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ABSTRACT 
This paper describes the main aims of a new 

research project concerned with the implementation 
of automatic error recovery f ac i l i t i e s in 
industr ial robotics. An approach is discussed 
in which an existing manufacturing work ce l l is to 
be enhanced by the addition of a task event model 
contained in an error recovery knowledge base. 
This paper outlines the main design issues involved 
in this work. Reasons why conventional fault 
tolerance techniques are inadequate are given and 
the industr ial application is explained. A 
part icular approach to sensory monitoring and error 
diagnosis is described. The proposed system has 
more s imi lar i t ies with sensory driven expert 
systems than with body modelling contingency 
planners. 

I INTRODUCTION 

A. Background 
This research concerns the problem of 

providing error recovery capabil i t ies in 
industrial robot systems. The long term goal is 
to define software control mechanisms that w i l l 
enable a robot to detect error conditions in i ts 
working environment and perform corrective actions 
in order to continue working unattended. The work 
is directed at industrial applications such as 
machine loading and simple assembly tasks. Our 
interests do not cover hardware errors in the 
robot or computer systems nor software errors in 
the control programs. Such topics are well 
covered in the l i terature on fault tolerance 
systems[l]. We assume that the hardware and 
software are relat ively rel iable (although we do 
provide some diagnostic f a c i l i t i e s ) and only deal 
with physical errors in the robots task environ­
ment. For example, defective components, 
alignment d r i f t and jammed feeders are some of 
the common faults that can lead to damaged 
equipment, faulty products or signif icant plant 
down-time. 

B. Conventional techniques 
The most widely used technique for hardware 

recovery is that known as backward error recovery 
where the system is restored to an earl ier error-
free state by an inbui l t mechanism. Such 
checkpoint and rollback schemes operate quite 
independently of the nature of the error and so 
can handle a range of error types. However, 

despite the attract ive simplici ty of these methods 
their fixed response often proves inappropriate 
in robotic applications. This is because 
backward recovery assumes (a) that processes are 
reversible and objects are recoverable, and (b) 
that the system has fu l l control over a well 
defined ( i . e . hardware or software) environment. 
These assumptions do not hold in robotics. 

C. The Assembly World 
In computer systems, errors can be defined as 

either component error or design errors, but in 
the robot assembly world there exists a third type: 
external errors. These include external 
interference with processes, or components, and 
unexpected events such as breakages and jammed 
parts. Thus our systems must operate with 
incomplete control over the environment as well 
as incomplete information. When we l i s t just a 
few error cases we see ample evidence of th is : 

incorrect or defective parts (component errors) 
faulty feed process (missing part or 

orientation error) 
faulty gripper action (pose error or dropped 

part ) 
incorrect target placement (co l l is ion or 

position error) 
There has been very l i t t l e previous work that has 
dealt with these issues [2 ,3 ] . We feel that 
progress l ies in the application of knowledge 
engineering methods. Only when the nature of an 
error is understood can it be successfully treated. 

D. Knowledge Based Recovery 
We propose a forward recovery approach where 

operators are applied to transform the error 
state into one of the error-free states further 
ahead on the task cycle. This amounts to a 
kind of corrective feedback. In this situation 
the recovery agent w i l l need a l l available 
information including: 

(a) the actual state of the physical system, 
(b) the desired or expected state, (c) current 
sensory data, (d) expected sensory data and (e) 
details of plausible recovery actions. 
We are building a software system that maintains 
a knowledge base containing information on the 
robots' task, the working environment, expected 
sensory Bignals and plausible contingency 
procedures. 
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II THE LABORATORY TEST-BED 

In order to remain f a i t h f u l l to industr ial 
practice a laboratory r ig has been bui l t which 
models an actual commercial application. This 
consists of a work cel l with a Unimation Puma 
600 and a visual inspection stat ion. Component 
recognition algorithms are processed by the 
Autoview vision package [4] running on an LST 
11/23. A conveyor delivers pipe sections to 
the work cel l which f a l l onto a l ight table and 
are analysed, via a TV camera, by the Autoview 
software. The puma then performs an appropriate 
action sequence for each pipe type, which normally 
involves transport to two machining station and 
ejection into an output bin. This is the normal, 
i .e. error free, task performance. 

For error sensing, additional sensors have been 
added to the system. These include proximity and 
force feedback and special tac t i le sensing pads 
inside the gripper jaws. This d ist r ibut ion of 
multi-model sensors permits a range of errors to 
be deteeted: 

Sensor Errors detected 
Proximity Coll isions, location errors 

(Arm movement monitoring) 
Arm forces Obstructions, jammed parts 

(Insertion/assembly monitoring) 
Tactile gripper Sl ip, orientation errors, lost 

part s 
(Component movement monitoring) 

Vision Part location, orientat ion, 
defects 
(Inspection & ver i f icat ion) 

In the original application the Puma is 
controlled by a task program, written in the 
manipulator control language VAL, which interacts 
with the visual inspection algorithms. However, 
in the laboratory the LSI 11/23 acts as overall 
supervisor and is able to down-load VAL programs 
or even single instructions for the Puma to 
execute. In normal task operation the original 
VAL program is executed and so there is no 
effective difference between the two systems. 
However, when in recovery mode the supervisory 
software is able to generate and monitor 
additional VAL commands as determined by the 
prevail ing sensory conditions and knowledge of 
the error event. 

ITT ERROR DETECTION 

Obviously, for good quality error detection we 
w i l l need many sensors. However, errors are 
rare occurrences and the benefits gained from 
extensive sensing must be balanced against the 
icrease in costs and computational overheads. We 
feel that an effective solution is to design 
systems with two levels of sensory ac t i v i t y . Our 
system has a low level of sensory monitoring 
during normal operation but can perform much more 
extensive processing when required to respond to 
error situations. We define a sensory signature 
as a col lection of parameters which specify the 

l imi ts of acceptability of a sensed signal during 
a task phase. These can be one dimensional, e.g. 
insertion force l im i ts , or multi-dimensional, 
e.g. visual silhouette measurement tolerances. 
In either case the signatures are continually 
tested at set points on the task cycle by a 
background monitoring process. Normally the 
signatures w i l l be accepted and the task Continues. 
When a signature goes out of range, i .e. a 
"signature interrupt" occurs, the robot is halted 
and control handed over to the error diagnosis 
and recovery modules. Notice that this recovery 
software can involve quite disproportionate sensory 
and computational overheads as the system is 
effect ively in a "down-time" status. 

Although the sensory signatures are relat ively 
simple measures, they w i l l vary considerably ( in 
range and relevance) with task parameters such as 
component type, movement speed, work space 
complexity, etc. We use the notion of relevancy 
by incorporating expl ic i t control information in 
the task program so that only pertinent signatures 
are used at each stage of the task cycle. Thus, 
the monitoring regime varies dramatically, in 
scope and quali ty, over the whole task. The 
design of signatures and the relevancy controls is 
very application dependent. For each task the 
VAL program is created f i r s t and then signatures 
can be selected, parameterised and entered into a 
signature data base. 

IV FAULT DIAGNOSIS 

The second stage of recovery involves an 
assessment of the nature of the error and the 
extent of i ts influence. By systematic analysis 
of robot action sequences we can build a generic 
fault tree for use in diagnosis. There are 
essentially three basic actions which our robot 
can perform and these can be broken down in terms 
of their constituent components as follows: 

1. Pick up component 
locate (f ind a component) 
approach (f ine movement towards target 

locat ion) 
grasp (acquire component in the gripper) 
depart (fine movement away from target 

location) 

2. Transfer component 
(coarse, fast movement between locations) 

3. Place component 
approach (f ine movement towards target 

location) 
insert (f ine movement while in physical 

contact) 
ungrasp (release component) 
depart (f ine movement away from target 

locat ion) 
The "locate action" is not a robot function but 
refers to the action of either part feeders 
( impl ic i t location data) or sensors (expl ic i t 
location data). 
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Now by examining each of these atomic actions 
in turn we obtain a tree of error states and their 
relationships. For example:-

Pick up 
Location error 

Approach error 

Grasp error 

Depart error 

feeder empty or jammed 
part defective 
part orientation error 
co l l is ion with part 
missed part 
co l l is ion with workspace 
no part 
several parts 
orientation error 

part location error 
gripper s l ip 

obstruction 
part error 
grasp error 
workspace error 

This is only a sample of the f u l l tree: there 
are further levels and more detailed expansion. 
By using the concept of an "atomic action" we 
have produced a detailed analysis for each 
manipulator movement axis [5 ] . These trees 
i l l us t ra te the inherent structure in the error 
states and their causes. If we have knowledge 
of the current action and sensory data then, 
from the tree, we can infer plausible error 
causes. Several i terations may be required, 
involving requests for selective sensory data. 

V KNOWLEDGE BASE DESIGN 

The ideal knowledge base for a robot would 
contain geometric data in a body modelling system 
which could represent the exact physical structure 
of the workspace and the objects. By using 
computational geometry and extensive high 
powered sensing the system would deal with 
contingencies by generating i ts own recovery plans 
[6 ] . However, while research is active on these 
topics, such object level systems are not yet 
well developed and w i l l be very complex and 
expensive. 

Our aim is more modest: to develop a knowledge 
base of actions and events in terms of the task 
descriptions used in existing manipulator 
languages. This is more a task event model than 
a body modelling system. The or iginal task 
specification consists only of a sequence of VAL 
instructions, our f ina l specif ication w i l l have 
several paral lel levels of anci l lary knowledge 
cross-referenced into the VAL program. This 
multi-layered approach is a key feature of 
successful knowledge bases [7 ] . Our current 
levels are as follows: 

Task level - VAL program (manipulation cycle of 
actions and tests). 

World level - Knowledge of objects in environment. 
Action level - preconditions, actions, effects 

and results. 
Diagnostic level - sensory interrogation 

procedures. 

Recovery level - parameterised recovery schemas. 

Other levels being examined include a user 
level , performance level and a meta strategy level . 

Our current ac t iv i t ies are directed at--
knowledge representation (frames and/or 
production rules), properties of objects and 
events (e.g. reversabi l i ty) , and the separation of 
generic diagnosis and fault data from application 
specific data. The next stage w i l l be to 
implement and test our design in the application 
framework. 
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