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ABSTRACT 

A heuristic is good on a search space to the extent that it 
allows the prediction of which states are near to the goal. In this 
paper heuristics are investigated on several different search 
spaces. A measure is proposed for assessing the predictive 
accuracy of a given heuristic on a given search space. The 
measure sheds light on characteristics of the Traveling Salesman 
Problem that make it computationally more difficult to solve 
than the Minimum Spanning-Tree Problem. 

INTRODUCTION 

A search space 55 is a quadruple (5, O, /, G), where 5 is a 
set of states, O is a set of operators for moving from state to 
state, / is a set of initial states, and G is a set of goal states (see 
Handbook AI '81 and Banerji, '82). The problem is to find 
the sequence of operators that connects some initial state to a 
goal state. To avoid exhaustive search, the search algorithm 
employs, as a guide, a heuristic evaluation function /(Nilsson, 
'80). 

To characterize the utility of / on 55 a measure N1V is 
created. The author hypothesizes that difficult problems can be 
distinguished from easy problems with NIV. Difficulty is 
traditionally related to computational complexity, but NIV 
directly characterizes relationships within the search space. 

FORMALIZATION 

NIV on (55, f) tells the degree to which similar states have 
similar f values. Two states are similar, if they are connected by 
an operator. To handle "similar" for / values the following 
terms are introduced: equivalence classes of states, 
heuristic-predictions, and inversions. The equivalence class 5 i is 
defined to be { s | s e 5 and s can be reached from / by a 
sequence of i operations } The heuristic-prediction function h 
on s e 5 is h(s) = max {f[w) \ w e S1 +, and 1 move connects s to 
w }. The ordering imposed by h on S1 is compared to the 
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MST and TS 

RESULTS 

Two important graph problems are the Minimum-cost 
Spanning Tree Problem (MST) and the Traveling Salesman 
Problem (TS). Both involve weighted graphs and the search for 
a subgraph with certain properties. In the MST a subgraph is 
desired that spans the graph and has minimal cost. In the TS a 
cycle is desired that crosses every vertex and has minimal cost. 
For a graph with e edges, the solution to the MST requires 
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O(eloge) time steps. The only known algorithms to solve the TS 
require more than a polynomial amount of time (Garey and 
Johnson, '79) Why are these two problems of such different 
time complexity? 

For many combinatorial problems S is part of a power set P 
on some primitives. Consider, for example, the complete 4-node 
graph with edges a, b, . . ., f and weights w(a), . . ., w(f). S MSl 

= {s\st P({(a,w(a)), . . ., (f,w(f))}) and \s\ < 3 }. In order 
that SMST = STS, a modified TS is henceforth considered in this 
paper, where the goal on an n-node graph has n-l edges. This 
modified TS is also NP-compIete (Garey and Johnson, '79). A 
reasonable / for TS follows: 
/TS({(X1W(X,)) , (XJ,W(XJ))}) 

(w(x,) + ■ • • w(x,)) 1 if x,, . . . . x, contains no cycles or 
trisections 

= 0, otherwise. 

Figure 2. NIVj(52X) for j from 2 to 45 and X e {TSAincq, TS, 
MST}. 

For 53 the relationship between NIV j(S3)fTS) and NIVj(S3/MST) is 
similar to that for S2. This evidence supports the hypothesis that 
more difficult problems have more NIV. However, at any given 
position j there exists a graph such that NIV (SifTS) < NIVj(Sif 
MST), where i e {2,3}. Just the average over the 18 graphs is 

consistently, significantly higher for TS than for MST. 

Graphs were also studied whose edge weights satisfy the 
triangle inequality (A ineq). Approximation algorithms for TS 
Aineq can propose a solution whose length is guaranteed to not be 
greater than 1.5 times the length of an optimal tour (Reingold, 
et al, '77). No such algorithms exist for the unconstrained TS. 
Thus one suspects that by some standard of search space 
"difficulty" D that D(MST) < D(TSAineq) < D(TS). This author 
hypothesized that N1V would order these 3 problems as D did. 
To investigate this hypothesis the computer program was 
amended to generate 18 graphs whose edge weights satisfied the 
A ineq. For each graph the program chose 5 nodes whose 
coordinates were randomly chosen from the set {1, . . ., 707}. 
The edge weights thus ranged from 1 to 1000. 

Function Optimization 

The perceptron learning algorithm can be viewed as a 
function optimizer. Minsky and Papert ('72) showed that the 
search space of the perceptron is smooth and unimodal. The 
learning component of Samuel's checker player is similar to a 
perceptron. A number of developments in the history of AI can 
be viewed as developments in function optimization. A simple 
example shows how SS, f, and NIV apply to optimization of 
discrete functions. Two functions were studied: one had 1 peak 
and the other had 4 peaks. One expects that the multimodal 
function is harder to optimize, and the author's experiments 
produced a larger NIV for the multimodal function. S was the 
power set over all (x,y) pairs defining the function to be 
optimized. A set of initial (x,y) pairs formed /. O took a state S , 
= {(x,,y (x„y,)} to {(x,,y,),...,(xi,y1), (xi ,,y,,,)}, such that 
Xi+1, was "near" an x in s,. G was the (x,y) pair whose y was 
maximal. The heuristic was f(s) = max{y | (x,y) e s}. 

Rule-based Planning 

Rule-based planning systems, like STRIPS and DCOMP 
(Nilsson, '80), fit the framework of this paper. For a simple 
example, denote the registers of a computer by r, and the 
contents of r; by Cj. The S of SS is {(r1,c,), (r2,c2), (r3,c3), (r4,c4 
)}, where c1 e {0, a, b}. The initial state is {(r 1,a), (r2,b), (r3,0), 
(r4,0)}. One exchange problem E 1, has the goal of {(r ,,0), (r2,0), 
(r3,a), (r4,b)}. Another exchange problem E2 has the goal of {(r1 
,b), (r2,a), (r3,0), (r4,0)}. The operator is the assignment rule in 
Nilsson ('80): 

rule: assign (rj,a,rj,b) 
precondition: (rha), (r jb) 
delete: (rj,a) 
assert: (rj,b) 
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The heuristic f(s) tells the number of registers in s whose 
contents are the same as the corresponding registers in the goal. 
Both E, and E2 can be solved in 4 steps. E2 seems harder, since 
for it a step from s, to sI+1 must be made such that h(s,) > 
h(sI+1). Application of NIV to E, and E2 reveals that NIV is 
much higher for E2 than E,. This supports the hypothesis that 
NIV distinguishes problems by their difficulty. 

Extensions: Backward-chaining and Search Algorithms 

The definition of heuristic-prediction h involves looking 
from 5, to 5i+1 and thus is related to forward-chaining. A small 
amendment to h requires the new function bh to look backward 
from 5, to S,.,. For s e S„ bh(s) = max{ f(w) \ we SI-1 and s and 
w are connected by O}. For all of the previously mentioned 
experiments, bh, as well as h, was used. When h is replaced by 
bh in the definition of NIV, a new function, called BNIV, is 
produced. For the function optimization and rule-based 
problems BNIV showed the same tendencies as NIV 
did-namely, the values of BNIV on the harder problems were 
larger than on the easier problems. BNIV for TS is not 
everywhere bigger than BNIV for MST. If step 2 in the 
definition of BNIV (and NIV) is amended so that f(s,)=/(.sJ +1) 
- bh(sj+1 > bh(sI+1,), then BNIV (and NIV) of TS is everywhere 
greater than BNIV (and NIV) of MST. 

Another direction in which to extend the applicability of 
NIV is that of relating the performance of search algorithms to 
the NIV of search spaces. Consider a class of search algorithms 
A = {A,, A2, . . .}. Each A, proceeds through an (SSf) for 
which the state space S has been divided into equivalence classes 
Sj, as defined earlier. Furthermore, A, goes from S, to S: to • • 
• Sk by emphasizing the states in each equivalence class whose / 
value places those states in the top i positions. One can show 
that over all possible SS and/those on which A , performs well 
have, on the average, smaller NIV values than those on which A 
l+1 performs well. Details of this argument can be found in 
(Rada, '81). 

DISCUSSION 

An efficient search algorithm examines only a relatively 
small number of the states in a search space before finding a 
solution. Heuristics permit a search to explore efficiently, but a 
given heuristic is good for some problems and not for others. 
How can one characterize a heuristic's power vis-a-vis a 
particular class of search spaces? A heuristic must, in some 
sense, predict which states in the search space are close to the 
goals. Often, easily-solved problems are those for which a 
heuristic / exists such that similar states have similar / values 
(see the continuity argument of Lenat, '82). This "similar-state 
--> similar-value" notion has been formalized in this paper by 
the introduction of predictions and a measure NIV, where NIV 
quantifies the accuracy of the predictions. 

The hypothesis of this paper is that NIV can distinguish 
problems by their difficulty. Theoretical considerations reveal 
that for a search space and heuristic on which depth-first, 
best-first search finds the solution, NIV 2(Sif) = 0, for all j. An 
easy problem, like MST, has the property that NIV 2(Stf) = 0, 

for all j. To further test the validity of the hypothesis that NIV 
varies in proportion to problem difficulty, a large number of 
experiments have been performed. Three famous combinatorial 
graph problems, MST, TSAineq and TS, were analyzed on the 
computer. The computational complexity of MST is less than 
that of TS, and NIV for MST proves experimentally to be less, 
on the average, than NIV for TS. The experiments also 
demonstrate several phenomena which require more study 
before they can be considered evidence for or against the 
hypothesis. To demonstrate the applicability of this paper's 
methodology on other than graph problems, function 
optimization and rule-based planning have been tested; the 
results support the hypothesis. 

Characterizing the utility of heuristics is an important step 
in the development of a theory of heuristics. Constraints in a 
search space must be advantageously utilized by good search 
algorithms (Pearl, '83). By noting what a heuristic says about 
the search spaces on which it is useful (as NIV docs), one may 
begin to understand how a heuristic benefits from constraints. 
One next step towards a theory of heuristics and search spaces 
is to characterize hard and easy problems by their NIV values. 
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