
C H A R A C T E R I Z I N G S E A R C H S P A C E S

Roy Rada
Department of Computer Science

Wayne State University
Detroit, Michigan 48202

ABSTRACT

A heuristic is good on a search space to the extent that it
allows the prediction of which states are near to the goal. In this
paper heuristics are investigated on several different search
spaces. A measure is proposed for assessing the predictive
accuracy of a given heuristic on a given search space. The
measure sheds light on characteristics of the Traveling Salesman
Problem that make it computationally more difficult to solve
than the Minimum Spanning-Tree Problem.

INTRODUCTION

A search space 55 is a quadruple (5, O, /, G), where 5 is a
set of states, O is a set of operators for moving from state to
state, / is a set of initial states, and G is a set of goal states (see
Handbook AI '81 and Banerji, '82). The problem is to find
the sequence of operators that connects some initial state to a
goal state. To avoid exhaustive search, the search algorithm
employs, as a guide, a heuristic evaluation function /(Nilsson,
'80).

To characterize the utility of / on 55 a measure N1V is
created. The author hypothesizes that difficult problems can be
distinguished from easy problems with NIV. Difficulty is
traditionally related to computational complexity, but NIV
directly characterizes relationships within the search space.

FORMALIZATION

NIV on (55, f) tells the degree to which similar states have
similar f values. Two states are similar, if they are connected by
an operator. To handle "similar" for / values the following
terms are introduced: equivalence classes of states,
heuristic-predictions, and inversions. The equivalence class 5 i is
defined to be { s | s e 5 and s can be reached from / by a
sequence of i operations } The heuristic-prediction function h
on s e 5 is h(s) = max {f[w) \ w e S1 +, and 1 move connects s to
w }. The ordering imposed by h on S1 is compared to the

This work was supported in part by a Wayne State University Faculty
Development Grant.

MST and TS

RESULTS

Two important graph problems are the Minimum-cost
Spanning Tree Problem (MST) and the Traveling Salesman
Problem (TS). Both involve weighted graphs and the search for
a subgraph with certain properties. In the MST a subgraph is
desired that spans the graph and has minimal cost. In the TS a
cycle is desired that crosses every vertex and has minimal cost.
For a graph with e edges, the solution to the MST requires

R. Rada 781

O(eloge) time steps. The only known algorithms to solve the TS
require more than a polynomial amount of time (Garey and
Johnson, '79) Why are these two problems of such different
time complexity?

For many combinatorial problems S is part of a power set P
on some primitives. Consider, for example, the complete 4-node
graph with edges a, b, . . ., f and weights w(a), . . ., w(f). S MSl

= {s\st P({(a,w(a)), . . ., (f,w(f))}) and \s\ < 3 }. In order
that SMST = STS, a modified TS is henceforth considered in this
paper, where the goal on an n-node graph has n-l edges. This
modified TS is also NP-compIete (Garey and Johnson, '79). A
reasonable / for TS follows:
/TS({(X1W(X,)) , (XJ,W(XJ))})

(w(x,) + ■ • • w(x,)) 1 if x,, x, contains no cycles or
trisections

= 0, otherwise.

Figure 2. NIVj(52X) for j from 2 to 45 and X e {TSAincq, TS,
MST}.

For 53 the relationship between NIV j(S3)fTS) and NIVj(S3/MST) is
similar to that for S2. This evidence supports the hypothesis that
more difficult problems have more NIV. However, at any given
position j there exists a graph such that NIV (SifTS) < NIVj(Sif
MST), where i e {2,3}. Just the average over the 18 graphs is

consistently, significantly higher for TS than for MST.

Graphs were also studied whose edge weights satisfy the
triangle inequality (A ineq). Approximation algorithms for TS
Aineq can propose a solution whose length is guaranteed to not be
greater than 1.5 times the length of an optimal tour (Reingold,
et al, '77). No such algorithms exist for the unconstrained TS.
Thus one suspects that by some standard of search space
"difficulty" D that D(MST) < D(TSAineq) < D(TS). This author
hypothesized that N1V would order these 3 problems as D did.
To investigate this hypothesis the computer program was
amended to generate 18 graphs whose edge weights satisfied the
A ineq. For each graph the program chose 5 nodes whose
coordinates were randomly chosen from the set {1, . . ., 707}.
The edge weights thus ranged from 1 to 1000.

Function Optimization

The perceptron learning algorithm can be viewed as a
function optimizer. Minsky and Papert ('72) showed that the
search space of the perceptron is smooth and unimodal. The
learning component of Samuel's checker player is similar to a
perceptron. A number of developments in the history of AI can
be viewed as developments in function optimization. A simple
example shows how SS, f, and NIV apply to optimization of
discrete functions. Two functions were studied: one had 1 peak
and the other had 4 peaks. One expects that the multimodal
function is harder to optimize, and the author's experiments
produced a larger NIV for the multimodal function. S was the
power set over all (x,y) pairs defining the function to be
optimized. A set of initial (x,y) pairs formed /. O took a state S ,
= {(x,,y (x„y,)} to {(x,,y,),...,(xi,y1), (xi ,,y,,,)}, such that
Xi+1, was "near" an x in s,. G was the (x,y) pair whose y was
maximal. The heuristic was f(s) = max{y | (x,y) e s}.

Rule-based Planning

Rule-based planning systems, like STRIPS and DCOMP
(Nilsson, '80), fit the framework of this paper. For a simple
example, denote the registers of a computer by r, and the
contents of r; by Cj. The S of SS is {(r1,c,), (r2,c2), (r3,c3), (r4,c4
)}, where c1 e {0, a, b}. The initial state is {(r 1,a), (r2,b), (r3,0),
(r4,0)}. One exchange problem E 1, has the goal of {(r ,,0), (r2,0),
(r3,a), (r4,b)}. Another exchange problem E2 has the goal of {(r1
,b), (r2,a), (r3,0), (r4,0)}. The operator is the assignment rule in
Nilsson ('80):

rule: assign (rj,a,rj,b)
precondition: (rha), (r jb)
delete: (rj,a)
assert: (rj,b)

782 R. Rada

The heuristic f(s) tells the number of registers in s whose
contents are the same as the corresponding registers in the goal.
Both E, and E2 can be solved in 4 steps. E2 seems harder, since
for it a step from s, to sI+1 must be made such that h(s,) >
h(sI+1). Application of NIV to E, and E2 reveals that NIV is
much higher for E2 than E,. This supports the hypothesis that
NIV distinguishes problems by their difficulty.

Extensions: Backward-chaining and Search Algorithms

The definition of heuristic-prediction h involves looking
from 5, to 5i+1 and thus is related to forward-chaining. A small
amendment to h requires the new function bh to look backward
from 5, to S,.,. For s e S„ bh(s) = max{ f(w) \ we SI-1 and s and
w are connected by O}. For all of the previously mentioned
experiments, bh, as well as h, was used. When h is replaced by
bh in the definition of NIV, a new function, called BNIV, is
produced. For the function optimization and rule-based
problems BNIV showed the same tendencies as NIV
did-namely, the values of BNIV on the harder problems were
larger than on the easier problems. BNIV for TS is not
everywhere bigger than BNIV for MST. If step 2 in the
definition of BNIV (and NIV) is amended so that f(s,)=/(.sJ +1)
- bh(sj+1 > bh(sI+1,), then BNIV (and NIV) of TS is everywhere
greater than BNIV (and NIV) of MST.

Another direction in which to extend the applicability of
NIV is that of relating the performance of search algorithms to
the NIV of search spaces. Consider a class of search algorithms
A = {A,, A2, . . .}. Each A, proceeds through an (SSf) for
which the state space S has been divided into equivalence classes
Sj, as defined earlier. Furthermore, A, goes from S, to S: to • •
• Sk by emphasizing the states in each equivalence class whose /
value places those states in the top i positions. One can show
that over all possible SS and/those on which A , performs well
have, on the average, smaller NIV values than those on which A
l+1 performs well. Details of this argument can be found in
(Rada, '81).

DISCUSSION

An efficient search algorithm examines only a relatively
small number of the states in a search space before finding a
solution. Heuristics permit a search to explore efficiently, but a
given heuristic is good for some problems and not for others.
How can one characterize a heuristic's power vis-a-vis a
particular class of search spaces? A heuristic must, in some
sense, predict which states in the search space are close to the
goals. Often, easily-solved problems are those for which a
heuristic / exists such that similar states have similar / values
(see the continuity argument of Lenat, '82). This "similar-state
--> similar-value" notion has been formalized in this paper by
the introduction of predictions and a measure NIV, where NIV
quantifies the accuracy of the predictions.

The hypothesis of this paper is that NIV can distinguish
problems by their difficulty. Theoretical considerations reveal
that for a search space and heuristic on which depth-first,
best-first search finds the solution, NIV 2(Sif) = 0, for all j. An
easy problem, like MST, has the property that NIV 2(Stf) = 0,

for all j. To further test the validity of the hypothesis that NIV
varies in proportion to problem difficulty, a large number of
experiments have been performed. Three famous combinatorial
graph problems, MST, TSAineq and TS, were analyzed on the
computer. The computational complexity of MST is less than
that of TS, and NIV for MST proves experimentally to be less,
on the average, than NIV for TS. The experiments also
demonstrate several phenomena which require more study
before they can be considered evidence for or against the
hypothesis. To demonstrate the applicability of this paper's
methodology on other than graph problems, function
optimization and rule-based planning have been tested; the
results support the hypothesis.

Characterizing the utility of heuristics is an important step
in the development of a theory of heuristics. Constraints in a
search space must be advantageously utilized by good search
algorithms (Pearl, '83). By noting what a heuristic says about
the search spaces on which it is useful (as NIV docs), one may
begin to understand how a heuristic benefits from constraints.
One next step towards a theory of heuristics and search spaces
is to characterize hard and easy problems by their NIV values.

Acknowledgements: Thanks to the referees and graduate
student Ching-Chio Sheu.

REFERENCES

Banerji, R B (1982) "Theory of Problem Solving: A Branch of
Artificial Intelligence" Proc IEEE, 70:12 p 1428-1448.

Garey, M and Johnson, D (1979) Computers and Intractability
Freeman & Co: San Francisco.

Handbook of Artificial Intelligence, Vol I (1981) ed A Barr and
E Feigenbaum, William Kaufmann, Inc: Los Altos, Calif.

Knuth, D E (1973) The Art of Computer Programming, Vol 3,
Sorting and Searching, Addison-Wcsley: Reading, Mass.

Lenat, Douglas (1982) "The Nature of Heuristics" Artificial
Intelligence, 19 189-249.

Minsky, Marvin and Papert, Seymour (1972) Perceptrons , MIT
Press: Massachusetts.

Pearl, Judea (1983) "On the Discovery and Generation of
Certain Heuristics" The AI Magazine, 4:1 p 23-33.

Nilsson, Nils (1980) Principles of Artificial Intelligence Tioga:
Palo Alto, Calif.

Rada, Roy (1981) "Searching and Gradualness" BioSystems, 14
p 219-226.

Reingold, E, Nievergelt, J, and Deo, N (1977) Combinatorial
Algorithms Prentice-Hall: Englewood Cliffs, New Jersey.

