
A Parallel Processor Algorithm for Robot Route Planning.

CM, Nitkowski,
A r t i f i c i a l Intell igence Laboratory,

Department of Computer Science and Sta t i s t i cs ,
Queen Mary College,

Mile End Road,
London E1 4NS,

England.

ABSTRACT

This paper presents a fast , uniform, paral lel
search algorithm for robot route planning and obs­
tacle avoidance. The algorithm is equally appl i ­
cable to real or synthetic data and overcomes many
problems associated with other route f inding
methods. The time taken to generate a route
through a an a rb i t ra r i l y complex environment has
been reduced to an insignif icant fraction of the
time taken for the robot to traverse the route.
Furthermore the time taken to create the route is
independent of environment complexity and only
l inearly proportional to route length. Actual
results and timings from running the algorithm on
the ICL Distributed Array Processor and executing
the resultant path on a mobile robot are presented.

approximated by a c i rc le when the occasion demands.
The vehicle is equipped with various sensors, not­
ably an ultrasonic rangefinder and a standard video
camera.

A program residing in the robot's 6502 based
microcomputer allows the robot to map i t s environ­
ment using the rangefinder. Figure 1 shows such a
map, of one of the offices attached to the labora­
tory, there is a table in the middle of the room.
Eight radial scans are made, each comprising 200
rotations of 1.8 degrees followed by a range read­
ing. The figure represents an area of 200 by 200
inches. Throughout this mapping process and route
execution the precision and repeatabil i ty of the
stepper motors is rel ied on to maintain navigation­
al accuracy.

1 Route Planning for Mobile Robots.

One of the most important components of the
software for a mobile robot system is a route
planner, to navigate the vehicle through a com­
pletely, or par t ia l ly mapped environment. Such
programs sp l i t into two main sections, the
representation of the environment and a method of
searching possible route paths between the current
robot position and some new location, avoiding
known obstacles.

It was primarily the poor quality of the sensor
data obtained as a map that prompted this invest i ­
gation. It was considered that it would be less
ef for t and the results would be more rel iable if a
method could be developed that completely avoided
the need for detailed analysis and l ine f i t t i n g to
this type of data. In the event, and partly due to
the ava i lab i l i t y of the ICL Distributed Array Pro­
cessor (DAP) a cel lu lar representation of the prob­
lem, coupled to a paral le l search that spreads
through a la t t i ce of free points was chosen.

Well established methods of describing the en­
vironment include approximating a l l obstacles as
polyhedra, Nilsson [1] , or calculating minimum
enclosing circles or e l l ipses, Moravec [2] . In
either case the standard approach to the actual
planning is to expand the environment representa­
t ion by a 'centre to edge' distance for the robot.
Thereafter the robot may be treated as a moving
point, rather than a swept volume. Brooks [3]
describes a method in which free space is
represented by overlapping 'generalised cones',
Matsushiraa and Oda [4] describe a method for robot
motion in an unknown environment using a tac t i le
sensor.

II The Mobile Robot.

We have a mobile robot with which various exper­
iments may be performed. It is of a very conven­
t ional design. Two stepper motors independently
drive wheels equidistantly spaced from the mid­
point along the la tera l axis. The base, and hence
the groundplan, is octagonal measuring 24 inches
across the f l a t s . It may therefore be reasonably

Figures 2 and 3 show the results of the algo­
r i thm. The to ta l robot environment is represented

828 C. Witkowski

by a 64x64 la t t i ce of points, some of which w i l l be
occupied by obstacles that w i l l have to be avoided
during robot motions. These points are shown as
asterisks " • " . Lattice points which become occu­
pied during the expansion process, so that the
robot may be treated as a point, are shown as " - " •
The current or ' s t a r t ' position of the robot is
shown by a "S" and the desired, 'goal ' position by
"G". Points indicated by "R" are (possibly many)
paths from start to goal with equal path lengths,
in terms of horizontal, ver t ica l and diagonal move­
ments. Intermediate level robot software w i l l
interpolate from "S" to "G" via those route points
labelled "X" during route execution,

I I I The ICL Distributed Array Processor.

ed neighbours are tested. The value for each point
in SPREAD is updated with a new path distance back
to the start point if it is 1) free point, and 2)
it is previously unvisited and 3) the new distance
is smaller than i t s current estimate. Each of the

The DAP, Reddaway [5] , is a highly paral lel
architecture machine cast in the Multiple Data Sin­
gle Instruction (MDSI) mould. It may be best
viewed as a matrix of 64 by 64 single bi t proces­
sors linked to a common control un i t , each having
l6Kbits of memory with a cycle time of 250nS. This
memory is shared by the host 2980 processor, entry
to the DAP and a l l I/O is mediated via this host
machine. The DAP may either be programmed in
machine code or DAP-Fortran. DAP-Fortran is aug­
mented with a matrix data type (and others) with an
impl ic i t 64x64 dimensionality and a l l elements are
processed simultaneously. These may be of type
rea l , integer, character and log ica l . Various
data structures within the program are stored as
logical matrices (4096 b i t s) , for instance:

ENVIRONMENT - The map as input to the program.
ROBOT SHAPE - The robot ground plan.
GROWN_WORLD - ENVIRONMENT expanded by R0B0TJSHAPE.
FROM POINT - Single bi t set indicating s ta r " node.
TO POlNT - Single bi t indicating goal node.
R0B0T PATH - Potential path points.
N0DE_MASK - Robot turn points.

IV The Algorithm.

The algorithm proceeds in a number of stages,
the output from each being a logical mask, each b i t
then represents some state of i t s corresponding
point in the l a t t i c e .

Step 1 - Environment expansion - the ENVIRONMENT
mask is shifted (using the DAP's inbu i l t planar
sh i f t functions) by an amount specified by the
various bits set in R0B0TJ5HAPE and the result log­
ica l l y ORed with GR0WN_W0RLD. The effect of this
routine is clearly seen in figure 3.

Step 2 - Endpoint checks - FROM POINT and
T0_P0INT are logical ly ANDed with GROWN_W0RLD, a
truie result indicates that the robot either" i s , or
is being sent to somewhere it cannot be.

Step 3 - Lattice search - This is a two pass
routine. Before each pass an integer matrix
(SPREAD) is set up that w i l l indicate the distance
of each unoccupied la t t i ce point from the s ta r t , it
is i n i t i a l i sed to some large value.

Step 3.1 - f i r s t pass - Beginning with only
FROM POINT set, each of i t s eight direct ly connect-

C. Witkowski 829

eight directions is t r ied in turn, though a l l l a t ­
t ice points are evaluated in para l le l , diagonals
are increased by square root two times the horizon­
ta l or ve r t i ca l . The search then proceeds i t e ra -
t ive ly from the points newly reached as a spreading
wavefront. Termination occurs when there are
either no new free points (in which case the start
was enclosed), or the goal point is reached.

Step 3.2 - second pass - Rather than organise a
system of backpointers, in the second pass start is
set to T0J0INT and the goal to FROM_POINT and the
process is repeated to produce a second SPREAD
matrix, whose values indicate shortest path dis­
tances to the goal.

Step 3.3 - determining the path - The least cost
path, or paths, within the constraints of the l a t ­
t ice representation, is indicated as a l l those l a t ­
t ice points whose value in the sum of the two
SPREAD matrices equals that in the TO_POINT point.
These points on the la t t i ce are indicated in f i g ­
ures 2 and 3 by alphabetic characters. Each of
these points, saved in ROBOT_PATH, represents a
path through the la t t i ce to the goal that be be
reached from the start with an equal number hor­
izonta l , ver t ical or diagonal movements.

Step 4 - Generate actual robot path - The algo­
rithm generates a l i s t of la t t ice points on the
route path that most closely corresponds to a route
finder which traverses between object corners. To
achieve this concavities in the ROBOT_PATH mask are
detected, by recognising path points in a 3 by 3
neighbourhood, various patterns of the nine bits
indicate these si tuat ions. These la t t i ce points
are indicated in the NODE_MASK mask. This paral lel
operation gives no indication as to route order,
neither is any indication given of the presence of
multiple iso-valued paths.

Step 5 - One further pass is made through the
ROBOT_PATH mask from start to goal. The order in
which la t t i ce points at which the robot w i l l change
direction is found and their coordinates recorded
in the robot command buffer. Multiple paths are
detected by a blob counting method at each stage in
th is expansion. A sp l i t in the path is indicated
by multiple blobs, one is selected a rb i t r a r i l y , the
others tagged as inactive, these tags are propagat­
ed along the redundant paths un t i l they merge again
with the selected path. Only direction change
points from NODE MASK on the active path are
transferred to the command buffer. A pretty-map
routine is then used to generate the output seen in
figures 2 and 3.

V Advantages of this algorithm.

It enables a uniform treatment of synthetic
(f igure 3) and real (figure 2) data. The real
data has undergone only minor pre-processing, two
passes of an algorithm that removes 'noise' points,
those with less than two neighbours.

The expansion algorithm is independent of en­
vironment complexity, rather computational ef for t
is proportional to the number of points set in the
robot ground plan.

Search time for the route points is l inear with

respect to the number of la t t ice points
traversed from start to goal, this is in turn a
good measure of the actual distance the robot w i l l
have to move.

In general robots with assymmetric ground plans
need additional methods, although the algorithm is
suitable for assymetric robots which move by pure
translat ion, Lozano-Perez and Wesley [5] , this
would be t r i v i a l l y achieved by offering a modified
ROBOT SHAPE mask as input.

Plans may be generated at dif ferent resolutions
by a simple rescaling of the environment data. A
rescaling has been made between figures 1 and 2.

Very advantageous timings are achieved, which
are in part offset by the fact that the DAP may
only be used in batch mode.

VI Program timings.

For these 64 by 64 maps the program timings may be
sp l i t into three parts. First system overheads
(conversions between DAP and 2980 Fortran storage
modes e tc .) , about 22 milliseconds/run; second a
fixed time component of 20 mS/run, (16 for expan­
sion, one extra for noise reduction on real data).
The th i rd component depends on the number of expan­
sions between start and goal, observed timings are
2.035mS/expansion to generate ROB0T_PATH and
0.309mS/expansion for the f ina l pass along
ROBOT PATH.

The synthetic data path (f igure 3), with 146
expansions took 0.387 seconds of DAP processor
time, the robot makes 18 changes of direction and
traversed the 481 inch path in 188 seconds. The
real data (figure 2), with 50 expansions required
0.158 seconds of DAP processor time, the robot
makes f ive changes of direction and traversed the
151 inch path in 62 seconds. In both cases the
la t t i ce is on a three inch grid spacing.

REFERENCES.

[1] Nilsson N.J. (1969) "A mobile automaton: An
application of a r t i f i c i a l intell igence techniques".
IJCAI-1969, pp509-520.

[2] Moravec H.P. (1981) "Robot Rover Visual Navi­
gat ion". UMI Research Press, Ann Arbor, Michigan.

[3] Brooks R.A. (1982) "Solving the find-path
problem by good representation of free space".
AAAI 1982, pp38l-386.

[4] Matsushima K. and Oda M. (1982) "Path finding
algorithm for a mobile robot with tac t i le sensor".
Proc. 2nd. I n t l . Computer Engineering Conf., 1982,
ASME. pp49-52.

[5] Reddaway S.F. (1973) "DAP - A distr ibuted
array processor". Proc. 1st. Annual Symposium on
Computer Architecture, pp. 61-65

[6] Lozano-Perez T. and Wesley M.A. (1979) "An
algorithm for planning col l is ion-f ree paths among
polyhedral obstacles". Communications of the ACM,
22-10, pp560-570.

