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ABSTRACT 

In programming a computer to control a 
manipulator, the problem of avoiding obstacles 
present in the environment must be faced. This 
paper presents a simple world model containing the 
manipulator as well as obstacles, and describes an 
algorithm for guiding the manipulator to a speci­
fied destination point while avoiding collisions 
with obstacles. The algorithm combines a number of 
heuristics with a method for stepwise optimization 
based on a linear programming technique. A brief 
description of the computer program AVOID and a 
sample of computer simulated tasks solved by it are 
presented. 

I INTRODUCTION 

One of the main problems in robotics is the 
problem of devising efficient computer methods to 
control a manipulator. A typical approach to this 
problem involves the use of information obtained 
from visual as well as other sensory feedback for 
specifying an internal world model in computer 
memory. Having this model and an appropriate 
algorithm, the computer would hopefully be able to 
direct the manipulator to perform tasks requiring 
some intelligence and dexterity. 

II WORLD MODEL 

In the situation shown in Figure 1, the 
"world" consists of a part of the Euclidean plane 
containing the planar manipulator and the 
obstacles 0 and 0 . The manipulator is assumed 
to be a group of four links 1 , 1 2, 1 , 14, con­
nected by the revolute joints B , B , B , B4 . The 
first link I1 is connected to ground at the origin 
by the first joint B1 while the endpoint B5 of the 
last link 1, contains the jaws J, or some other 
type of terminal device of negligible size and 
orientation. Thus, to describe a configuration, 
say, cnf , of the manipulator it will stiff ire to3 
specify the vector of relative angles 
1 . The position of each joint B. (i=2,...,5) in 
the plane is given by the formula 

a. „ , . . . The posit ion and shape of each obstacle 
is'assumed to be completely specified. 

I l l BASIC TASK 

(1) 

where the vector functions Bj. are combinations of 
trigonometric functions. The set of all possible 
values forms a 4-dimensional state 
space ' The class of obstacles under consideration 
is restricted to convex polygons. The ith obstacle 
has vertices Ai, 1, A i , 2 . . , and edges ai,1 

Assuming the path G (with the initial point 
G1 and final point G ) for the jaws is specified 
in advance, the task consists in moving the 
manipulator from the initial configuration to a 
final one while avoiding obstacles. This problem 
could be stated as follows: Given the initial 
configuration of the manipulator and the path G 
for the jaws, compute a continuous sequence of con-
figurations such that (i) The first configuration 
in the sequence is the initial configuration; (i i) 
The jaws in each configuration in the sequence lie 
on the curve C and in the final configuration co­
incide with the final point G ; ( i i i ) No con­
figuration in the sequence intersects with any of 
the obstacles. It is presumed that the jaws in the 
initial configuration are located at the point G , 
and that neither the initial configuration nor trie 
path G intersects with the obstacles. 

Our aim is to devise a computationally ef­
ficient algorithm for planning manipulator motions, 
i.e. capable of using the model described above 
for obtaining a curve in the -space such that the 
corresponding sequence of configurations should 
satisfy conditions ( i ) - ( i i i ) listed above. The 
major difficulty arises from the fact that the 
manipulator moves in the plane containing 
obstacles whereas the state space , in which the 
control variables move, is of an entirely dif­
ferent nature. 

IV PRELIMINARIES 

First of al l , the continuous decision curve 
in-space and the corresponding continuous con­
figuration sequence are to be replaced with a 
finite, possibly small, number of points. This is 
to be done with care, however, since the existence 
of a finite sequence of permissible configurations 
(i.e. configurations free of intersections with 
obstacles) does not guarantee the existence of a 
continuous permissible sequence. To overcome this 
difficulty, the obstacles should be replaced with 
6-covers, that is, the polygons which contain the 
obstacles as subsets and have at least€-wide free 
margins. This procedure has an additional advan­
tage of enabling the original obstacles to have any 
shape. For simplicity, the symbols cnf and will 
be used for the ith configuration in a discrete 
sequence and the corresponding vector of angles 
respectively, while cnf and will denote the next, 
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( i + l ) t h , configuration and i t s angle vector. For 
computing a continuous sequence of configurations 
permissible with respect to obstacles, it w i l l 
suffice to compute a f i n i t e configuration sequence 
in which a l l the configurations are permissible 
with respect to -covers and each one is close 
enough to the next, i .e . 

( k= l , . . . , 4 ) (2) 

The choice of depends on the value of€. Now 
the manipulator motion reduces to a number of 
steps each consisting in computing an increment 
d for the equation 

(k= l , . . . , 4 ) (3) 

These increments enter into the linear version (1) 

( i=2 , . . . ,5 ) 

To simplify matters further, the path G for 
the jaws is assumed either to be a broken l ine with 
vert ic ies G , G2,...,G , and segments 
g , g , . . . , gN or to have been approximated with 
such a l ine. The jaws are permitted to move near-
by this l ine in such a way that the distance 
between the jaws and the line should never exceed 
a tolerance constant Thus, the basic task 
has been reduced to securing the motion of the 
jaws along each of the N c o r r i d o r s i n 
succession. 

V OVERVIEW OF THE METHOD 

Now we outline the major ideas and techniques 
of the AVOID system, leaving details for Sections 
6 and 7. 

Supposing a l l have been computed, the 
current configuration enf is permissible, and the 
jaws J are inside the corridor CR., the problem 
reduces to computing increments k= I ,. . .,4, 
which on substituting in (3) imply that 

1) inequalit ies (2) hold; 

2) the jaws in configuration are 
inside CR.; 

3) the result ing configuration is 
permissible; 

4) the distance covered by the jaws is 
maximized. 

Here the design constraints are temporarily 
omitted. Dropping condition 3 for a moment, the 
problem nay be viewed as a linear programming 
problem (LPP). Indeed, condition 4 can be trans­
formed into the form 

where F is a scalar l inear function (Sect.7), 
whilst condition 1 combined with 2 is just a 
linear constraint set (LCS). Supposing such an 
LPP could be easily solved (see Sect. 6) , we get 

satisfying conditions 1,2,4. Computing 
f i r s t from (3) and then _. from (1), we obtain 
cnf and can check it for permissib i l i ty . If is 
permissible, we replace enf with and proceed 
as before; otherwise, the LPP must be modified to 
render permissible. By d e f i n i t i o n , i s not 
permissible if it coll ides with at least one 
obstacle. Such a co l l i s ion occurs, when either 1) 
j o i n t c u t s into e d g e o f obstacle 0; or 2) 
l ink .. cuts off v e r t e x C o l l i s i o n of type 1 
takes place when j o i n t n i t s motion tr ies to 
run through edge a.. To prevent th is , we can 
forbid the jo in t B-j to puncture the edge a. at the 
moment of co l l i s ion , thereby forcing it to J ride 
the edge a.. Let the edge a. have equation 

Using (4), equation (5) can be transformed into 
the form 

(6) 

and appended to the LCS. Clearly, a solution to 
the thus modified LPP is permissible if the 
detected col l is ion of B. with a. is the only one 
at the moment. Subsequent col l is ions of both 
types, if any, could be simi lar ly dealt with one 
at a time. 

The design constraints (which can be readily 
incorporated into the LCS) and the constraints 
result ing from conditions 1-2 above (put into 
the LCS ear l ier) are called permanent constraints, 
whilst the constraints (6) are temporal ones. In 
Sect. 6 it w i l l be shown that as a result of the 
proper choice of a solving method, only minor mod­
i f icat ions of a s o l u t i o n f o r the LPP are 
required to account for tne additional constraints 
(6). 

As long as the jo in t B. keeps r id ing the 
edge a. , the temporal constraint (6) remains in the 
LCS. Sooner or la ter , however, either B. w i l l 
reach an end of the edge a. and slide o f f , or it 
w i l l take off from the edge. Either of these cases 
is accounted for by dropping the corresponding con­
s t ra in t , i .e . by deleting the inequality (6) from 
the LCS. Treatment of the take-off case requires 
no special care since it involves an immediate 
dropping of the constraint in question from the 
basis (see Sections 6 and 7). To account for 
s l id ing-of f , a special checkup procedure has been 
set up in the AVOID system for signall ing to the 
control structure the fact of B. being off edge a. 
In either case the constraint in question is J 

eliminated, thereby cutt ing down on the number of 
constraints in the LCS. Type 2 constraints, if 
any, are treated s imi lar ly . 
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Summing up, it may be said that a major func­
t ion of AVOID consists in generating and solving 
a scries of LPPs, each with a s l ight ly different 
constraint set. Some of the constraints, the temp­
oral ones, are inserted or deleted as a need arise, 
ref lect ing interaction of the manipulator with 
obstacles. Thus, the d i f f i cu l t y mentioned in 
Section 3 is overcome stepwise by converting the 
restr ict ions imposed by obstacles in the v i c in i t y 
of the current point into state space restr ict ions 
where they can be easily dealt with. AVOID's 
ab i l i t y to insert and delete these additional con­
straints at each step renders the system suf f ic ier t -
ly f lex ib le . 

VI THE DUAL METHOD IN LINEAR PROGRAMMING 

Now we w i l l present br ie f ly a part icular im­
plementation format for the dual method in linear 
programming as being most suitable for the LPP 
under consideration. There are two major features 
to the LPP to be solved. The f i r s t is the exist ­
ence of a subproblem of the given LPP, solution to 
to which is readily available. Subproblem here 
means another LPP with the same objective function 
and fewer constraints in the LCS. The second 
feature is the probable need for incorporating ad­
di t ional (temporal) constraints into the LCS after 
the solution has been obtained, which entails mod­
i fy ing the solution to account for the newcomers. 
Both features are easily accomodated in the dual 
method format described below. 

Consider the following LPP: Find 
x=(x1 , . . . , x n ) which minimizes the linear objective 
function 

min F(x) 
x 

and satisf ies the constraints 

(7) 

where a l l f. are linear functions. (7)-(9) con­
st i tu te the 1subproblem. We proceed in two stages. 
F i rs t , the subproblem (7)-(9) is solved, i .e . a 
point x1 is found which minimizes (7) subject to 
the constraints (8)-(9). This is a f a i r l y simple 
task since our case (see Section 7): ( i ) 
inequalit ies (8) hold; ( i i ) inequalit ies (9) which 
combine the design constraints and inequalit ies 
(2) have the form 

for which constants h are easily computed. Thus, 
the n-dimensional subproblem factorizes into n one-
dimensional ones (n=4). The solution x1 for this 
subproblem is a vertex of the n-dimensional 
parallelepiped determined by inequalit ies (8), 

(11). The constraints generating the solution x1. 
are called basic. The second stage, involving the 
entire problem (7)—(10), consists in checking one 
by one whether the solution x1 found thus far sat­
is f ies each of the remaining constraints (10). If 
it does, the process terminates, and x1 is the sol ­
ution for the entire LPP; otherwise, the f i r s t 
violated constraint enters the basic constraint set 
at the expense of some other constraint which drops 
from the basis. The solution point shif ts from x1 
to some x2 with F(x1)< F (x2) . The process term­
inates when the entire l i s t of constraints is run 
through without modifying the basis. It is seen 
now that a newly emerged constraint causes at most 
a sl ight modification in solut ion, which allows us 
to save on the bulk of i n i t i a l computations. 

VII STRUCTURE OF THE PLANNING ALGORITHM 

In this Section the planning algorithm of the 
AVOID system is presented on a step-by-step basis. 
A simplif ied flow-chart for computing the motion of 
the jaws along a corridor CR1 from i ts back side 
to the front side F is shown in Fig.2. More 
details are given in [3] , 

PRINCIPAL MATRIX 

Box 1. Here the Principal Matrix PM for the 
LPP is computed for the current configuration cnf. 
PM has 5 columns and (7+t) rows, where t is the 
number of temporal constraints in the LCS at the 
moment. Column 1 consists of constant terms of 
the corresponding inequal i t ies; columns from 2 to 5 
contain their coeff icients in x . Row 1 contains 
coefficients F in x of the objective function 
F(J+dJ), where F(.)=0 is the equation of the front 
side of the corridor., and nonnegative variables x 
are obtained from by linear substitutions 
(12). Rows from 2 to 7 contain permanent con­
st ra ints , rows below 7 contain temporal constraints 
if any. Coefficients in rows 2 to 5 are those from 
inequalit ies (11), whilst coefficients in rows 
6-7 are determined by the fact of the jaws J moving 
inside the corridor, i . e . , by the formula 
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or 

Rows 8 and 9 feature coefficients for exemplary 
constraints for col l is ions of type I (for jo in t B? 
involved in the col l is ion) and of type 2 (for l ink 

respectively. The derivation of formulas for 
and v is straightforward. 

Box 2. The i n i t i a l basis is chosen by means 
of the Jordan Elimination Procedure applied to the 
elements (2,2), (3,3), (4,4), (5,5) of PM in turn. 
The number of eliminations required for solving 
this subproblem (cf. Section 6) is 0 to 4. 

Box 3. Now a solution for the entire LPP is 
obtained. The result ing values of x are to be 
used in formulas (12) for computing . The 
corresponding value of the objective function F 
occupies the space (1,1) in PM. 

Box 4. The new configuration , i .e . angles 
and positions of jo ints , are computed by 

formulas (3) and (1). 

Boxes 5 and 6. Having obtained , it is 
checked for col l is ions with the obstacles. If no 
co l l is ion is detected, control is transferred to 
Box 7; otherwise, a proper temporal constraint is 
appended to the LCS (Box 6), and the process of 
solving the new LPP resumes (Box 3; see also 
Section 6). 

Box 7. After co l l id ing with an obstacle, the 
jo in t keeps r id ing i t , and the corresponding 
temporal constraint remains in the LCS for a number 
of steps. But after a while the jo in t either 
slides off the edge or takes of f . To account for 
either event without detecting relevant in ter ­
section afresh at each step, the inheritable basis 
technique is introduced. If a constraint enters 
the basis, it is l i ke ly to remain there for the 
time being. Therefore, after computing , a l l 
the necessary information for the co l l i s ion ( i . e . , 
type of the co l l i s ion , number i for B., etc.) is 
retained for future use. Entering this most-likely 
to-be-encountered constraint into the LCS at the 
next step pr ior to the main body of calculations 
(Box 1) saves the system a lo t of trouble. Sooner 
or la ter , however, any temporal constraint w i l l 
dr p from the basis and therewith from the LCS. 

Box 8. This stage of computation involves 
outputting configuration to storage as the 
latest one in the sequence and ins ta l l ing it as 
the current configuration cnf. 

Boxes 9 and 10. Clear without comments. 

V I I I SIMULATION RESULTS 

To i l l us t ra te the performance of the computer-
implemented version of the AVOID system, some of 

the experiments run with it are displayed below. 
The chosen manipulator model has four l inks, each 
of length 1. Bold lines are used for obstacles and 
configurations while and 
corridors for the jaws are shown with thin ones. 

TASK 1 (Fig.3). The coordinates of the three 
vertices of the only obstacle available are 
A -(0.120, -0.120), A -(1.620, -1.620), 
A =(].620, -0.120) whilst those of the -cover are 
(-0.121, -0.020), (1.720, -1.861), (1.720,-0.020). 
The broken l ine for the jaws1 motion consists of a 
single segment with i n i t i a l point G = (2.975,-1 .000) 
and f ina l point G2=(2.975, -1.810). It requires 
7 steps of the system to solve the problem. The 
i n i t i a l (no.l) and the f i na l (No. 8) configurations 
are shown in Fig. 3. In the process of planning 
the second step the jo in t B2 strikes on the edge 3 
of the cover, which leads to the insert ion of a 
temporal constraint of type 1. During the plan­
ning of the fourth step, the l ink 1 2 cuts off the. 
vertex 3 while the jo in t B2 takes off the edge 3, 
which results in dropping the f i r s t temporal con­
s t ra in t . The second temporal constraint, remains 
in the basis unt i l the end. The distance covered 
by the jaws for the sequence of 7 steps is 0.763, 
the mean step size being 0.109. 

TASK 2 (Fig.4). The task si te here features 
two obstacles 01 and 02 and the broken line, of 4 
segments for the jaws. This rather d i f f i c u l t task 
takes 36 steps to accomplish. After a number of 
interactions of the l inks with both obstacles, the 
jaws happily reached their destination point G . 

TASK 3 (Fig.5) has been solved in 38 steps. 

IX CONCLUSIONS 

Though the problem of planning manipulator 
motion in between obstacles has been taken up in 
a number of papers (see References) no comparative 
study of di f ferent methods for solving this pro­
blem has been attempted. Various facets of our 
approach may be found in [l] - [4] . Advantages of 
the AVOID system are. as follows. 

1. The method is very simple. A l l the con­
straints imposed on the manipulator, including 
those implied by obstacles, are imbedded into a 
set of l inear inequalit ies and treated uniformly 
by the dual method, neatly f i t t i n g the problem 
format. The amount of computation involved is 
f a i r l y moderate. 

2. Having encountered an obstacle in i t s 
way, the system does not attempt any precarious 
movements in space trying to get clear of i t . 
Instead, the trouble-maker is incorporated into 
the system for the time being, i . e . as long as it 
rea l ly matters. The moment the obstacle in 
question does not hinder the manipulator any more, 
it is dismissed for good. This device provides 
considerable f l e x i b i l i t y for the system. 

3. The concept of inheritable basis 
employed throughout the planning process helps 
further to reduce the amount of computation. 
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The described method may be extended to 3-
dimensional tasks, and to curves and obstacles more 
sophisticated than those used in the actual work 
done. It could be integrated into a completely 
autonomous robot system as an intermediate level of 
planning manipulator motions. Also, it could be 
used in a man-machine system for computing a path 
between points in space specified by a human 
operator. 

As currently implemented, the AVOID system 
has no f a c i l i t i e s for computing velocit ies and ac­
celerations. The task of modifying the system to 
enable it to compute dynamic characteristics w i l l 
need further study. 
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