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Abstract 

This paper describes the work on using vision 
ver i f i ca t ion within an object level language for 
robot assenbly (RAPT). The framework which han­
dles vision data is discussed in de ta i l . The 
framework enables us to combine a ver i f i ca t ion v i ­
sion f a c i l i t y with an object level language in an 
in te l l igent way. It can also handle other kinds 
of sensory data. 

1. Introduction 
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There have been up to now two major approaches 
available for programming robots [ 7 ] . One is 
teach-mode programming: this is well known as pro­
gramming by showing. The other is o f f - l i ne 
gramming and is referred to as programming by 
ing some formal language. Since the o f f - l i ne 
gramming method has many advantages over 
teach-mode one, there is a trend for robot users 
to program industr ia l robots by using robot 
languages. 

It is also believed that if sensory informa­
tion is used in conjunction with the robot, then 
the robot can do a better job. In this paper we 
w i l l discuss the work of combining a special kind 
of v is ion, ver i f i ca t ion v is ion, with a part icular 
robot language - RAPT [1 ,2 ,3 ,4 ] . However, the au­
thor believes that the principle of the work can 
also be used to deal with some other kinds of sen­
sory data. 

2. The Current RAPT Language and I ts New Vision 
Commands 

2 .1 . The Current RAPT Language 

RAPT is a model-based object level robot com­
mand language [6 ,7 ] . Object level languages allow 
the human user to describe the task that he wants 
the robot to perform by describing the objects 
that are to be handled and the things he wants 
done with them in terms that are natural to him 
rather than to the robot. This information has to 
be converted by some computational system into run 
time commands that the robot can obey. In RAPT, 
the environment of the robot is modelled by an i n ­
complete geometrical modelling system. Each ob-

* This research i 
ment studentship 

supported by a Chinese govern-
It is also supported by the 

University of Edinburgh. 

ject in the environment is represented by those of 
I ts features which are to be used in the associat­
ed RAPT program. These features, such as planes, 
edges, points, e tc . , may be f i n i t e or i n f i n i t e . 
In RAPT programs, the objects which are to be 
manipulated by the robot are exp l i c i t l y represent­
ed, and the programmer specifies Intermediate 
states and actions on objects. These are 
transformed by the RAPT system into movements of 
the robot which w i l l bring about the desired goal 
state. 

RAPT is designed mainly for doing automatic 
assembly and allows the user to specify a set of 
bodies, the spatial relationships that are to hold 
between their features in each goal state, and 
their movements between one si tuat ion and the 
next. Spatial relationships constrain the rela­
t ive positions of bodies. If multiple spatial re­
lationships hold between two bodies then new, more 
res t r ic t ive relationships may be deduced to hold 
between the bodies. This ab i l i t y is a result of 
spatial relationship reasoning. 

The output of normal RAPT is a series of posi­
tions of objects in each s i tuat ion. These are 
only planned positions in as much as they have 
been determined taking no account of the inaccura­
cies Inherent in the real world. The purpose of 
the current work is to allow statements to be ad­
ded to the RAPT system which w i l l allow use to be 
made of vision data to modify the planned posi­
tions . 

The work of the RAPT system is divided into 
two parts: compile time reasoning and run time ex­
ecution. At compile time, the system performs 
o f f - l i ne reasoning about the positions of the ob­
jects and the actions of the robot. The results 
of the compile time reasoning w i l l guide the ac­
tions of the robot at run time. 

Readers who are not famil iar with RAPT are 
recommended to refer to [1,2,3,4] in order to 
understand the paper better. 

2.2. Ver i f icat ion Vision and Vision Task Specif i ­
cation in RAPT 

A wide assortment of devices and systems exist 
for robot sensing of the environment. They f a l l 
Into two generic classes: contact and non-contact 
[ 8 ] . Vision is one of the most important non-
contact sensing methods. Ver i f icat ion v is ion, as 
a type of visual information processing, is quite 
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di f ferent from other types of vision system, and 
is very useful in conjunction with robots. The 
main characteristics that distinguish it from oth­
ers are [5,10] : 

(1) the system has a great deal of prior 
knowledge about the type, placement and ap­
pearance of the objects that form the scene, 

(2) the goal is to ver i fy and refine the loca­
tion of one or more objects in the scene 
rather than to recognize them. 

Before the ver i f icat ion system can be used, it 
must be told exactly what to look for and approxi­
mately where to look. The error between the ex­
pected ("nominal") positions and the actual ones 
should not be too big. 

Since RAPT reasons about spatial relationships 
between body features, we may ask the vision sys­
tem to ver i fy the positions of some special 
features, e.g. edges, and then send the vision 
data to the RAPT reasoning system so that the ac­
tual position of the body to be ver i f ied can be 
deduced. Since images of edges are easy to detect 
we prefer to use edges in the system. 

To introduce ver i f icat ion vision f ac i l i t i e s 
into the RAPT system, a number of vision commands 
must be added to the RAPT language. They are the 
LOOK statement, the INVIOLATE statement, the 
TOLERANCE statement and the COMBINE statement. 
Some auxi l iary commands are also needed in order 
to specify cameras and some low level vision de­
t a i l s . 

The LOOK statement. is used to specify the 
features to be ver i f ied by the vision system. I ts 
main effect is to form symbolic features and rela­
tionships in the RAPT reasoning network. It also 
sends the necessary information to the low level 
vision system to enable it to find the expected 
edge image at run time. 

when a camera has been used to find the image 
of an object feature in the scene, the RAPT system 
creates a new v i r tua l feature for the camera and 
establishes a spatial relationship between this 
new feature and the observed feature of the ob­
jec t . For example, it may establish an "against" 
between a newly created plane feature of the cam­
era and an edge of the object. Since the relevant 
vision data is not available at compile time, the 
new feature of the camera, and therefore the new 
spatial relat ionship, w i l l have symbolic forms 
during the compilation phase. 

The INVIOLATE statement specifies a constraint 
on the position of the object to be ver i f ied in 
terms of a relationship that must hold between the 
object and the world. For example, INVIOLATE can 
be used to Indicate that the bottom of the object 
must be against the top of the table no matter 
what the inaccuracies of the placing of the object 
are. From the view point of geometric reasoning, 
it provides a rel iable relationship in the rela­
tionship network. This w i l l enable the geometric 
reasoning system to explain vision data in a 
correct way. 

The TOLERANCE statement specifies the maximum 
translational error along a l l the three axes of 
the body coordinate system. The rotation error 
tolerance is not discussed in this paper. The 
res t r ic t ion of the translation error should ind i ­
cate the range in which the feature is l i ke ly to 
be found. 

The COMBINE statement provides a package for 
the vision task. It invokes the symbolic reason­
ing f a c i l i t y to deduce the symbolic position of 
the object by use of a l l the information included 
in the package. It checks whether the statements 
in the package are compatible or not. It also 
combines the information given by the INVIOLATE 
and TOLERANCE statements in order to deduce real 
restr ict ions on the position of the object to be 
ve r i f i ed . 

The format of the package of the vision com­
mands is l ike th is : 

COMBINE; 
VIOLATE/ against, bottom of bodyl, top of table; 
LOOK/ edgel of bodyl , cameral; 
LOOK/ edge2 of bodyl, camera2; 

TERCOM; 

where TERCOM terminates the COMBINE package. De­
tai led discussion of these vision statements can 
be found in f 24]. 

2.3. The Symbolic Reasoning Faci l i ty 

The symbolic reasoning f a c i l i t y is required in 
the RAPT system for dealing with vision data at 
compile time. During compile time, the positions 
of features which are created by LOOK statements 
have only a symbolic form and cannot be evaluated 
un t i l run time, when the vision data is acquired. 
In this case, the RAPT inference system must deal 
with the symbolic form of the feature positions 
rather than their actual values. The result of 
the process w i l l be evaluated during run time when 
the real feature positions have taken the places 
of the symbolic ones. Therefore, a symbolic rea­
soning f a c i l i t y is essential for combining sensory 
data with the RAPT system. 

The symbolic reasoning system works in a simi­
lar way to the current RAPT cycle finder [14] . 
Being given two relationship chains between two 
objects, it w i l l produce a constrained new re la­
tionship between the objects by means of a set of 
rewrite rules. The difference between the symbol­
ic reasoning system and the cycle finder is that 
the features in both the input and output of the 
symbolic reasoning system may be symbolic and 
their parameters may be symbolic expressions. De­
tai led discussion of the symbolic reasoning f a c i l ­
i t y can be found in [24] . 

3. The Framework for Handling Vision Information 

So far we have discussed how to specify a v i ­
sion task and how to reason about vision informa­
t ion symbolically. Now we w i l l discuss how to 
provide a framework to handle the symbolic posi-
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t ion expressions caused by introducing ver i f i ca ­
tion v is ion. 

3 .1 . Outline of the Framework 

It is connonly the case that vision data w i l l 
ver i fy not only the position of the specified body 
at the current situation (body instance), but also 
some other body instances whose positions are 
relevant to or deduced from this body instance. 
The ver i f ica t ion vision indicates discrepancies 
between an expected position and an actual posi­
tion in a particular situation and it w i l l be 
necessary to nodifv subsequent positions in the 
light of this information. For example, suppose a 
robot moved a block to a specified position and 
then moved away a fixed amount waiting for the v i ­
sion system to operate. 11 the ver i f ied position 
shows that the block is not exactly at the speci­
fied posit ion, then we are sure that the robot 
hand is also not at the position where we supposed 
it to have been. 

Wo want to avoid, as much as possible, reason­
ing which involves the symbolic expressions 
representing ver i f ied positions. Otherwise these 
expressions, or parts of then, would appear in a 
large number of places in the run time code, and 
the evaluation of each of them would take too much 
time. On the other hand, if we can find a method 
of using the ver i f ied position only at run time, 
then the run time system w i l l work faster. Here 
we outline a method of using veri f ied positions at 
run tine only. We w i l l enploy two reasonable as­
sumptions in the following discussion. They are: 

1. The nominal position of a body is assumed to 
be accurate unless there is some evidence 
(e.g. vision data) to the contrary. 

?.. The movement of a robot arm is assumed to be 
accurate over small distances. 

3 .1 .1 . Analysis of Expressions of the Body In ­
stance Position 

We f i r s t need to establish how the actual po­
s i t ion of a body instance is related to i t s nomi­
nal position and the vision ver i f ica t ion data, 
even after some movements have been made. A move­
ment of a body (b) in one situation ( i ) to the 
next ( i - l ) can be represented by a matrix Tb(i+1) 
such that 

PNb(i+l) = PNbi * Tb(i+1) (1) 

where PNbi and PNb(i+1) are matrices representing 
the -.nominal positions of the body in situations i 
and i+1 . If we consider that the body b makes a 
v i r t ua l movement from i t s nominal to i t s v i r tua l 
position then the movement can be represented by a 
matrix FMbi: 

FMbi * PNbi = PVbi (2) 

and we cal l FMbi the modifying factor of the 
body instance PNbi. 

We know from (2) that: 

F?!bi = PVbi * PNbi"' (3) 

How suppose that the nominal position of the 
body b in situation j, PNbj, is produced by a se­
quence of specified movements from i ts nominal po­
s i t ion in situation i, then it can be seen that 

PHbj = PNbi * Tb(i4l , j ) (4) 

where 
Tb( i+ l , j ) = Tb(i+1) * . . . * Tbj (S) 

and j > i . 

The actual position of the body in situation j 
(the actual position is not a "ver i f ied posit ion" 
since we have not veri f ied it by vision commands, 
but we consider that it is equivalent to a ver i ­
fied position in our discussion) w i l l be related 
to the actual position of the body in situation i 
bv exactly the same sequence of movements, and 
therefore 

PVbj = PVbi * Tb(i+1 , j) 
- PVbi * PNbi"1* PNbi * Tb( i+ l , j ) 
- PVbi * PNbi-' * PNbj 
= FMhj * PNbj (f>) 

where Fllbj - PVbi * PNbi-' (/) 

FMbj is referred! to as the modifying factor of the 
body instance PNbj. 

We can see from the discussion above that the 
actual position of a body instance is determined 
by two parts: the nominal position and a modifying 
factor, and it is onlv the modifying factor that 
is affected by the vision data. When a body i n ­
stance is ve r i f i ed , i t s modifying factor is de­
fined by the vision data and by the nominal posi­
t ion of the body instance. Furthermore, if we 
know the modifying factor of a body instance and 
the subsequent nominal movements of that bodv, 
then we can determine the modifying factors for 
the instances of that body in the subsequent s i ­
tuations. As we can obtain the nominal position 
for each body instance by using the current RAPT 
cycle finder system, we can determine the nominal 
movement of a body instance between any situa­
t ions. Therefore, we can obtain the modifying 
factor for every body instance by working forward 
from the modifying factor of the ver i f ied body i n ­
stance. We can see from equations (6) and (7) 
that we can also assume that once the actual posi­
t ion of a body has been found to be dif ferent from 
i ts nominal one, accurate positions of the body in 
subsequent situations w i l l bear the same re lat ion­
ship to their nominal positions un t i l a new modi­
fying factor is found either by new vision data or 
by a specified action (see Sec. 3.2.1). There­
fore, in our vision ver i f i ca t ion system we may 
deduce the nominal position of each body instance 
at compile time in the usual way, then evaluate 
the modifying factors at run time, and get the ac­
tual positions by matrix mul t ip l ica t ion. 

The introduction of modifying factors w i l l af­
fect the actions of bodies. We w i l l refer to the 
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tor array can he divided into two stapes, the rea­
soning stage and the simplifying stage. In the 
reasoning stage, a l l the modifying factors for the 
body instances in the i n i t i a l "si tuat ion w i l l he 
assigned an ident i ty natr ix symbol ("1") . In each 
of the following si tuat ions, if a bodv is ver i f ied 
in that situation the corresponding modifying fac­
tor w i l l be assigned the symbolic position expres­
sion PVbi ("P"), otherwise a pointer or a set of 
pointers which points to another modifying factor 
w i l l be assigned to the modifying factor according 
to rules which w i l l be discussed la ter . 

In the simplifying stage, the modifying factor 
array is simplif ied according to a set of rules. 
This process makes the array more compact. and 
speeds up the run time evaluation of the array. 

.'1.1.4. Modifying Factors in Symbolic Reasoning 

As well as influencing the symbolic reasoning,, 
the introduction of modifying iactors w i l l also 
influeuce the way vision commands are used. The 
modifying factors from previous vision commands 
may enable us to make better predictions for posi­
tions of bodies in subsequent vision commands. 

In a vision command package, some INVIOLATE 
statements may be used to indicate the most r e l i -
able relationships holding between the object to 
be ver i f ied and some other objects. The modifying 
factors for the body instances of these reference 
objects may not be ident i ty matrices. This means 
that they may not be at their nominal positions, 
though the relationships mentioned in the IN­
VIOLATE statements s t i l l hold. Discussion of how 
to deal with these two points can be found in 
[24]. 

3.1.2. Pules for Setting; the Pointers 

The rules discussed below are used for setting 
the pointers in the modifying, factor array for bo­
dies according to their status in the RAPT program 
such as being MOVEd , TIEd and so on. For conveni­
ence, we w i l l refer to the rules for making the 
pointers as l inking rules. 

3.2.1. Actions 

There are two kinds of action statements in 
RAPT: MOVE statements and TURN statements. For 
making a modifying factor array, however, we are 
more concerned with spatial relationship spec i f i ­
cations about bodies and the association between 
the relationship specifications and action state­
ments. If the position of a body instance is res­
tr icted by some spatial relationship specifica­
t ions, then we refer to the position of the body 
instance as a specified posit ion. On the other 
hand, if there are no exp l ic i t spatial re lat ion­
ship specifications constraining the position of 
the body Instance, then we refer to the position 
as an unspecified posit ion. 

The following are the l inking rules for the 
body instances which are moved ( i . e . MOVEd or 
TURNd) d i rect ly by action statements rather than 
by the effects of TIEs and SUBASSEMBLIES. The 
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l inking rules for TIEs and SUBASSEMBLIES w i l l be 
discussed in Sec. 3.2.2 and Sec. 3.2.3. 

Al 

A2 

A3. 

If a body Is noved to an unspecified posi­
t ion , then the pointer of the body instance 
points to i t s modifying factor in the previ­
ous s i tuat ion. 
If a body is moved to a specified posit ion, 

then the pointer of the body instance points 
to the modifying factor for the body instance 
of the body between which the relationships 
hold (reference body) in the current situa­
tion unless the condition mentioned in rule 
(A3) is net. 
If the reference body in a specified posi­

t ion is TIEd to the bodv to be moved or be­
longs to the same subassembly as the body to 
be moved then the pointer of the body i n ­
stance points to i t s modifying factor in the 
previous s i tuat ion. 

3.2.2. Ties 

In the RAPT language bodies can be tied to­
gether during an act ion, and this means that they 
maintain the same relat ive position before and 
after the action. Therefore, any descriptions of 
the motion of one body which is tied to another 
must apply to the motions of that other. TlEs are 
made and revoked by TIED and UNTIED statements. 

We can see, from the def in i t ion of TIE, that 
the modifying factors for bodies which have been 
t ied together must keep the same relations to each 
other throughout the existence of the t i c , except 
when local vision commands (see [24] for detai ls) 
are used. This means that a change in the modify-
ing factor of one member of a t i e must be applied 
to that of the other member. Moreover, this ef­
fect w i l l continue after the two bodies are untied 
un t i l one of them Is moved by specified actions or 
both of them are ver i f ied by global vision com­
mands indiv idual ly (see [24] for deta i ls ) . 

Let us consider an example in order to under­
stand how to keep the same relationship between 
two modifying factors when one of them is chang­
ing. Suppose bodies A and B are tied together 
with di f ferent modifying factors Mal and Mbl 
respectively. If Mal is changed to Ma2 then the 
relat ive change for modifying factor Mal is Tr. We 
have 

Mal * Tr = Ma2 
Tr = Mal- '* Ma2 (12) 

and the new modifying factor Mb2 for B is 

(13) 

The discussion above can be expanded to cover 
a t ie l inking more than two bodies and the c i r ­
cumstances when this large t ie has been broken. 
Suppose n bodies b l , . . . , bn are tied together by 
n-1 TIE statements. For convenience we w i l l ca l l 
the result a "super" t ie in the following discus-
s ion. 

The l inking rules for TIE statements can be 
summarized as follows: 

T l . In a super t i e , if body bj is moved in s i ­
tuation i by a specified action which brings 
about some relationships between body bj and 
body C, then the pointer of body bj w i l l 
point to the modifying factor for body C in 
situation i while the modifying factors of 
other bodies in the super t ie are pointer 
t r i p l es . The t r ip les have the form 
[pl,p2,p3] where pi points to the modifying 
factor for the same body in situation ( i - 1 ) , 
p2 to the modifying factor for bj in situa­
tion ( i -1) and p3 points to the modifying 
factor for bj in si tuation i . 

T2. In a super t i e , if body bj is ver i f ied by a 
set of global vision commands in si tuat ion i, 
then i t s modifying factor w i l l be assigned a 
symbolic position expression "P" while that 
of other bodies in the super t ie are pointer 
t r i p l es . The t r ip les have the same form and 
contents as in rule (T l ) . 

T3. In a super t i e , if body bj is ver i f ied by a 
set of local vision commands in si tuat ion i, 
then i t s modifying factor w i l l be assigned a 
symbolic position expression "P" while that 
of other bodies in the super t ie w i l l refer 
to their modifying factor in si tuat ion ( i - 1 ) . 

Five similar rules are applied after a super 
t i e has been broken. Details can be found in 
[24] . 

3.2.3. Subassembly 

The subassembly is a 
whose features certain 
hold for the duration of 
subassembly . Subassembli 
that there may be more tha 
subassembly and the com 
can move with respect to e 
istence of the subassembl 
lations remain va l i d . Tre 
is similar to that for 
can be found In [24] . 

set of bodies between 
specified relationships 
the existence of the 

es d i f fe r from t ies in 
n two bodies within a 
ponents of a subassembly 
ach other during the ex-
y, provided that the re-
atment of subassemblies 
HEs. Detailed discussion 

Mb2 = Mbl * Tr 
= Mbl * Mal-1 * Ma2 

The following simple example shows 
l inking rules are used. 

how the 

Therefore the modifying factor for body A in the 
new si tuat ion is Ma2 while Mb2 can be represented 
by a pointer t r i p le [pl,p2,p3] in which pl points 
to Mbl, p2 points to Mal and p3 points to Ma2. At 
run time the t r i p l e w i l l be evaluated by the equa­
tion 

(pl) * (p2) - ' * (p3) (14) 

remark bodies bl b2 b3 have been defined; 

ver i fy /b2; remark abbreviation for vision 
command package, now in situation i; 

move/bl; 
f ixed/bl , b2; remark abbreviation for a set 

of relations which completely defines 
the position of bl with b2, s i t i+1 ; 
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t ied/b l ,b2; 
veri fy/b3; remark s i t i+2; 
nove/b2; 

fixed/b2,b3; remark s i t i+3; 

4. The Position of the Camera 

The camera is defined in RAPT in the usual way 
as an ordinary body with a .specified focal length. 
This means that as with any other body it can be 
operated on by the system, being noved , tied and 
so on. It can also be mounted on a robot hand. 
]n most cases the position of a camera body can be 
modified by the modifying factor array according 
to the l inking rules. For example, the position 
of one camera can be ver i f ied by another camera. 
However, if the result of a global vision command 
package w i l l affect the position of the camera to 
be used (according to the l inking rules l isted in 
See. 3.2) then the vision command package w i l l he 
dealt with as a local one. In this case, only the 
position of the body to be ver i f ied is subject to 
modification while the position of the camera is 
unchanged. 

5. The Generali ly of the Framework 

So far we have discussed how to use the frame-
work to handle ver i f ica t ion vision information. 
In fact , the framework also has the capabil i ty to 
handle other kinds of sensor information for the 
purposes of ver i f i ca t ion . Generally speaking, in 
RAPT, when we use a sensor to detect a feature of 
an object, we create a new relationship between 
that object and the world, as the absolute posi­
t ion of the sensor in the world is usually known 
when the sensor is used. The nature of the rela­
tionship depends ent i rely on the type of sensor. 
Since sensor data is available at run time, at 
compile time we can only obtain symbolic re la t ion­
ships. when the symbolic relations are suff ic ient 
to " f i x " the object, we can use a suitable symbol­
ic reasoning system to deduce the symbolic posi­
t ion of the object. We can then evaluate the sym­
bolic position expression at run time when the 
corresponding sensor data is avai lable. In order 
to introduce a new kind oi sensor, we need only to 
provide a set of commands to specify how to use 
the new sensor, and a new symbolic reasoning sys­
tem which is capable of dealing with the new rela­
tionships created by this sensor. The framework 
handles new kinds of sensor information in the 
same way as it does vision data. 

Now let. us consider an example. Suppose we 
use a touch sensor to detect a plane feature pi of 
a body B. when we detect a point on pl, we create 

a relationship between the v/orld and the body, the 
"AGAINST" relationship between a sphere feature (a 
vertex is considered as a sphere with radius 0 in 
RAPT) of the world and the plane pl. If we detect 
some careful ly chosen planes of the body B with 
the touch sensor and so obtain enough AGAINST re­
lat ionships, then we w i l l be able to deduce the 
position of the body B. The symbolic position ex­
pression of B can be stored in the modifying fac­
tor array and can be used in exactly the same way 
as ver i f i ca t ion vision data. 

Some authors (e.g. [15]) have suggested that 
vision sensors have poor precision and therefore 
it is better to use both vision and contact sen­
sors. Vision sensors can be used for coarse sens­
ing while contact sensors can be used for fine 
resolution. In this case, the generality of the 
framework to handle both kinds of sensor informa­
t ion is very important. 

6. Discussion 

There are two main problems in using sensory 
information in programming and control l ing robots. 
The f i r s t is how to get accurate sensory Informa­
tion and the second is how to process and use the 
information in the system. The la t te r problem, as 
Harmon points out [ 8 ] , seems the harder of the two 
and has more implications for the theoretical use 
o f sensors. 

Some work on using vision data in robot pro­
gramming, languages has been reported, such as VAL 
[19, 231 and AL [20]. In the VAL system, vision 
is used to recognize objects in a picture taken by 
a TV camera, and to locate them. The recognition 
is done by comparing the blobs in the picture with 
trained characteristics of given prototypes in an 
ef fort to find a match. The vision technique used 
in the VAL system is of the f i r s t generation [12] , 
i . e . it uses a binary picture and produces a 2-9 
explanation. In the AL system, vision is used to 
f u l f i l l the ver i f icat ion task [20]. Both the 
languages mentioned above are classif ied as end-
effector level languages by Koutsou [ 7 ] , i . e . only 
the end-effector of the robot appears exp l i c i t l y 
in the program. 

Some object level languages have the ab i l i t y 
to use some touch sensor information. For exam­
ple, in AUTOPASS [21] force or torque sensor in­
formation is used to provide special threshold 
values in order to constrain or terminate some ac­
t ions. In the LAMA system [221, the force sensor 
is used to detect whether a specified action ter­
minates at a correct position or not. In both the 
above systems, sensory information is used as a 
condition in a decision tree and no further expla­
nation of the information is made. 

In contrast to these systems, the RAPT 
language with the ver i f icat ion vision f a c i l i t y 
provides a method of specifying vision tasks and 
reasoning about the vision data symbolically off-
l ine in an object level language. It makes no as­
sumptions about the relat ive positions of objects 
and sensors as a teach-method does. It allows 
par t ia l information about positions to be combined 
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with sensor information in a general way. At run 
time, when the vision data is available, the 
results of symbolic reasoning are evaluated and 
are used to improve the system's knowledge about 
i t s environment. This method uses grey level pic­
tures and produces a 3-D interpretation rather 
than a 2-D one. The framework described in this 
paper enables us to combine the ver i f ica t ion v i ­
sion f a c i l i t y with an object level language in an 
inte l l igent way. The framework which is used by 
the system for handling vision data has some gen­
e ra l i t y . It is not only able to handle the vision 
data, but also able to deal with some other kinds 
of sensory information, such as touch sensor i n ­
formation. Using the framework to implement the 
vision f a c i l i t y within RAPT requires few changes 
in the current RAPT system. 

In this paper we have only discussed the 
theoretical framework. The system has been imple­
mented within RAPT and used with simulated vision 
data, but as yet no l ink has been made with a real 
vision system. This w i l l , of course, provide a 
real test , and we anticipate some problems in en­
suring the correctness of match between the model 
features and their images. 
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