
A FRAMEWORK FOR HNADLINC VISION DATA IN AN OBJECT LEVEL
ROBOT LANCUACE RAPT

YIN Baolin

Department of A r t i f i c i a l Intell igence
University of Edinburgh Scotland

Abstract

This paper describes the work on using vision
ver i f i ca t ion within an object level language for
robot assenbly (RAPT). The framework which han­
dles vision data is discussed in de ta i l . The
framework enables us to combine a ver i f i ca t ion v i ­
sion f a c i l i t y with an object level language in an
in te l l igent way. It can also handle other kinds
of sensory data.

1. Introduction

pro-
us-

pro-
the

There have been up to now two major approaches
available for programming robots [7] . One is
teach-mode programming: this is well known as pro­
gramming by showing. The other is o f f - l i ne
gramming and is referred to as programming by
ing some formal language. Since the o f f - l i ne
gramming method has many advantages over
teach-mode one, there is a trend for robot users
to program industr ia l robots by using robot
languages.

It is also believed that if sensory informa­
tion is used in conjunction with the robot, then
the robot can do a better job. In this paper we
w i l l discuss the work of combining a special kind
of v is ion, ver i f i ca t ion v is ion, with a part icular
robot language - RAPT [1 ,2 ,3 ,4] . However, the au­
thor believes that the principle of the work can
also be used to deal with some other kinds of sen­
sory data.

2. The Current RAPT Language and I ts New Vision
Commands

2 .1 . The Current RAPT Language

RAPT is a model-based object level robot com­
mand language [6 ,7] . Object level languages allow
the human user to describe the task that he wants
the robot to perform by describing the objects
that are to be handled and the things he wants
done with them in terms that are natural to him
rather than to the robot. This information has to
be converted by some computational system into run
time commands that the robot can obey. In RAPT,
the environment of the robot is modelled by an i n ­
complete geometrical modelling system. Each ob-

* This research i
ment studentship

supported by a Chinese govern-
It is also supported by the

University of Edinburgh.

ject in the environment is represented by those of
I ts features which are to be used in the associat­
ed RAPT program. These features, such as planes,
edges, points, e tc . , may be f i n i t e or i n f i n i t e .
In RAPT programs, the objects which are to be
manipulated by the robot are exp l i c i t l y represent­
ed, and the programmer specifies Intermediate
states and actions on objects. These are
transformed by the RAPT system into movements of
the robot which w i l l bring about the desired goal
state.

RAPT is designed mainly for doing automatic
assembly and allows the user to specify a set of
bodies, the spatial relationships that are to hold
between their features in each goal state, and
their movements between one si tuat ion and the
next. Spatial relationships constrain the rela­
t ive positions of bodies. If multiple spatial re­
lationships hold between two bodies then new, more
res t r ic t ive relationships may be deduced to hold
between the bodies. This ab i l i t y is a result of
spatial relationship reasoning.

The output of normal RAPT is a series of posi­
tions of objects in each s i tuat ion. These are
only planned positions in as much as they have
been determined taking no account of the inaccura­
cies Inherent in the real world. The purpose of
the current work is to allow statements to be ad­
ded to the RAPT system which w i l l allow use to be
made of vision data to modify the planned posi­
tions .

The work of the RAPT system is divided into
two parts: compile time reasoning and run time ex­
ecution. At compile time, the system performs
o f f - l i ne reasoning about the positions of the ob­
jects and the actions of the robot. The results
of the compile time reasoning w i l l guide the ac­
tions of the robot at run time.

Readers who are not famil iar with RAPT are
recommended to refer to [1,2,3,4] in order to
understand the paper better.

2.2. Ver i f icat ion Vision and Vision Task Specif i ­
cation in RAPT

A wide assortment of devices and systems exist
for robot sensing of the environment. They f a l l
Into two generic classes: contact and non-contact
[8] . Vision is one of the most important non-
contact sensing methods. Ver i f icat ion v is ion, as
a type of visual information processing, is quite

B. Yin 815

di f ferent from other types of vision system, and
is very useful in conjunction with robots. The
main characteristics that distinguish it from oth­
ers are [5,10] :

(1) the system has a great deal of prior
knowledge about the type, placement and ap­
pearance of the objects that form the scene,

(2) the goal is to ver i fy and refine the loca­
tion of one or more objects in the scene
rather than to recognize them.

Before the ver i f icat ion system can be used, it
must be told exactly what to look for and approxi­
mately where to look. The error between the ex­
pected ("nominal") positions and the actual ones
should not be too big.

Since RAPT reasons about spatial relationships
between body features, we may ask the vision sys­
tem to ver i fy the positions of some special
features, e.g. edges, and then send the vision
data to the RAPT reasoning system so that the ac­
tual position of the body to be ver i f ied can be
deduced. Since images of edges are easy to detect
we prefer to use edges in the system.

To introduce ver i f icat ion vision f ac i l i t i e s
into the RAPT system, a number of vision commands
must be added to the RAPT language. They are the
LOOK statement, the INVIOLATE statement, the
TOLERANCE statement and the COMBINE statement.
Some auxi l iary commands are also needed in order
to specify cameras and some low level vision de­
t a i l s .

The LOOK statement. is used to specify the
features to be ver i f ied by the vision system. I ts
main effect is to form symbolic features and rela­
tionships in the RAPT reasoning network. It also
sends the necessary information to the low level
vision system to enable it to find the expected
edge image at run time.

when a camera has been used to find the image
of an object feature in the scene, the RAPT system
creates a new v i r tua l feature for the camera and
establishes a spatial relationship between this
new feature and the observed feature of the ob­
jec t . For example, it may establish an "against"
between a newly created plane feature of the cam­
era and an edge of the object. Since the relevant
vision data is not available at compile time, the
new feature of the camera, and therefore the new
spatial relat ionship, w i l l have symbolic forms
during the compilation phase.

The INVIOLATE statement specifies a constraint
on the position of the object to be ver i f ied in
terms of a relationship that must hold between the
object and the world. For example, INVIOLATE can
be used to Indicate that the bottom of the object
must be against the top of the table no matter
what the inaccuracies of the placing of the object
are. From the view point of geometric reasoning,
it provides a rel iable relationship in the rela­
tionship network. This w i l l enable the geometric
reasoning system to explain vision data in a
correct way.

The TOLERANCE statement specifies the maximum
translational error along a l l the three axes of
the body coordinate system. The rotation error
tolerance is not discussed in this paper. The
res t r ic t ion of the translation error should ind i ­
cate the range in which the feature is l i ke ly to
be found.

The COMBINE statement provides a package for
the vision task. It invokes the symbolic reason­
ing f a c i l i t y to deduce the symbolic position of
the object by use of a l l the information included
in the package. It checks whether the statements
in the package are compatible or not. It also
combines the information given by the INVIOLATE
and TOLERANCE statements in order to deduce real
restr ict ions on the position of the object to be
ve r i f i ed .

The format of the package of the vision com­
mands is l ike th is :

COMBINE;
VIOLATE/ against, bottom of bodyl, top of table;
LOOK/ edgel of bodyl , cameral;
LOOK/ edge2 of bodyl, camera2;

TERCOM;

where TERCOM terminates the COMBINE package. De­
tai led discussion of these vision statements can
be found in f 24].

2.3. The Symbolic Reasoning Faci l i ty

The symbolic reasoning f a c i l i t y is required in
the RAPT system for dealing with vision data at
compile time. During compile time, the positions
of features which are created by LOOK statements
have only a symbolic form and cannot be evaluated
un t i l run time, when the vision data is acquired.
In this case, the RAPT inference system must deal
with the symbolic form of the feature positions
rather than their actual values. The result of
the process w i l l be evaluated during run time when
the real feature positions have taken the places
of the symbolic ones. Therefore, a symbolic rea­
soning f a c i l i t y is essential for combining sensory
data with the RAPT system.

The symbolic reasoning system works in a simi­
lar way to the current RAPT cycle finder [14] .
Being given two relationship chains between two
objects, it w i l l produce a constrained new re la­
tionship between the objects by means of a set of
rewrite rules. The difference between the symbol­
ic reasoning system and the cycle finder is that
the features in both the input and output of the
symbolic reasoning system may be symbolic and
their parameters may be symbolic expressions. De­
tai led discussion of the symbolic reasoning f a c i l ­
i t y can be found in [24] .

3. The Framework for Handling Vision Information

So far we have discussed how to specify a v i ­
sion task and how to reason about vision informa­
t ion symbolically. Now we w i l l discuss how to
provide a framework to handle the symbolic posi-

816 B. Yin

t ion expressions caused by introducing ver i f i ca ­
tion v is ion.

3 .1 . Outline of the Framework

It is connonly the case that vision data w i l l
ver i fy not only the position of the specified body
at the current situation (body instance), but also
some other body instances whose positions are
relevant to or deduced from this body instance.
The ver i f ica t ion vision indicates discrepancies
between an expected position and an actual posi­
tion in a particular situation and it w i l l be
necessary to nodifv subsequent positions in the
light of this information. For example, suppose a
robot moved a block to a specified position and
then moved away a fixed amount waiting for the v i ­
sion system to operate. 11 the ver i f ied position
shows that the block is not exactly at the speci­
fied posit ion, then we are sure that the robot
hand is also not at the position where we supposed
it to have been.

Wo want to avoid, as much as possible, reason­
ing which involves the symbolic expressions
representing ver i f ied positions. Otherwise these
expressions, or parts of then, would appear in a
large number of places in the run time code, and
the evaluation of each of them would take too much
time. On the other hand, if we can find a method
of using the ver i f ied position only at run time,
then the run time system w i l l work faster. Here
we outline a method of using veri f ied positions at
run tine only. We w i l l enploy two reasonable as­
sumptions in the following discussion. They are:

1. The nominal position of a body is assumed to
be accurate unless there is some evidence
(e.g. vision data) to the contrary.

?.. The movement of a robot arm is assumed to be
accurate over small distances.

3 .1 .1 . Analysis of Expressions of the Body In ­
stance Position

We f i r s t need to establish how the actual po­
s i t ion of a body instance is related to i t s nomi­
nal position and the vision ver i f ica t ion data,
even after some movements have been made. A move­
ment of a body (b) in one situation (i) to the
next (i - l) can be represented by a matrix Tb(i+1)
such that

PNb(i+l) = PNbi * Tb(i+1) (1)

where PNbi and PNb(i+1) are matrices representing
the -.nominal positions of the body in situations i
and i+1 . If we consider that the body b makes a
v i r t ua l movement from i t s nominal to i t s v i r tua l
position then the movement can be represented by a
matrix FMbi:

FMbi * PNbi = PVbi (2)

and we cal l FMbi the modifying factor of the
body instance PNbi.

We know from (2) that:

F?!bi = PVbi * PNbi"' (3)

How suppose that the nominal position of the
body b in situation j, PNbj, is produced by a se­
quence of specified movements from i ts nominal po­
s i t ion in situation i, then it can be seen that

PHbj = PNbi * Tb(i4l , j) (4)

where
Tb(i+ l , j) = Tb(i+1) * . . . * Tbj (S)

and j > i .

The actual position of the body in situation j
(the actual position is not a "ver i f ied posit ion"
since we have not veri f ied it by vision commands,
but we consider that it is equivalent to a ver i ­
fied position in our discussion) w i l l be related
to the actual position of the body in situation i
bv exactly the same sequence of movements, and
therefore

PVbj = PVbi * Tb(i+1 , j)
- PVbi * PNbi"1* PNbi * Tb(i+ l , j)
- PVbi * PNbi-' * PNbj
= FMhj * PNbj (f>)

where Fllbj - PVbi * PNbi-' (/)

FMbj is referred! to as the modifying factor of the
body instance PNbj.

We can see from the discussion above that the
actual position of a body instance is determined
by two parts: the nominal position and a modifying
factor, and it is onlv the modifying factor that
is affected by the vision data. When a body i n ­
stance is ve r i f i ed , i t s modifying factor is de­
fined by the vision data and by the nominal posi­
t ion of the body instance. Furthermore, if we
know the modifying factor of a body instance and
the subsequent nominal movements of that bodv,
then we can determine the modifying factors for
the instances of that body in the subsequent s i ­
tuations. As we can obtain the nominal position
for each body instance by using the current RAPT
cycle finder system, we can determine the nominal
movement of a body instance between any situa­
t ions. Therefore, we can obtain the modifying
factor for every body instance by working forward
from the modifying factor of the ver i f ied body i n ­
stance. We can see from equations (6) and (7)
that we can also assume that once the actual posi­
t ion of a body has been found to be dif ferent from
i ts nominal one, accurate positions of the body in
subsequent situations w i l l bear the same re lat ion­
ship to their nominal positions un t i l a new modi­
fying factor is found either by new vision data or
by a specified action (see Sec. 3.2.1). There­
fore, in our vision ver i f i ca t ion system we may
deduce the nominal position of each body instance
at compile time in the usual way, then evaluate
the modifying factors at run time, and get the ac­
tual positions by matrix mul t ip l ica t ion.

The introduction of modifying factors w i l l af­
fect the actions of bodies. We w i l l refer to the

B.Yin 817

tor array can he divided into two stapes, the rea­
soning stage and the simplifying stage. In the
reasoning stage, a l l the modifying factors for the
body instances in the i n i t i a l "si tuat ion w i l l he
assigned an ident i ty natr ix symbol ("1") . In each
of the following si tuat ions, if a bodv is ver i f ied
in that situation the corresponding modifying fac­
tor w i l l be assigned the symbolic position expres­
sion PVbi ("P"), otherwise a pointer or a set of
pointers which points to another modifying factor
w i l l be assigned to the modifying factor according
to rules which w i l l be discussed la ter .

In the simplifying stage, the modifying factor
array is simplif ied according to a set of rules.
This process makes the array more compact. and
speeds up the run time evaluation of the array.

.'1.1.4. Modifying Factors in Symbolic Reasoning

As well as influencing the symbolic reasoning,,
the introduction of modifying iactors w i l l also
influeuce the way vision commands are used. The
modifying factors from previous vision commands
may enable us to make better predictions for posi­
tions of bodies in subsequent vision commands.

In a vision command package, some INVIOLATE
statements may be used to indicate the most r e l i -
able relationships holding between the object to
be ver i f ied and some other objects. The modifying
factors for the body instances of these reference
objects may not be ident i ty matrices. This means
that they may not be at their nominal positions,
though the relationships mentioned in the IN­
VIOLATE statements s t i l l hold. Discussion of how
to deal with these two points can be found in
[24].

3.1.2. Pules for Setting; the Pointers

The rules discussed below are used for setting
the pointers in the modifying, factor array for bo­
dies according to their status in the RAPT program
such as being MOVEd , TIEd and so on. For conveni­
ence, we w i l l refer to the rules for making the
pointers as l inking rules.

3.2.1. Actions

There are two kinds of action statements in
RAPT: MOVE statements and TURN statements. For
making a modifying factor array, however, we are
more concerned with spatial relationship spec i f i ­
cations about bodies and the association between
the relationship specifications and action state­
ments. If the position of a body instance is res­
tr icted by some spatial relationship specifica­
t ions, then we refer to the position of the body
instance as a specified posit ion. On the other
hand, if there are no exp l ic i t spatial re lat ion­
ship specifications constraining the position of
the body Instance, then we refer to the position
as an unspecified posit ion.

The following are the l inking rules for the
body instances which are moved (i . e . MOVEd or
TURNd) d i rect ly by action statements rather than
by the effects of TIEs and SUBASSEMBLIES. The

818 B. Yin

l inking rules for TIEs and SUBASSEMBLIES w i l l be
discussed in Sec. 3.2.2 and Sec. 3.2.3.

Al

A2

A3.

If a body Is noved to an unspecified posi­
t ion , then the pointer of the body instance
points to i t s modifying factor in the previ­
ous s i tuat ion.
If a body is moved to a specified posit ion,

then the pointer of the body instance points
to the modifying factor for the body instance
of the body between which the relationships
hold (reference body) in the current situa­
tion unless the condition mentioned in rule
(A3) is net.
If the reference body in a specified posi­

t ion is TIEd to the bodv to be moved or be­
longs to the same subassembly as the body to
be moved then the pointer of the body i n ­
stance points to i t s modifying factor in the
previous s i tuat ion.

3.2.2. Ties

In the RAPT language bodies can be tied to­
gether during an act ion, and this means that they
maintain the same relat ive position before and
after the action. Therefore, any descriptions of
the motion of one body which is tied to another
must apply to the motions of that other. TlEs are
made and revoked by TIED and UNTIED statements.

We can see, from the def in i t ion of TIE, that
the modifying factors for bodies which have been
t ied together must keep the same relations to each
other throughout the existence of the t i c , except
when local vision commands (see [24] for detai ls)
are used. This means that a change in the modify-
ing factor of one member of a t i e must be applied
to that of the other member. Moreover, this ef­
fect w i l l continue after the two bodies are untied
un t i l one of them Is moved by specified actions or
both of them are ver i f ied by global vision com­
mands indiv idual ly (see [24] for deta i ls) .

Let us consider an example in order to under­
stand how to keep the same relationship between
two modifying factors when one of them is chang­
ing. Suppose bodies A and B are tied together
with di f ferent modifying factors Mal and Mbl
respectively. If Mal is changed to Ma2 then the
relat ive change for modifying factor Mal is Tr. We
have

Mal * Tr = Ma2
Tr = Mal- '* Ma2 (12)

and the new modifying factor Mb2 for B is

(13)

The discussion above can be expanded to cover
a t ie l inking more than two bodies and the c i r ­
cumstances when this large t ie has been broken.
Suppose n bodies b l , . . . , bn are tied together by
n-1 TIE statements. For convenience we w i l l ca l l
the result a "super" t ie in the following discus-
s ion.

The l inking rules for TIE statements can be
summarized as follows:

T l . In a super t i e , if body bj is moved in s i ­
tuation i by a specified action which brings
about some relationships between body bj and
body C, then the pointer of body bj w i l l
point to the modifying factor for body C in
situation i while the modifying factors of
other bodies in the super t ie are pointer
t r i p l es . The t r ip les have the form
[pl,p2,p3] where pi points to the modifying
factor for the same body in situation (i - 1) ,
p2 to the modifying factor for bj in situa­
tion (i -1) and p3 points to the modifying
factor for bj in si tuation i .

T2. In a super t i e , if body bj is ver i f ied by a
set of global vision commands in si tuat ion i,
then i t s modifying factor w i l l be assigned a
symbolic position expression "P" while that
of other bodies in the super t ie are pointer
t r i p l es . The t r ip les have the same form and
contents as in rule (T l) .

T3. In a super t i e , if body bj is ver i f ied by a
set of local vision commands in si tuat ion i,
then i t s modifying factor w i l l be assigned a
symbolic position expression "P" while that
of other bodies in the super t ie w i l l refer
to their modifying factor in si tuat ion (i - 1) .

Five similar rules are applied after a super
t i e has been broken. Details can be found in
[24] .

3.2.3. Subassembly

The subassembly is a
whose features certain
hold for the duration of
subassembly . Subassembli
that there may be more tha
subassembly and the com
can move with respect to e
istence of the subassembl
lations remain va l i d . Tre
is similar to that for
can be found In [24] .

set of bodies between
specified relationships
the existence of the

es d i f fe r from t ies in
n two bodies within a
ponents of a subassembly
ach other during the ex-
y, provided that the re-
atment of subassemblies
HEs. Detailed discussion

Mb2 = Mbl * Tr
= Mbl * Mal-1 * Ma2

The following simple example shows
l inking rules are used.

how the

Therefore the modifying factor for body A in the
new si tuat ion is Ma2 while Mb2 can be represented
by a pointer t r i p le [pl,p2,p3] in which pl points
to Mbl, p2 points to Mal and p3 points to Ma2. At
run time the t r i p l e w i l l be evaluated by the equa­
tion

(pl) * (p2) - ' * (p3) (14)

remark bodies bl b2 b3 have been defined;

ver i fy /b2; remark abbreviation for vision
command package, now in situation i;

move/bl;
f ixed/bl , b2; remark abbreviation for a set

of relations which completely defines
the position of bl with b2, s i t i+1 ;

B. Yin 819

t ied/b l ,b2;
veri fy/b3; remark s i t i+2;
nove/b2;

fixed/b2,b3; remark s i t i+3;

4. The Position of the Camera

The camera is defined in RAPT in the usual way
as an ordinary body with a .specified focal length.
This means that as with any other body it can be
operated on by the system, being noved , tied and
so on. It can also be mounted on a robot hand.
]n most cases the position of a camera body can be
modified by the modifying factor array according
to the l inking rules. For example, the position
of one camera can be ver i f ied by another camera.
However, if the result of a global vision command
package w i l l affect the position of the camera to
be used (according to the l inking rules l isted in
See. 3.2) then the vision command package w i l l he
dealt with as a local one. In this case, only the
position of the body to be ver i f ied is subject to
modification while the position of the camera is
unchanged.

5. The Generali ly of the Framework

So far we have discussed how to use the frame-
work to handle ver i f ica t ion vision information.
In fact , the framework also has the capabil i ty to
handle other kinds of sensor information for the
purposes of ver i f i ca t ion . Generally speaking, in
RAPT, when we use a sensor to detect a feature of
an object, we create a new relationship between
that object and the world, as the absolute posi­
t ion of the sensor in the world is usually known
when the sensor is used. The nature of the rela­
tionship depends ent i rely on the type of sensor.
Since sensor data is available at run time, at
compile time we can only obtain symbolic re la t ion­
ships. when the symbolic relations are suff ic ient
to " f i x " the object, we can use a suitable symbol­
ic reasoning system to deduce the symbolic posi­
t ion of the object. We can then evaluate the sym­
bolic position expression at run time when the
corresponding sensor data is avai lable. In order
to introduce a new kind oi sensor, we need only to
provide a set of commands to specify how to use
the new sensor, and a new symbolic reasoning sys­
tem which is capable of dealing with the new rela­
tionships created by this sensor. The framework
handles new kinds of sensor information in the
same way as it does vision data.

Now let. us consider an example. Suppose we
use a touch sensor to detect a plane feature pi of
a body B. when we detect a point on pl, we create

a relationship between the v/orld and the body, the
"AGAINST" relationship between a sphere feature (a
vertex is considered as a sphere with radius 0 in
RAPT) of the world and the plane pl. If we detect
some careful ly chosen planes of the body B with
the touch sensor and so obtain enough AGAINST re­
lat ionships, then we w i l l be able to deduce the
position of the body B. The symbolic position ex­
pression of B can be stored in the modifying fac­
tor array and can be used in exactly the same way
as ver i f i ca t ion vision data.

Some authors (e.g. [15]) have suggested that
vision sensors have poor precision and therefore
it is better to use both vision and contact sen­
sors. Vision sensors can be used for coarse sens­
ing while contact sensors can be used for fine
resolution. In this case, the generality of the
framework to handle both kinds of sensor informa­
t ion is very important.

6. Discussion

There are two main problems in using sensory
information in programming and control l ing robots.
The f i r s t is how to get accurate sensory Informa­
tion and the second is how to process and use the
information in the system. The la t te r problem, as
Harmon points out [8] , seems the harder of the two
and has more implications for the theoretical use
o f sensors.

Some work on using vision data in robot pro­
gramming, languages has been reported, such as VAL
[19, 231 and AL [20]. In the VAL system, vision
is used to recognize objects in a picture taken by
a TV camera, and to locate them. The recognition
is done by comparing the blobs in the picture with
trained characteristics of given prototypes in an
ef fort to find a match. The vision technique used
in the VAL system is of the f i r s t generation [12] ,
i . e . it uses a binary picture and produces a 2-9
explanation. In the AL system, vision is used to
f u l f i l l the ver i f icat ion task [20]. Both the
languages mentioned above are classif ied as end-
effector level languages by Koutsou [7] , i . e . only
the end-effector of the robot appears exp l i c i t l y
in the program.

Some object level languages have the ab i l i t y
to use some touch sensor information. For exam­
ple, in AUTOPASS [21] force or torque sensor in­
formation is used to provide special threshold
values in order to constrain or terminate some ac­
t ions. In the LAMA system [221, the force sensor
is used to detect whether a specified action ter­
minates at a correct position or not. In both the
above systems, sensory information is used as a
condition in a decision tree and no further expla­
nation of the information is made.

In contrast to these systems, the RAPT
language with the ver i f icat ion vision f a c i l i t y
provides a method of specifying vision tasks and
reasoning about the vision data symbolically off-
l ine in an object level language. It makes no as­
sumptions about the relat ive positions of objects
and sensors as a teach-method does. It allows
par t ia l information about positions to be combined

820 B. Yin

with sensor information in a general way. At run
time, when the vision data is available, the
results of symbolic reasoning are evaluated and
are used to improve the system's knowledge about
i t s environment. This method uses grey level pic­
tures and produces a 3-D interpretation rather
than a 2-D one. The framework described in this
paper enables us to combine the ver i f ica t ion v i ­
sion f a c i l i t y with an object level language in an
inte l l igent way. The framework which is used by
the system for handling vision data has some gen­
e ra l i t y . It is not only able to handle the vision
data, but also able to deal with some other kinds
of sensory information, such as touch sensor i n ­
formation. Using the framework to implement the
vision f a c i l i t y within RAPT requires few changes
in the current RAPT system.

In this paper we have only discussed the
theoretical framework. The system has been imple­
mented within RAPT and used with simulated vision
data, but as yet no l ink has been made with a real
vision system. This w i l l , of course, provide a
real test , and we anticipate some problems in en­
suring the correctness of match between the model
features and their images.

Acknowledgement

I am grateful to A. P. Ambler and R. J. Pop-
plestone for their supervision. I would also l ike
to thank P. Brna, D. Corner, S. Cameron, R. Feath-
erstone, R. Fisher and J. Hallam, for their help­
fu l crit icisms of my work.

References

[1] R. J. Popplestone, A. P. Ambler, I- Bellos
RAPT: A Language for Describing Assemblies
DAI. Research Paper. No.79. 1978

[2] R. J. Popplestone Specifying Manipulation in
Terms of Spatial Relationships DAI. Research
Paper. No.117. 1979

[3] R. J. Popplestone, A. P. Ambler, I. II. Bel­
los An Interpreter for a Language for
Describing Assemblies; DAI. Research Paper.
No.125. 1980

[4] R. J. Popplestone, A.P. Ambler A Language
for Specifying Robot Manipulations DAI.
Research Paper. No.161. 1981

[5] R. C. Bolles Ver i f icat ion Vision for Pro­
grammable Assembly 5th IJCAI. 1977

[6] J. C. Latombe Une Analyse Structuree
d'Outi ls de Programmation pour la Robotique
Industr iel le (in French) Proc. of the Inter-
national Seminar on Programming Methods and
Languages for Industr ial Robots. IRIA,
France, June, 1979

(7] A. Koutsou A Survey of Model-Based Robot
Programming Languages DAI, Working Paper No.
108. Dec. 1981, University of Edinburgh

[8] L. D. Harmon Touch-Sensing Technology Dept.
of Biomedical Engineering, Case Western
Reserve University Cleveland, Ohio 44106

[91 A. K. Bejczy Manipulator Control Automation
Using Smart Sensors Electro/79 Convention,
New York NY. Apri l 24-26, 1979. pl6.

[10] R. C. Bolles Veri f icat ion Vision Within a
Programmable- Assembly System Stanford AI. Lab
Memo AIM-275 1975.

[11] D. McChie, J. W. H i l l Vision-Controlled
Subassembly Station AI . Center, SRI Interna­
t iona l , Menlo Park, California 94025. Oct.
1978.

[12] C. Loughlin Robot Vision Survey Robotics
Research Unit, Dept. of Electronic Eng.,
University of Hul l , 1981.

[13] W. A. Perkins A Model-Based Vision System
for Industrial Parts IEEE Trans, on Comput­
ers"; Vol C-27, No. ?., Feb. 1978.

[14] A. P. Ambler, D. F. Corner & R. J. Popple­
stone Reasoning about the spatial re lat ion­
ships derived from a RAPT program for
describing assembly by robot. Proc. of
IJCAI-83. (This Conference)

[15] C. A. Rosen, D. Nitzan Use of Sensors in
Programmable Automation Computer. Dec. 1977,
pl3.

[16] J. Y. S. Luh et a l . 3-D Vision for Robotic
Systems. Proc. of the 1st International
Conference on Robot Vision and Sensory Con­
t ro l s , Apri l 1-3, 1981, Stratford upon Avon,
UK.

[17] J. F. Harris An Overview of Robot Vision R
and D in UK and Abroad Image Analysis Croup
University of Oxford, 1981.

[18] P. V i l lers Present Industr ial Use of Vision
Sensor of Robot Guidance Proc. of 12th Inter­
national Symposium on Industrial Robots,
June, 1982. Paris, France.

[19] Anonymous Unimation Vision Manual Unima-
t ion , Inc.

[20] R. Goldman Recent Work with the AL System
Proc. of the 5th IJCAI, MIT, USA. 1977.

[21] P. M. Wi l l Very High Level Languages for
Robots Proc. of the International Seminar on
Programming Methods & Languages for Industr i ­
al Robots, IRIA, Rocquencourt, France. June,
1979.

[22] T. Lozano-Perez The Design of a Mechnical
Assembly System MIT AI . Lab. Technical Report
397. Dec. 1976.

[23] Anonymous User's Guide to VAL: A Robot Pro­
gramming and Control System Unimation, Inc . ,
Danbury, Connecticut, Feb. 1979.

[24] B. Yin Towards Combining Vision with a High
Level Robot Language DAI Working Paper
No.133, University of Edinburgh.

