
A U n i v e r s a l W e a k M e t h o d :

S u m m a r y o f r e s u l t s

John E. Laird and Allen Newell
Computer Science Department

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213 USA

ABSTRACT
The weak methods occur pervasively in Al systems and may form

the basic methods for all intelligent systems. The purpose of this
paper is to characterize the weak methods and to explain how and
why they arise in intelligent systems. We propose an organization,
called a universal weak method, that provides functionality of all the
weak methods. A universal weak method is an organizational
scheme for knowledge that produces the appropriate search
behavior given the available task-domain knowledge. We present a
problem solving architecture in which we realize a universal weak
method. We also demonstrate the universal weak method with a
variety of weak methods on a set of tasks.1

1 . I n t r o d u c t i o n
A basic paradigm in artificial intelligence (Al) is to structure

systems in terms of goals and methods, where a goal represents the
intention to attain some object or state of affairs, and a method
specifies the behavior to attain the goal. Some methods, for
example, hill climbing and means-ends analysis, occur pervasively
in existing Al systems. Such methods have been called weak
methods. It has been hypothesized that they form the basic
methods for all intelligent systems [5], The purpose of this paper is
to characterize the weak methods and to explain how and why they
arise in intelligent systems.? We propose an organization, called a
universal weak method, that provides the functionality of all the
weak methods We provide an implementation of this method in a
production system architecture based on search in a problem
space.

2 . T h e P r o b l e m S p a c e H y p o t h e s i s
A method (weak or otherwise) must be interpreted by an

architecture. A key idea on which to base the architecture for an
intelligent agent is search. Human problem solving and Al
programs that work on problems of appreciable intellectual
difficulty seem to always exhibit search. The case has been argued
that a framework of search is involved in all human goal-directed
behavior: a hypothesis that is called the Problem Space Hypothesis
[6].

We will adopt this hypothesis of the centrality of search and will
build an architecture for the weak methods around it. Problem
search occurs in the attempt to attain a goal. The current situation
exists in the agent in some representation, which will be called a

This research was sponsored by the Defense Advanced Research Projects
Agency (DOD), ARPA Order No. 3597, monitored by the Air Force Avionics
Laboratory Under Contract F33615-78C-1551. The views and conclusions
contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the US Government.

2
An extended account with full details is available In [2].

state. The agent can transform this representation to yield a new
representation with operators. The set of possible states plus the
operators will be called the problem space. Together, the problem
space and goal define the current task that the agent is working on.
To attain a goal, the agent starts at an initial state, and applies a
sequence of operators to reach some desired state. Some goals
also have path constraints that limit the paths that are acceptable.
Search control is the knowledge the agent has about the task that is
used to make the decisions encountered while problem solving.
The agent must select states, select and apply operators, decide if a
subgoal should be used, and decide if a goal has succeeded, failed
or should be suspended. A method corresponds to a specific
pattern of search control knowledge that guides the agent in its
decisions.

3 . A P r o b l e m S o l v i n g A r c h i t e c t u r e
In this section we give a particular search based problem solving

architecture: SOAR. SOAR has representations for the objects
involved: goals, problem spaces, states, and operators. Each
representation of an object can be augmented with additional
information about the object or about the history of the object in the
problem solving.

The current context of the architecture consists of a single object
of each type:

goal, problem space, state, operator

Objects in the current context, together with additional available
objects of each type, are called the stock. Although the stock is
limited by the physical resources of the agent, we make the
simplifying assumptions (for the present experiment) that there is
unlimited access to the stock and that the stock has unlimited
capacity and reliability.

A single generic action is available in SOAR to control the search
in the problem space: rcplacement of an object in the current
context by another object of the same type. After a replacement,
the current objects to the right (in the above ordering) of the
replacement become undefined. This initialization is necessary
because each object depends on the partial context provided by
other current objects. Different methods of search are realized by
selecting and replacing objects in the context.

Search-control knowledge is brought to bear on this process by
the Elaboration Decision Application (EDA) cycle, which involves
three distinct phases of processing. The elaboration phase takes
the objects from the stock as input, and augments the current-
context objects. Existing data cannot be modified, only augmented.
The elaboration phase terminates when no more augmentations
can be made. The decision phase follows the elaboration phase
and replaces an existing object in the current context based on
votes. Using objects in the stock as input, and it collects votes: for,
against and vetoes. All votes are totaled and SOAR replaces the
left-most context-object type that has a new winning object. If the
net votes for all objects of a type are negative, fail wins and

772 J. Laird and A. Newell

replaces the current object. Following the decision phase, if the
current state and operator are defined, the operator is applied to
the state to produce a new state. The new state replaces the
current state, while the current operator (through initialization)
becomes undefined The elaboration phase is then repeated.

The elaboration and decision phases constitute the search-
control memory of the agent. We use a specialized production
system [8] for them with productions of the form:

If C, and C„ and ... and C then A
1 2 n

The C are conditions that examine the current working context and
the stock. The form of the conditions is limited to a class of
patterns common to production systems [1]. A is an action that
either adds knowledge to a current object via an augmentation (for
an elaboration production), casts a vote for an object (for a
decision production), or applies an operator to a state. A
production is satisfied if the conjunction of its conditions is
satisfied. All satisfied elaboration productions fire concurrently
during the elaboration phase. All satisfied decision productions
vote together during the decision phase.

To achieve goals in this architecture, productions must be
created that define the task: (1) problem space operators, (2)
detection of the desired states of the goal, (3) initialization of the
current context and stock with the appropriate goal, problem
space, and initial state. A method to control the search is then
defined by elaboration and decision productions. Figure 3-1 shows
the productions for simple hill climbing For these productions to
be used on a specific task, they would have to be instantiated with
domain knowledge to compare states and determine the
applicability of operators. For Figure 3 1, the elaboration
productions compute the evaluation of the current state in relation
to the desirea state. The productions for goal decisions detect if
the desired state has been reached, or if all the operators have
been tried for a state and rejected (fail wins), meaning a local
minimum has been reached. The first state decision production will
take a step up a hill by voting for the current state if it is better than
its ancestor state. The second production rejects a step down the
hill by voting for the ancestor state if it is better than the current
state The operator productions veto operators that have already
been applied to the state, and vote for operators that will apply to
the state.

Elaboration
State: If the current states has not been evaluated, compute the

evaluation and add it to the state

Decision
Coal. If the current goal is solved, vote for supergoal.
Goal If the current operator is fail, vote for supergoal
State If the current state has an evaluation greater than its

ancestor state, vote for the current state
State: If the current state has an evaluation less than its ancestor

state, vote for its ancestor state
Operator. If an operator has been applied to a state before, veto it.
Operator If an operator will apply, vote for it

Figure 3-1: Search control for Simple Hill Climbing.

4 . A U n i v e r s a l W e a k M e t h o d
The architecture of the previous section is suitable for encoding

many weak methods,3 although we illustrated this only for hill

It is also suitable for encoding extended domain-dependent methods, but this is
not (he focus of the paper

climbing. For an architecture to be appropriate for realizing the
weak methods generally, it must allow simple and direct encodings
of all weak methods. One possibility is to have a separate
description for each method and select one based on the current
situation. Another possibility is to analyze the situation and
synthesize the appropriate weak method.

We suggest a third alternative: there should exist something, call
it a universal weak method (UWM), that responds directly to a
situation by behaving according to the weak method appropriate to
the knowledge the agent has of the task. Each weak method can
then be characterized by the small amount of knowledge it has
about the task. The UWM is what is left after this characteristic
knowledge is removed. This is the default behavior: what is done,
given nothing that is known about the task. When the knowledge
(productions) for a method is added to the UWM, the system
behaves according to that method.

Figure 4 1 gives the elaboration/decision productions that
constitute the UWM. The first elaboration production detects if all
problem spaces have been vetoed (meaning none of the problem
spaces were adequate for achieving the goal) and marks the goal
unacceptable (an augmentation). The goal must be elaborated with
this information so that when it is no longer the current goal, it will
not be selected as a subgoal. The next two elaboration productions
serve the same purpose for problem spaces, and states. All the
decision productions for the goal, problem space, and state vote for
an acceptable object and veto unacceptable objects. The operator
productions perform the same task for operators. Thus, even
though the UWM does specify a nontrvial behavior, it is a simple
specification that provides just enough control to search a problem
space.

Elaboration:
Goal If the current problem spoce is fail, the goal as unacceptable
Problem Space II the current state is fail, the problem space is unacceptable
State If the current operator is fail, the state is unacceptable

Decision:
Goal If there is an acceptable available goal, vote for it
Goal If there is an unacceptable available goal, veto it.
Problem Space II an acceptable problem space is associated to the

current goal, vote for it
Problem Space II an unacceptable problem space is associated to

the current goal, veto it.
State. If an acceptable state is in the current problem space, vote for it.
State If an unacceptable state is in the current problem space, veto it.
Operator If an acceptable operator is associated to the current

problem space, vote for it.
Operator If an operator has already been applied to the current state, veto it

Figu re 4-1: The Universal Weak Method.

To achieve a goal with the UWM, we must still define the task
(operators and attainment-test) within SOAR with productions.
With just the UWM and the task productions, SOAR will search the
problem space, but unguided by any special knowledge of the task.
Search control knowledge must be added as elaboration/decision
productions. These productions (along with the UWM) determine
the behavior and thereby define a method. The elaboration
productions define concepts such as depth, evaluation, difference
or duplicate state based on the structure of the current task. The
decision productions convert these concepts into action by voting
for objects. Figure 4-2 shows the decision productions that define
simple hill climbing for any task. Task dependent elaboration
productions must be added to Figure 4-2 to compute the evaluation
of states. With these productions, the agent has the knowledge to
compute an evaluation function for a state of the task and to use

J. Laird and A. Newell 773

the evaluation function to select a state. When these productions
are added to the UWM, SOAR will search using simple hill climbing.

Simple Hill Climbing
State If the current stnte is not acceptable or has an evaluation

worse than the ancestor state, vote for the ancestor state.
State If the current state is acceptable and has an evaluation

better than the ancestor state, vote for the current state.

Figure 4-2: Simple Hill Climbing Search Control

5 . E x p e r i m e n t a l D e m o n s t r a t i o n
In this section we demonstrate empirically that the UWM just

defined is capable of producing many weak methods. We restrict
the scope of the demonstration by not considering methods that
involve subgoals. Subgoals, of course, are critical to problem
solving generally and also to weak methods. However, the role of
subgoals in SOAR rests on the (predicted) existence of another
functional capacity of a general intelligent agent, universal
subgoaling [3], to set up subgoals to cope with difficulties that arise
in accomplishing a task. We expect that the UWM and universal
subgoaling jointly will produce all that might reasonably be called
weak methods We attend here only to the UWM in isolation.

SOAR is implemented in a parallel production system
architecture, XAPS2 [7].4 Twelve tasks were implemented in SOAR,
with some of them sharing a common problem statement. They are
mostly simple tasks familiar from theAl literature, plus a few even
simpler decision and logical tasks. Such tasks are suitable for an
initial test of a universal weak method, being familiar, easy to
implement, and knowledge lean (the situation in which weak
methods are used). Elaboration and decision productions
containing knowledge about the task (similar to those if Figure 4-2)
were added to control the search and produce the behavior of a
weak method. Productions were added that achieved the following
weak methods: avoid duplicates (AD), heuristic search with
operator selection heuristics (OSHS), means ends analysis (MEA),
breadth-first search (BRFS), depth first search (DFS), simple hill
climbing (SHC). steepest ascent hill climbing (SAHC), best-first
search (BFS), modified best-first search (MBFS, that is with one step
lookahead), and A star (A*).

Figure 5-1 shows the results of the tasks and the weak methods.
In the cases labeled + , the behavior was that of the stipulated weak
method. In the cases left blank there did not seem to be any
structure in the task that allowed inclusion of search-control
knowledge leading to the weak method. Search-control knowledge
was added only if it had heuristic value. Although in principle
determining whether a method is being followed could be an issue,
there is no doubt at all for the runs in question. The structure of the
combined set of productions shows that the method will occur and
the trace of the actual run simply serves to verify this. Note that the
success of a method on a task is not an issue (some succeeded,
some did not), rather the question is whether the UWM plus the
search-control production behaved appropriately.

6 . C o n c l u s i o n
We have attempted in this paper to take a step towards a theory

of weak methods and an appropriate architecture for a general
intelligent agent This has involved introducing a specific problem-
solving architecture, SOAR, based on the problem-space
hypothesis, and then a universal weak method that provides the
ability to perform as any weak method given appropriate search-
control increments that respond only to the special knowledge of
the task used by the weak methods We demonstrated the
generality of the UWM by using many different weak methods for
twelve tasks that the weak method exploits.5 This suggests that the
weak methods can be defined as the methods that can be obtained
by adding simple search control knowledge to the UWM (with
universal subgoaling).

R e f e r e n c e s

1. Forgy, C. L. OPS5 Manual Computer Science Department,
Carnegie Mellon University, 1981.
2. Laird, J. E. and Newell, A. A Universal Weak Method. Carnegie
Mellon University, 1983. (Forthcoming)
3. Laird, J. E. and Newell, A. Universal Subgoaling: An Initial
Investigation. Proceedings of the AAAI83, American Association
for Artificial Intelligence, 1983. (Submitted)
4. Nau. D. S., Kumar, V. & Kanal, L. A general paradigm for A.I.
search procedures. Proceedings of the AAAI82, American
Association for Artificial Intelligence. 1982, pp. 120-123.
5. Newell, A. Heuristic programming: III structured problems. In
Aronofsky, J., Ed., Progress in Operations Research, III, Wiley, New
York, 1969, pp. 360-414.
6. Newell, A. Reasoning, problem solving and decision processes:
The problem space as a fundamental category. In R. Nickerson,
Ed. Attention and Performance VIII, Erlbaum, Hillsdale, NJ, 1980.
7. Rosenbloom, P. S. & Newell, A. Learning by chunking: A
production system model of practice. Computer Science
Department, Carnegie-Mellon University, Oct, 1982.
8. Waterman, D. A. & Hayes-Roth, F.((Eds.). Pattern Directed
Inference Systems. Academic Press, New York, 1978.

