [l] must be solved in an efficient manner. 
Since we intend that many domains will be encoded in the 
planning system, it is also necessary that the solution to the 
frame problem not be too cumbersome. For example, one does 
not want to have to write a large number of frame axioms for 
each new action that is defined. 

2. Representation of Domain and Goals 

The system provides for representation of domain objects 
and their invariant properties by nodes linked in a hierarchy. 
This permits SIPE to incorporate the advantages of frame-based 
systems (primarily efficiency), while retaining the power of the 
predicate calculus for representing properties that do vary. In­

variant properties do not change as actions planned by the 
system are performed (e.g., the size of a frying pan does not 
change when you cook something in it). Each node can have 
attributes associated with it, and can inherit properties from 
other nodes in the hierarchy. The values of attributes may 
be numbers, pointers to other nodes, key words the system 
recognizes, or any arbitrary string (which can only be used by 
checking if it is equal to another such string). The attributes 
are an integral part of the system, since planning variables 
arc also nodes in the hierarchy and contain constraints on the 
values of attributes of possible instantiations. Constraints are an 
important part of the system and are discussed in considerable 
detail later. There are different node types for representing 
variables, objects, and classes, but these will not be discussed 
in detail here, since they are similar to those occurring in many 
representation formalisms - for example, semantic networks and 
UNITS[6]. 

A restricted form of first-order predicate calculus is used 
to represent properties of domain objects and the relationships 
among them that may change with the performance of actions; 
it is also therefore used to describe goals as well as the precondi­
tions and effects of operators. Quantifiers are allowed whenever 
they can be handled efficiently. Universal quantifiers are always 
permitted in effects, and over negated predicates in precondi­
tions. Existential quantifiers can occur in the preconditions of 
operators, but not in the effects. Disjunction is not allowed. 
These restrictions result from using "add lists'' to solve the 
frame problem. (Why this is so is described in the next sec­
tion). By representing the invariant properties of the domain 
separately, SIPE reduces the number of formulas in the sys­
tem and makes deductions more efficient. There is currently 
no provision for creating or destroying objects as actions are 
executed, although in some domains this would be useful (e.g., 
after an omelet has been made, do the original three eggs still 
exist as objects?). 

3. Representation of Operators 

Operators representing actions the system may perform 
contain information about the objects that participate in the 
actions (represented as resources and arguments of the actions), 
what the actions are attempting to achieve (their goals), the 
effects of the actions when they are performed, and the con­
ditions necessary before the actions can be performed (their 
preconditions). Before SIPE's representation is described in 
detail, some basic assumptions made by SIPE about the effects 
of actions need to be presented. 
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Determining the state of the world after actions have been 
performed (e.g., the planner must ascertain whether the in­
tended goals have been achieved), involves solving the frame 
problem. Here we make what Waldinger [9] has called the 
STRIPS assumption, which is that all relations mentioned in 
the world model remain unchanged unless an action in the plan 
specifies that some relation has changed. In STRIPS, an action 
specifies that a relation has changed by mentioning it on an 
"addlist" or "deletelist". Alternatively, relations that change 
might be deduced from general frame axioms as long as the 
deduction is tightly controlled. 

Muking this assumption imposes requirements on the for­
malism used for representing the domain, since it must support 
the STRIPS assumption. While the STRIPS assumption may 
be very limiting in the representation of rich domains, such as 
automatic programming, there are many domains of interest 
for which it causes no problems. For example, the fairly simple 
environments in which robot arms often operate appear ade­
quately represent able in a system embodying the STRIPS as-
sumption. SI PIC currently makes the closed-world assumption: 
any negated predicate is true unless the unnegated form of the 
predicate is explicitly given in the model or in the effects of an 
action that has been performed. This is not critical; the system 
could be changed to assume that a predicate's truth-value is 
unknown unless an explicit mention of the predicate is found in 
either negated or unnegated form. (Although in large domains, 
there may be an enormous number of predicates that are not 
true.) Deduction in SIPE does not violate the closed-world as­
sumption; it is used only to deduce effects of an action when 
the action is added to a plan (thus sparing the operator that 
represents the action from having to specify these effects). 

Many features combine to make SIPE's operator descrip-
tion language an improvement over operator descriptions in pre­
vious systems. These features will be presented by discussing 
the sample operator given in Figure 1, with subsections devoted 
to the more important features. The SIPE system has produced 
correct parallel plans for problems in four different domains, 
one of which is the blocks world (described in [4]) for which 
many domain-independent planning systems (e.g., NONLIN and 
NOAH) have presented solutions. To facilitate comparison with 
these systems, a PUTON operator for the blocks world in the 
SIPE formalism is shown in Figure 1. 

The operator's effects, preconditions, and purpose are all 
encoded as first-order predicates on variables and objects in the 
domain. (In this case, BLOCK1 and OBJECTl are variables.) 
Negated predicates that occur in the effects of an operator es­
sentially remove from the model a fact that was true before, but 

OPERATOR: PUTON 
ARGUMENTS: BLOCK 1, OBJECTl IS NOT BLOCK1; 
PURPOSE: (ON BLOCK1 OBJECTl); 
PLOT: 

PARALLEL 
BRANCH 1: 

GOALS: (CLEARTOP OBJECTl); 
ARGUMENTS: OBJECTl; 

BRANCH 2: 
GOALS: (CLEARTOP BLOCK 1); 
ARGUMENTS: BLOCKl; 

END PARALLEL 

PROCESS 
ACTION: PUTON.PRIMITIVE; 
ARGUMENTS: OBJECTl; 
RESOURCES: BLOCKl; 
EFFECTS: (ON BLOCKl OBJECTl); 

END 

Figure 1 
A PUTON Operator in SIPE 

is no longer true. 

Operators contain a plot that specifies how the action is to 
be performed in terms of actions and goals at either the current 
level or some lower level of the hierarchy. Like plans, plots are 
represented as procedural networks. When used by the planning 
system, the plot can be viewed as instructions for expanding a 
node in the procedural network to the next level. The plot of an 
operator can be described either in terms of goals to be achieved 
(i.e., a predicate to make true), or in terms of processes to be 
invoked (i.e., an action to be performed). (NOAH represented a 
process as a goal with only a single choice of action.) Encoding 
a step as a process implies that only the action it defines can be 
taken at that point, while encoding a step as a goal implies that 
any action can be taken that will achieve the goal. Another 
less explicit difference between encoding a step as a goal or 
as a process is whether the emphasis is on the situation to be 
achieved or the actual action being performed. 

During planning, an operator is used to expand an already 
existing GOAL or PROCESS node in the procedural network 
to produce additional procedural network structure at the next 
level. For example, the PUTON operator might be applied to 
a GOAL node in a plan whose goal predicate is (ON A B). 
Operators may specify preconditions that must obtain in the 
world state before the operator can be applied. (The operator 
in Figure 1 has no precondition.) Operators contain lists of 
resources and arguments to be matched with the resources and 
arguments of the node being expanded. In our example, A and 
B in the GOAL node are matched with BLOCKl and OBJECTl 
in the PUTON operator when the operator is used to expand 
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the node. The plot of the operator is used as a template for 
generating two COAL nodes and one PROCESS node in the 
plan. 

Operators in SIPE provide for posting of constraints on 
variables, specification of resources, and the use of deduction 
to determine the effects of actions. Each feature is described 
below in some detail. SIPE also provides the ability to explicitly 
represent the rationale behind each action (this is mentioned 
briefly below), and to apply the plots of operators iteratively to 
sets (this is not discussed in this paper). 

3.1 SIFE's Constraint Language 
SIPE's ability to construct partial descriptions of unspecified 

objects is one of its most important advances over previous 
domain-independent planning systems. This ability is important 
both for domain represention (e.g., objects with varying degrees 
of abstractness can be represented in the same formalism) and 
for finding solutions efficiently (since decisions can be delayed 
until partial descriptions provide more information). Almost no 
previous domain-independent planning systems have used this 
approach (e.g., NOAH cannot partially describe objects) so the 
constraints in SIPE will be documented in some detail. 

Planning variables that do not yet have an instantiation 
ran be partially described by setting constraints on the possible 
values an instantiation might take. This allows instantiation of 
the variable to be delayed until it is forced or until as much 
information as possible has been accumulated, thus prevent­
ing incorrect choices from being made. Constraints may place 
restrictions on the properties of an object (e.g., requiring certain 
attribute values for it in the sort hierarchy), and also require 
that certain relationships exist between an object and other ob­
jects (e.g., predicates that must be satisfied in a certain world 
state). SIPE provides a general language for expressing these 
constraints on variable bindings so they can be encoded as part 
of t the operator. During planning, the system also generates con­
straints that are basted on interactions within a plan, propagates 
them to variables in related parts of the network, and finds vari­
able bindings that satisfy all constraints. 

The allowable constraints in SIPE on a variable V are listed 
below: 

• CLASS. This constrains V to be in a specific class in the 
sort hierarchy. In SIPE's operator description language there 
is implicit typing based on the variable name; therefore, in the 
PUTON operator in Figure 1, the variable created for BLOCK1 
has a CLASS constraint that requires the instantiation for the 
variable to be a member of the class BLOCKS. Similarly, the 
OBJECT1 variable has a CLASS constraint for class OBJECTS. 

• NOT-CLASS. V must be instantiated so that it is not a 
member of a given class. 

• PR ED. V must be instantiated so that a given predicate (in 
which V is an argument of the predicate), is true. This results 
in an explicit number of choices for V's instantiation, since all 
true facts are known (by the closed-world assumption). 

• NOT-PRED. V must be instantiated so that a given predi­
cate (in which V is an argument of the predicate), is not true. 

• SAME. Y must be instantiated to the same object to which 
some other given variable is instantiated. 

• NOT-SAME. Y must not be instantiated to the same ob-
ject to which some other given variable is instantiated. In the 
PUTON operator in Figure 1, the phrase "IS NOT BLOCK 1" 
results in a NOT-SAME constraint being posted on both BLOCK 1 
and OB.JECTl that requires they not be instantiated to the 
same thing. Thus, if SIPE is looking for a place to put block A, 
it will not choose A as the place to put it. 

• INS TAN. V must be instantiated to a given object. This 
could be represented by using SAME applied to objects as well 
as variables (or using PRED with an EQ predicate), but instan­
tiation is a basic function of the system and warrants its own 
constraint for a slight gain in efficiency. 

• NOT-IN STAN. V must not be instantiated to a given ob-
ject. 

• OPTIONAI,-SAME. This is similar to SAME, but merely 
specifics a preference and is not binding. For example, one would 
prefer to conserve resources by making two variables be the 
same object, but, if this is not possible, then different objects 
are acceptable. 

• OPTIONAL-NOT-SAME. This is similar to NOT-SAME, 
but is not binding. If SIPE notices that a conflict will occur 
between two parallel actions if two variables are instantiated to 
the same object, then it will post an OPTIONAL-NOT-SAME 
constraint on both variables. If it is possible to instantiate them 
differently, a conflict is avoided. If it is not, they may be made 
the same but the system will have to resolve the ensuing 
conflict (perhaps by not doing things in parallel). 

• Any attribute name. This requires a specific value for a 
specific attribute of an object. For example, the PUTON opera­
tor could have specified "BLOCK 1 WITH COLOR RED". This 
would create a constraint on BLOCK 1 requiring the COLOR 
attribute (in the sort hierarchy) of any possible instantiation 
to have the value RED. For attributes with numerical values, 
"greater than" and "less than" can also be used. In planning 
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an airline schedule, for example, the operator used for cross­
country flights might contain the following variable declaration: 
"PLANEl WITH RANGE GREATER THAN 3000'' 

Constraints add considerably to the complexity of the plan­
ner because they interact with all parts of the system. For 
example, to determine if a goal predicate is true, SIPE must 
verify whether it matches predicates that arc effects earlier in 
the plan. This may require matching variables that are argu­
ments to the two predicates, which in turn involves determining 
whether the constraints on the two variables are compatible. 
In a similar way, constraints also interact with the deductive 
capability of the system (to be described later). Constraints also 
affect critics, since determining if two concurrent actions inter-
art may depend on whether their constraints are compatible. 
SIPE must also solve a general constraint satisfaction problem 
with reasonable efficiency, though how to control the amount of 
processing spent on constraint satisfaction is an open and im­
portant question. SIPE's method of propagating and checking 
constraints is described in more detail in [11]. 

The use of constraints is a major advance over previous 
domain-independent, planning systems. NOAH, for example, 
would have to represent every property of an object as a predi­
cate and then, to get variables properly instantiated, would have 
each such predicate as either a precondition of an operator or 
a goal in the plan. In SIPE an operator might declare a vari­
able as "CARGOPLANEl WITH RANGE 3000" and the plan 
using this variable can assume it has the proper type of aircraft. 
In NOAH, goals similar to (CARGOPLANE X) and (RANGE X 
3000) would have to be included in the operator and achieved as 
part of the plan. This makes both the operators and plans much 
longer and harder to use and understand. In addition to syn­
tactic sugar, constraints in SIPE improve efficiency and express-
ibility. The OPTIONAL-SAME and OPTIONAL-NOT-SAME 
constraints used in resource reasoning cannot be expressed as 
goals or preconditions in a system like NOAH. The constraint 
satisfaction algorithm used in SIPE takes advantage of the fact 
that invariant properties of objects are stored directly in the 
sort hierarchy. The lookup of such properties in SIPE is much 
more efficient than the process of looking through the plan to 
determine which predicates are currently true, as would have to 
be done in systems like NOAH and NONLIN. 

Some domain-dependent systems make use of constraints. 
Stefik's system [6], one of the few existing planning systems with 
the ability to construct partial descriptions of an object without 
identifying the object, operates in the domain of molecular ge­
netics. Our system extends Stefik's approach in three ways. (1) 
We provide an explicit, general set of constraints that can be 

used in many domains. Stefik does not present a list of allowable 
constraints in his system; moreover, some of them that are 
mentioned seem specifically related to the genetics domain. (2) 
Constraints on variables can be evaluated before the variables 
are fully instantiated. For example, a set can be created that 
is constrainable to be only bolts, then to be longer than one 
inch and shorter than two inches, then to have hex heads. This 
set can be used in planning before its members are identified in 
the domain. (3) Partial descriptions can vary with the context, 
thus permitting simultaneous consideration of alternative plans 
involving the same unidentified objects (see [11]). 

3.2 Resources 
Parallelism is considered beneficial since optimal plans in 

many domains require it. (Two segments of a plan are in parallel 
if the partial ordering of the plan does not specify that one 
segment must be done before the other.) The approach used 
in SIPE, therefore, is to keep as much parallelism as possible 
and then to detect and respond to interactions between parallel 
branches of a plan. SIPE provides the ability to reason about 
resources, which is a powerful mechanism both for detecting 
parallel interactions and remedying them. 

The formalism for representing operators in SIPE includes 
a means of specifying that some of the variables associated with 
an action or goal will actually serve as resources for that ac­
tion or goal (e.g., BLOCK 1 is declared as a resource in the 
PUTON.PRIMITIVE action of the PUTON operator in Figure 
1). Resources are to be employed during a particular action and 
then released, just as a frying pan is used while vegetables are 
being sauteed in it. Reasoning about resources is a common 
phenomenon. It is a useful way of representing many domains, 
a natural way for humans to think about problems, and, conse­
quently, an important aid to interaction with the system. 

SIPE has specialized knowledge for handling resources; dec­
laration of a resource associated with an action is a way of saying 
that one precondition of the action is that the resource be avail­
able. Mechanisms in the planning system, as they allocate and 
deallocate resources, automatically check for resource conflicts 
and ensure that these availability preconditions will be satisfied. 

Resources enable SIPE's operators and plans to be more 
succinct and easier to understand than similar operators and 
plans in domain-independent parallel planning systems, such as 
NOAH and NONLIN. In the latter systems, resource availability 
would hav? to be correctly axiomatized, checked, and updated 
in the preconditions and effects of the operators. It is not clear 
that it would be possible to do this so that the critics would 
recognize only the intended conflicts. If it were indeed possible, 
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the resource reasoning in S1PE would be much more efficient 
than such an axiomatization in the other systems. For example, 
in NOAH (he resolve-conflicts c/itic would eventually have to 
notice that posted "available-resource" effects are in conflict. 
This could be done only after the entire plan had been expanded 
and the critics applied. Even then, conflicts between uninstan-
tiated variables might not be detected, since only in an attempt 
to instantiate them would an actual conflict arise. In SIPE it is 
known which resources an operator needs before it is applied, so 
conflicts can be detected even before the plan is expanded. This 
can result in choosing operators that do not produce conflicts, 
thereby pruning the search space. SIPE avoids not only the im­
mediate incorrect operator expansion, but also both the entire 
expansion to the next level and the application of the critics 
after that. The savings can be considerable in domains that 
use resources heavily. SIPE can also detect conflicts between 
uninstantiated variables; if a plan requires two arms as resources 
and only one arm exists in the world, SIPE can detect this 
conflict even though the two arm variables have not been in­
stantiated. 

This section only summarizes the resource reasoning abilities 
provided by SlPE's representation. Details of how resources are 
actually implemented are given in [ l l ] and [10]. These papers 
include examples of problems solved with and without reasoning 
about resources, as well as a general description of the parallel 
interaction problem and SIPE's solution to it. 

3.3 Plan Rationale 

SIPE provides more flexibility in specifying the rationale 
behind a plan than many domain-independent planners. (The 
rationale for an action in a plan is "why" the action is in the 
plan.) This is needed for determining how long a condition must 
be maintained, what changes in the world cause problems in the 
plau, and what the relationship is among different levels in the 
hierarchy. SIPE constructs links, both between the levels of a 
plan and within a level, that help express the rationale behind 
t he actions. The system has reasonable defaults for constructing 
these links, but also provides the flexibility for operators to 
specify how these links should be constructed (thus permitting a 
larger class of phenomena to be represented). This is described 
in more detail in [11]. 

3.4 Deductive Operators 

In addition to operators describing actions, SIPE allows 
specification of deductive operators that deduce facts from the 
current world state. This provides a deductive capability that 

is useful, but nevertheless keeps deduction under control by 
severely restricting the deductions that can be made. As more 
complex domains are represented, it becomes increasingly im­
portant to deduce the effects of actions from axioms about the 
world, rather than explicitly representing these effects in opera­
tors. For example, the PUTON operator in Figure 1 lists only 
(ON BLOCK 1 OBJECTl) as an effect. It does not mention 
which objects are or are not now CLEARTOP, since that is 
deduced by deductive operators. Because deductive operators 
in SIPE may include both existential and universal quantifiers, 
they provide a rich formalism for deducing (possibly conditional) 
effects of an action. Effects that are deduced in SIPE are con­
sidered to be side effects. (Operators can also specify effects as 
either main effects or side effects.) Knowing which effects are 
merely side effects is important in handling parallel interactions. 

Figure 2 shows one of the deductive operators in the SIPE 
blocks world for deducing CLEARTOP relationships. Deductive 
operators are written in the same formalism as other operators 
in SIPE, thus permitting the system to control deduction with 
the same mechanisms it uses to control the application of opera­
tors. This also allows constraints to be used and, as this example 
shows, they play a major role in SIPE's deductive capability. 

All deductions that can be made are performed at the time 
an operator is expanded. The deduced effects are recorded in 
the procedural net, and the system can proceed just as if all 
the effects had been listed in the operator. Deductions are not 
attempted at other points in the planning process. Deductive 
operators have triggers for controlling their application. The 
DCLEAR operator in Figure 2 is applied when OBJECTl is 
placed on OBJECT2. Deductive operators have no instructions 
for expanding a node to a greater level of detail. Instead, if 
the precondition of a deductive operator holds, its effects can 
be added to the world model (in the same context in which the 
precondition matched) without changing the existing plan. This 
may "achieve" some goal in the plan (by deducing that it has 
already been achieved), thereby making it unnecessary to plan 
actions to achieve it. In Figure 2, matching the precondition 
will bind BLOCK3 to the block that OBJECTl was on before 
it moved to OBJECT2. Since OBJECT4 is constrained to be in 
the EXISTENTIAL class (see below) and is constrained to not 
be OBJECTl, the precondition will match (and CLEARTOP 
of BLOCK3 deduced) only if OBJECTl is the only object on 
BLOCK3 (just before moving OBJECTl to OBJECT2). 

The method used for specifying variables as existentially 
quantified (i.e., constraining them to be in the EXISTENTIAL 
class) does not provide scoping information. Since only certain 
types of quantifiers are permitted for efficiency reasons, SIPE in-
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DEDUCT1VE.OPERATOR: DCLEAR 
ARGUMENTS: OBJECTl, 0BJECT2, 

BLOCK3 IS NOT OBJECT2, 
OBJECTl CLASS EXISTENTIAL IS NOT OBJECTl; 

TRIGGER: (ON OBJECTl OBJECT2); 
PRECONDITION: (ON OBJECTl BLOCK3), 

(NUT (ON OBJECT4 BLOCK3)); 
EFFECTS: (CLEAR BLOCK3); 

Figure 2 
A Deductive Operator in SIPE 

terprets preconditions according to defaults that are somewhat 
non-standard. The scope of each EXISTENTIAL variable ap-
pearing as an argument in a predicate is local to that predicate. 
Each predicate effectively gets a different existential variable. 
In addition, negated predicates are interpreted as having the 
quantifier within the scope of the negation. Thus, the variable 
is effectively universally quantified for negated predicates. As 
an example, with x declared EXISTENTIAL, the precondition 
P(1)A-Q[x) is interpreted as 3 x.P(x) A -3 x.Q(x) (or equiv-
alently, 3 1.P{x) A Vz. -» Q(x) ). These restrictions make use of 
SIPE's representation (e.g., the fact that negated predicates are 
treated differently) to permit handling quantifiers efficiently. 

Besides simplifying operators, deductive operators are im­
portant in many domains for their ability to represent condi­
tional effects. In NOAH's blocks world, only one block may be 
on top of another; consequently, whenever a block is moved, the 
operator for the move action can be written to state explicitly 
the effect that the block underneath will be clear. In the more 
general case in which one large block might have many smaller 
blocks on top of it, there may or may not be another block on 
the block underneath, so the effects of the action must be condi­
tional upon this. Since systems like NOAH and NONLIN must 
mention effects explicitly (universally or existentially quantified 
variables are not allowed in the description of effects), they can­
not represent this more general case with a single move operator. 
These systems would need two move operators - one for the 
one-block-on-top case, another for the many-blocks-on-top case. 
Furthermore, the preconditions for separation of the cases would 
add an undesirable complication to the representation of the 
operators. 

As the above example shows, SIPE's deductive operators 
allow certain quantifiers and are powerful enough to handle 
this case. Since SIPE can deduce all the clearing and unclear-
ing effects that occur in the blocks world, the operators them­
selves do not need to represent them. As domains grow to in­
clude many operators, this becomes very convenient. Deductive 
operators provide a way to distinguish side effects, which can 
be important. By using deduction, more complicated blocks 

worlds can be represented more elegantly in SIPE than in pre-
vious domain-independent planners. 

4. Performance of SIPE 
SIPE has been tested in four different domains: the blocks 

world, cooking, aircraft operations, and a simple robotics as­
sembly task. These domains do not have large branching fac­
tors or search spaces so that the automatic search can find 
solutions. The cooking domain was encoded to demonstrate 
resource reasoning. SIPE operators naturally represented re-
quirements for frying pans and burners during the cooking of 
a dish. Problems such as cooking four dishes with three pans 
on two burners were handled efficiently by the resource reason­
ing mechanisms in SIPE. Handling a problem means producing 
plans for cooking as many dishes as possible in parallel, with 
enough serialization to get the task accomplished with the avail­
able resources. Such plans consisted of dozens of nodes in our 
simple cooking world. 

The standard blocks world was encoded in SIPE, with some 
enrichments (e.g., more than one block could be on top of another). 
Use of deductive operators made the PUTON operator more 
readable. Resource reasoning enabled SIPE to quickly find and 
correct parallel interaction problems. A number of other prob­
lems involving properties of the blocks and quantifiers were also 
handled elegantly (making use of the constraints in SIPE). For 
example, the problem of getting some red block on top of some 
blue block is easily represented and solved. (SIPE will choose a 
red block and a blue block that are already clear, if such exist.) 

5. Conclusion 
SIPE's operator description language was designed to be 

perspicuous (to enable graceful interaction) while being more 
powerful than those found in previous domain-independent plan­
ners. Constraints, resources, and deductive operators all con­
tribute to the power of the representation. Deductive operators 
allow quantified variables and can therefore be used to make 
fairly sophisticated deductions, thus eliminating the need to ex­
press effects in operators when they can be deduced. They are 
also useful in distinguishing main effects from side effects. 

One of the most important features of SIPE is its ability to 
constrain the possible values of variables. It is well known that 
this enables more efficient planning, since choices can be delayed 
until information has been accumulated. Other advantages of 
constraints, however, are also critical. A key consideration is 
that constraints allow convenient expression of a much wider 
range of problems. Constraint satisfaction finds variable in-
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stand ations efficiently by taking advantage of the fact that in-
variant properties of objects are encoded in the sort hierarchy. 
Constraints also help prevent harmful parallel interactions. 

SIPE provides the ability to reason about resources which is 
important both for representation of domains and the handling 
of parallel interactions. Combined with the system's ability 
to post constraints, resource reasoning helps the system avoid 
many harmful interactions, helps it recognize sooner those in­
teractions that do occur, and helps the system solve some of 
these interactions more quickly. SIPE'S handling of interactions 
is also improved by its ability to differentiate side effects and to 
correctly determine the rationale behind actions. 
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