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ABSTRACT 

The A* admissibility and optimality proofs presented to date 
have been based on overly restrictive assumptions about the relation­
ship between real and estimated costs. This paper shows that ideal­
ism, accuracy and selectivity, properties hitherto thought to be unique 
to A*, are in fact common to all ordered searches, and do not require 
the evaluation function / = g+ h traditionally assumed. Consequently, 
much of A* theory can be greatly simplified. 

I INTRODUCTION 

It is shown that many of the properties hitherto thought to be 
unique to A* can be proven without recourse to the evaluation func­
tion f — g+ h. This permits greatly simplified statements of several 
well-known results. Moreover, it implies that A*'s properties ori­
ginate largely from the ordered search algorithm itself, rather than 
from the internal structure imposed on the evaluation function. 

The evaluation function / = g+ h was traditionally adopted as 
a theoretical construction permitting demonstration of A*'s admissi­
bility and optimality, when estimates A of A were bounded by 0 < 
h < h. This decomposition into forward and backward cost com­
ponents, the linearity of/, and the non-negativity of g and A, together 
comprise the "path-cost paradigm" which forms the basis of A* 
theory. 

The contribution of this paper is a clearer understanding of the 
roots of A* behaviour. It begins by showing that the preconditions im­
posed on A are overly restrictive; they are sufficient but not necessary. 
Hence the path-cost paradigm is refuted. Following on this, the con­
cepts of idealism, accuracy and selectivity — the foundations of the 
revised theory — are defined. The paper concludes by demonstrating 
how the resulting theory, which for the most part applies to the gen­
eral ordered search, reduces to A* theory as a special case. 

11 REFUTING THE PATH-COST PARADIGM 

The addition of the same constant to the /estimates of all 
nodes makes no difference to the behaviour of A*. This conclusion 
may be restated in a more general form (proofs are trivial): 

Theorem (equivalence): Let ? and ? be evaluation functions 
whose values always have identical partial orderings, for 
any set of open nodes and for any graph. Then A* using ? 
can close precisely the same nodes as A* using ?. 
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The Corollaries suggest some novel questions about the nature 
and role of A*'s evaluation function. In that capacity they motivate 
the ensuing discussion. 

Corollary 1: Under the conditions of the Equivalence 
Theorem, if ? is admissible then so is ? 

Corollary 2: A* using X > h can be admissible. 

Therefore, A* can preserve its admissibility for a far wider 
class of heuristics than is generally supposed. Moreover, 

Corollary 3: Even if h > h2, A* using h1 can close nodes 
not closed by A* using h2 

Hence A*'s optimality must originate from something other 
than the traditional concept of informedness (involving, by definition, 
the relative magnitudes of two h estimators). 

The Equivalence Theorem thus opens two issues. Firstly, the 
admissibility condition 0 < A < h does result in admissible 
behaviour, but only because it happens to entail some other, more 
fundamental condition which can hold even when 0 < A < A does 
not. Secondly, and in similar vein, the magnitude of A is not an apt 
guage of "informedness" for optimality proofs. The next section dis­
covers what it is about these conditions that makes A* admissible and 
optimal. 

Ill ELEMENTS OF A* BEHAVIOUR 

A. Fundamentals 

The A* algorithm never deals with real costs: it relies solely on 
/ estimates. Therefore, it seems strained to begin the study of A* by 
assuming the relation 0 < h < A between real and estimated costs. 

The algorithm is equally unconcerned about the decomposition 
of f as g + h. Only the sum, / is relevant to the order in which nodes 
are selected for expansion. 

Also, A* is usually discussed in the context of delta-graphs; i.e. 
directed (possibly infinite) graphs such that the cost of traversing an 
arc is at least some small positive quantity (delta). However, ordered 
search is concerned with the /values attached to open nodes, not with 
forward and backward path costs. Therefore it is more in accord with 
the algorithm to think in terms of weighted nodes rather than weight­
ed arcs, and the delta-graph assumption may be relinquished (for the 
moment). 

Lastly, though the search may be regarded as traversing a 
problem-space whose states and operations define a graph, the algo-
rithm itself generates a tree. Even if one state recurs many times, A* 
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generates a different node for each occurrence, and each node is 
weighted by one of the various associated with that state. 

For the purposes of this paper, visualise A* as traversing a 
(possibly infinite) tree having numerical weights attached to its nodes. 
Those weights may be quite arbitrary, being Also attach a 
second "layer" of weights to the nodes, as their real weighting /. Now 
select a subset of the nodes to be goals, and select from them a small-
er subset of goals having minimal . Then the following termi­
nology applies. 

Definition: A solution path is any path leading from the start 
node to a goal node. 

Definition: A goal node is if it has the minimal 
value of among the goal set. 

Definition: A solution path is if it leads to an 
optimal goal. 

B. Idealism 

In the traditional admissibility proofs, was imposed 
to guarantee for all nodes n on an f optimal solution path. 
This comparison bctvween real and estimated path costs may be elim­
inated as follows. Let p(s,t) be any solution path from s to t 

Definition: idealistic if it cannot, in any graph, ter­
minate with a solution path that is not 

Lemma (idealism). then 
idealistic. The proof is trivial: since A* always chooses the 
open node of lowest all nodes on p(s,t) must be closed 
before any goal. 

Notice that this Lemma ignores the internal structure of 
only its value is relevant. 

However, there is no longer any guarantee that 
will also be optimal. The correspondence between 
optimal paths can be restored by analysing the concept of informed-
ness. 

G. Accuracy 

Traditionally, the inequality < implied that was a 
closer approximation to h, from which it could be proven that 
could not be less efficient than However, Corollary 3 shows that a 
comparison between the relative magnitudes of two heuristics is not 
an adequate indication of their efficiencies. 

At this point is necessary to distinguish the notions of selectivi­
ty and accuracy. While some heuristics will guide A* to an /-optimal 
path (they are accurate), they may not be very efficient (they have 
low selectivity). Conversely, other heuristics can lead A* to an 
non-optimal goal (by being inaccurate) via a minimal number of nodes 
(good selectivity). Accuracy is thus a correlation between real and es­
timated weightings, while selectivity is an efficiency relation between 
two estimated weightings. Both these concepts were included in the 
term "informedness". 

Definition: A* is at least as selective as A* if every node 
closed by A* is also closed by A* 

Definition: A* is accurate if it cannot, in any graph, ter­
minate with a solution path that is not 

We are now in a position to corellate real and estimated 
weightings, preferably as loosely as possible while still ensuring that 
an path will be found. Again, proof of the Lemma is trivial. 

Lemma (accuracy). If the set of w optimal goals is a (non-
empty) subset of the set of optimal goals, and if A* is 
idealistic, then A* is accurate. 

D. Selectivity 

Finally, let us devise a generalised performance yardstick. Sup­
pose that and are strictly monotonic increasing evaluation func­
tions used in two searches over the same graph, and that they result 
in termination with the same goal node t. Corollary 1 shows that any 
search using — = + will also find an optimal path. 
Sincestrictlymonotonic increasing, all nodes having values 
b e l o w | will be closed by A* Likewise, all nodes having values 
b e l o w w i l l be closed by A* But because ) = i, if also 

(n) , then A* closes at least all the nodesclosed by 
Substituting for , and rearranging, is at least as selective as 

whenever 

in 

As soon more general evaluation functions are permitted, "crit­
ical ties" |3p.l06] must be dealt with Gelperin |2] formulated two 
Theorems to avoid thrs problem. At bottom, both Theorems required 
that for the less selective for all n on some ?-optimal 
path. Under this condition critical ties cannot arise. 

Once critical ties have been eliminated it can be seen that (1) 
remains valid even for non-monotonic evaluation functions. This es-
tablishes the following: 

As a simple consequence: regardless of the nature of increas-
ing the of any non-goal node cannot result in A*'s closing 
more nodes. 

Again, this Selectivity Theorem ignores the internal structure 
of It also says nothing about the real weighting. This is counter­
intuitive because it implies that 

1. an unrealistic evaluation function can be optimally selec­
tive; 

2. the "perfect" evaluation function is not necessarily the 
most selective. 

Both implications are correct, but the original concept of informed­
ness could not do justice to either. 

Concerning the first point, take the perfect evaluation function 
and subtract some arbitrary positive numbers from the weights of 

the nodes on some path. The result is clearly unrealistic, but 
the search using that evaluation function is nevertheless optimal. 

Secondly, when there are several /optimal paths A* can choose 
to expand a node on auy one of them, since the traditional /gives all 
nodes on all f-optimal paths the same value /(s). Reducing the 
weights of nodes on one /-optimal path forces A* to close only the 
nodes on that path. Hence unrealistic evaluation functions can be 
more selective than the most realistic one. 



IV A* = ORDERED SEARCH + COMPLETENESS 

A. Ordered Search Theory 

As shown above, idealism, accuracy and selectivity — proper­
ties hitherto thought to be peculiar to A* — can be generalised to ap­
ply to ordered search behaviour. The internal structure of / is ir­
relevant to these properties, which can therefore be easily demonstrat-
ed without recourse to elaborate proofs. 

The disproportionate extent to which the path-cost paradigm 
has been allowed to permeate A* theory can be seen from work on 
quantifying A* performance [1,7). Informedness was understood as an 
h magnitude comparison; yet the concept of selectivity rests neither 
on such informedness nor on path costs. 

B. Completeness 

However, if termination is not assured, neither is an optimal 
solution path. To realise the admissibility of A* it is necessary to add 
the "completeness" property. Here the path-cost paradigm has its 
only justification: completeness is the only property possessed by A* 
which has no origin in the general ordered search. 

Definition: A* is complete if, for any graph, it terminates 
with a solution path whenever one exists. 

Lemma (completeness): A* using is complete on 
any delta-graph. 

Definition: A* is admissible if, for any graph containing solu­
tion paths, it terminates with an /-optimal solution path. 

Theorem (admissibility): If A* is accurate and complete, 
then A* is admissible. 

C. Deri vat ion of A* Results 

This perspective provides a closer affinity between theoretical 
preconditions and search behaviour. It is easy to see how is 
complete on delta-graphs; how ) results in ideal­
ism; and how accuracy is guaranteed if the set of -optimal goals is a 
subset of the set of goals. Admissibility is simply the con­
junction of these conditions. Then A* will find a goal if one exists; 
that goal will be ; and therefore it will also be /-optimal. 

To show that A* theory is a special case of this ordered-search 
perspective, substitute into the Idealism condition and rear­
range to get 

Now if h (t) is zeroed, this reduces to (for n on an /-optimal 
path, not necessarily in general!). 

Next, it is easy to show that is accurate if h = 0 at 
goal nodes. For then, 

f(i) = g (t) g(t) = f(t) > f(3) 

for all goals t, with equality only for /-optima] paths to t. 

Finally, the informedness condition h1 < h2 can be derived 
from the Selectivity Theorem by noting that when h1(t) = h2(t) = 0, 
/(t) = f2it) = /(s); and since g1 (n) = g2(n) for any given node n in 
tne search tree, the result is immediate. 
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