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Abstract The first-order calculus whose well
formed formulas are clauses and whose sole inference
rules are factorization, resolution and paramodulat-
ion is extended to a many-sorted calculus. As a basis
for Automated Theorem Proving, this many-sorted
calculus leads to a remarkable reduction of the
search space and also to simpler proofs. The sound-
ness and completeness of the new calculus and the
Sort-Theorem, which relates the many-sorted calculus
to its one-sorted counterpart, are shown. In addition
results about term rewriting and unification in a
many-sorted calculus are obtained. Practical examples
and a proof protocol of an automated theorem prover
based on the many-sorted calculus are presented.

"As a aule,” sadd Holmes, "the mone bizanie
a thing is the Less mysterious Lt proves o
be. It {s your commonplace, featunefess
cases which are neally puzzling."

A.C. Doyle, The Red-Headed League
7. Introduction

Sorts are frequently used in practical

applications of the first-order predicate

calculus. For example we write formulas like
(i) ¥x:5. ¢(x) and 3x:5. % (x)

and treat them formally as abbreviation* for
(i) ¥x. S(x) o ¢(x) and Ix. S(x) A ¢(x)).

We use we.ll sorted formulas because they

provide a convenient shorthand notation for
ordinary first-order formulas. But sorts
the,

sorted formulas.

also inflence, deduction* from a given

set of well For instance,

if P is a predicate only defined on the sort
% of integers, we will never perform a
deduction like ¥x:Z. P(x) F P{VZ). Proofs

are simplified, because a many-sorted

calculus is more adapted to a many- sorted

theory and hence not surprisingly deduction*
which respects sorts as well as the usage of
well borted the everyday

usage of predicate

formulas reflect

logic.
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Let us sketch how a many-sorted (mehrsortig)

calculus is developed from a given (sound

and complete) first-order one-sorted (ein-

sortig) calculus: Assume we have a set of
sort symbols,

Variable and function symbols

ordered by a given subsort
(of
our given calculus) are associated with a
The sort of a term is

order.

certain sort symbol.
determined by the sort of its outermost

Sorted
we only allow well

symbol. In the construction of well

(sortenrecht) formulas,

sorted terms of a certain domainsort or of

a subsort of this domainsort for each argu-
ment position of a function or predicate

symbol.

The rule* of

calculus are the

inference the many-sorted
inference rules of the
but with the

*orted formula*

given calculus, restriction
that be
deduced by an application of the restricted
Starting with well

only well can

inference rules. sorted

formulas this guarantees that only well

sorted formulas are derived in a deduction

in the many-sorted calculus.

Taking J. thesis as the
starting-point,

of different fir'st-order calculi

Herbrand* [Her30]
various many-sorted versions
have been

proposed and investigated by A. Schmidt

[Sch38,Sch51], H. Wang [Wan52], P.C.Gilmore
[Gil58], T. Hailperin [Hai57], A. Oberschelp
[Obe62] and A. V. Idehon [lde64].

The advantages of a many-sorted calculus
are well recognized within the field of
e.g. [Hay71 ,

theorem proving programs

Automated Theorem Proving,
Hen7 2].
are also based on some kind of a many-sorted

Several
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calculus, e.g. [Wey77 ,Cha78 ,BM79](unfortunate-

ly without a sound theoretical foundation).
As a result of this the works cited above
become of practical significance.

Most theorem proving programs are based
on a first-order calculus whose inference
rules are factorization, resolution and
panamadulate on [Rob65, WR73] and whose
formulas in skolemized

We call

(called clauses.) are
conjunctive normal form [Lov78].

such a calculus an RP-cafcufus.

RP-
a many-sorted version of the

In this paper, we shall define the

calculus, i.e.

RP-calculus, and we shall introduce a notion

of E-unsatisfiability of sets of well sorted
clauses, called EE-unsatisfiabifity.
Obviously we are only interested in a many-

sorted calculus which is sound and complete,
but in addition we can ask: Which formulas
do we expect as theorems of the IRP-calculus
compared to those of the RP-calculus? To
facilitate a comparison between both these
calculi, we represent the relations between
the function symbols and the sort symbols
as well as the subsort order by the set Al
i.e. a set

of sort axioms (Sortenaxiome),

of first-order formulas. For a well sorted

formula ¢, as e.g. (i) above, the relativization
3 (Sortenbeschrankung , Relat vierung) of ¢

is the unabbreviated version of ¢,
(ii),

predicate symbols to express the sort of a

as e.g.
where sort symbols are used as unary
variable symbol. Now the relation between
the RP- and the IRP-calculus can be expressed
by the following diagram:

(1)

Q—DSE

(2.2} I

Eyal o

]

5 is LE-unsatisfiable T

(2.1} I

§ g is

A
SUA E-unsatisfiable «—— S

(3}

Here S
well

denotes the extension of a set S of
sorted clauses by all functionally-
reflexive axioms [WR73] and D denotes the
empty clause. |—: denotes a deduction in the
ERP-calculus and |~ stands for a deduction

in the RP-calculus. We assume that the set
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of sort axioms AE is in clausal form and we
A

let S denote the set of all relativizations

in S.

(3) express the

sorted clauses
(1) and
soundness and completeness of the LRP- and

of the well
In the diagram,

the RP-calculus
(2.1) and (2.2)
(Sortensatz), (2.1) is its modclthe.oKe.tic
(2.2)
The Sort-Theorem establishes the connection

respectively. The equivalences

are called the Sort-Theoicm

part and its proof theroretic. pant.

between both calculi and also shows the

advantages we have in using a many-sorted

calculus: We obtain a shorter refutation of

a smaller set of shorter clauses, when

proving s® Is o instead §Eyal |~ o. e
reason is that deductions about sort-relat-
ionships, which are performed explicitly in

the one-sorted calculus, are built into the

inference, mechanism in the many-sorted

calculus.

show the soundness
(1),
as well as the modeltheoretic part of the
Sort-Theorem (2.1),
above diagram is commutative.

In this paper, we shall

and completeness of the ERP-calculus

we show that the
We shall
sorts

i.e.
also
consider term rewriting under because
important aspects of paramodulation are

related to term rewriting.

We shall demonstrate that the ERP-calculus
is only complete if it contains a special
inference rule,

This rule

the so-called weakening
rule. is specific to a many-sorted
calculus, because it cannot be applied if

only one sort is given, and hence in our

formulation the RP-calculus is but a special
case of the IRP-calculus. We also present
unification under sorts

special results about

which are necessitated by the weakening rule.

The practical
in Automated Theorem Proving

application of the IRP-calculus
leads to a
drastic reduction of the search space as
compared to the RP-calculus. This has been
demonstrated by an implementation of the

ERP-calculus in an existing proof procedure
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[BES81,0hI82].
This paper is a shortened version of the

technical report [Wal82a] to which the reader

is referred for the omited proofs.

2. Formal Preliminaries

It is assumed that the reader is familiar
with the basic terminology of resolution
and paramodulation based theorem proving
(e.g. [Lov78]).

The RP-Calculus Let T denote the set of all
well formed terms over the alphabet of
variable.symbols ¥, the alphabet of constant
symbols C and the alphabet of function
symbols F. AT (LIT)
formed atoms (literals) over ®, ¢, F and the
alphabet of predicate symbols P.

is the set of all well

For each literal L, |L] is the atom of L
and L€ denotes L's complement which is
obtained from L by applying (or omiting) the

negation sign not. The clause language C is

the set of all clauses, a is the emply clause.

For a set D of terms, literals or clauses,

vars (D) is defined as the set of all variable

symbols in D. The subscript gx abbreviates
ground, e . (T ri s the set of all ground
terms .

g

When concemed with equality reasoning, we
use E as the syntactic equality sign and
assure E£€ P, st denotes the extension of the
clause set S by all functionally-reflexive
axioms [WR73]. The set of all equality atoms

aTf is defined as aTf = {E{(q ¥)ig,re T}.

9B is the set of all Substitutions and e
denotes the ldentity substitution. The domain
denoted DOM (o},
set of all variable symbols x with ox * x.
The codomaln of ¢, denoted COD(co}, is defined
as o (DOM{c)). We say that two substitutions
@ and A qgxree on a subset V of ¥, denoted

8 = A[V],iff ex = Ax for each x €V.

o f a substitution o, i s the

A (ground) term rewriting system is a set of
directed equations &= {E(qiri) EATgr!i €J}
where J= N . Wedefine =, by q =gt 1£f

E(g r) € R and we use —p to denote the
reduction refation assoclated with R (cf.
[HOBOY) . LR is the Zrans.itive closunre

of —a-

We shall also manipulate ground literals
by a term rewriting system and extend ~2 ir
the obvious way. For a set | of literals,
the term rewriting system R(l) contained In

| is defined as R(I) = IﬂATgr.

Given a variable disjoint set S of clauses
and a clause ¢, § - denotes the existence
of a deduction of C from S, using the in-
ference rules of factorization, resolution
and paramodulation. & l'ﬁ C is a deduction
without paramodulation and $ I-i; Cis a

deduction without resolution. s denotes

gr

the set of all ground Instances of the

clauses in S.

A (possibly infinite) subset | of LITgr is
Interpretation iff for each LEI,
1°¢1. | is Eclosed iff for each L€l and
each K € LITgr, KGI whenever L *R(I) X. |i.
an E-interpretation iff | is E-closed and

E(t t) € I for each t;€Tgr

Let 8 be a set of sort

called an

The zRP-Caleutus
symbols ordered by the subsort order szi-e-
a partial order which is reflexive, anti-

symmetric and transitive. We use 5, ¥4 S, as
such that ther

constant

an abbreviation for: 8, 65>

is no s with By <gB <5 8,e Variable,
and function symbols are associated with a
called the rangesort o
the respective symbol. The sort [t]
is the rangesort of the outermost

of t.

certain sort symbol,
of a
term t

function, constant or variable symbol

All argument positions of a function or pre
are associated with a certain
sort symbol In the
construction of the set Tg of all T-teams
(or well sorted terms) and of the set ATg
(LIT,) of all t-atoms {(L-2iterals) of the
ERP-calculus, only those terms may fill an

dicate symbol
called the domalnsort.

argument position of a function or predicat
symbol, whose sorts are subsorts of the



domainsort given for the respective argu-

ment position. For equality atoms we assert
E(t‘rtZ) GI\TZ iff t1’t2 ET}:

A I-cfause is a finite subset of LITE. The
many-sonted Langudge L; is the set of all I-
clauses, TEgr denotes the set of allvariable
free L-terms. AT LITE

Igr’
defined in a similar way.

are

and L
rgr

gr

Sometimes we use sort symbols alsoc as unary
predicate symbols. Then we assume that s is
the only domainsort of s € % and we define
LIT® (LIT:) as the set of all (I-)literals
in the extended Language c® [£§).

The set A" of all s0nf axioms is the smallest

variable disjoint subset of LE whichsatisfies
(1) I{s(c)) €Ax, if c € ¢ has rangesort s,

{2) {notss1(x1).---.not sk(xk],s{f(x1.“xk)ﬂ
£ A", if £t €F has Sqre-

sorts and has rangesort s,and each

-8 as domain-

xie k has rangesort Sy and

E .
{3) {not 31(x),52[x)} €A™, if Sy ®g S,-
.o , A
The hefativization C of a I-clause C is a
clause in L; and defined as
A
C = {net 51(x1),...,n0t sn(xn)} UC, where
{x1,...,xn}==vars(C) and each X, has range-
s0rt si. A
Fgr a set 5 of I-clauses, 5 abbreviates
{cecglces}.

A f-substifution o is a substitution satis-
fying

[x], for eachx € ¥,
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a L-most general unifier (I-mgu)] of D iff
o is mgu of D and o ESUBE.

A E-substitution u is a weakening substitution
for a set VeV iff y satisfies

{1) CODin) = WY :
(2} v is injective P
(3) [ux] < [x), if x € DOM (u)

and

each V ¢ ¥, WSUB(V) denotes the set of
all weakening substitutions for V. Obviously

¢ EWSUB (V) and WSUB({V} < SUBE.

For

For a {(ground) term rewriting system R we

define the f-reduction relation - assoclated

IR
. _ + .
with R by *rr T g n tTEgr ® TEgr}' —ra is
the transitive closure of *sn R is a [-

. L . +
maximaf term rewriting system iff “p='sg*

Note that in general a I-maximal term re-—

writing system 1s infinite.

If a clause C is a resolvent, paramodulant
or a factor of some I-clauses, then C is a
L-aespfvent, I-panamedufant or L-facton
respectively, provided the mgu used to form
C is a I-mgu and in the case of paramodulat-
the modufant 2L{tenral [Lovi8} is a E-
literal.

If C¢e LE and y € WSUB(V) for some VovarsiC),

then uC is a weakened variant of C. Obvious-

ion,

ly, each I-resoclvent, I-paramodulant, I-
factor and each weakened variant is a I-

clause.

Given a variable disjoint set of I[-clauses
S, 5 P? ¢ denotes the existence of a l—de-
duction of C from §,

i.e, 5 |— C and each

(*) ax € T, and [ox] =
s clause in this deduction is a L-renamed L-
It can be shown that (»} is eguivalent to
o(TE}C:TE. SUBE denotes the set of all %-
substitutions. A I-tenaming substitution v

for a set I of variables,

resolvent, I-paramodulant, I-factor or

= C denotes a I-de-

LR
duction without I-paramodulants and 5 kg€

weakened varlant. S

literals or clauses ;. , y_gequction without T-resolution.
is a renaming substitution for D such that

dencotes the
[vx] =

Given a set of I-clauses S, Szgr
set of all I-ground instances of the [-
clauses in S. An interpretation I £-agfisfdies
a I-ckause C 1ff I satisfies each E-ground
instance o of C, i.e. oCNI #@. I E-
satisfies a set of L-cfauses SIiff I [-
satisfies each clause in S. In this case,

[x] for each x € ©.

For a E-claugse C and a L-substitution o, oC
is called a I-ground instance of C, 1If
aCG.ngr. A set D of I-terms or I-atoms is
t-unifiabfe 1ff D is unifiable with a I-sub-

stitution v. Then o 18 a L-unifier of D.ois Iis
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a E-model of 8 and 8§ is E-satisgqdiable. Ifin
addition I is an E~interpretation, then I
LIE-sat{sfics S, I is a LE-modef of 5 and &
is LE-satisfiable.

Throughout this paper <S,ssh is a partially
ordered set of sort symbols and § stands for

any variable disjoint set of I-clauses.

3. The Weakening Rufe

The following examples should provide some
motivation for our work illustrating the
notions intreduced so far and also demon-
strate that the YRP-calculus is incomplete
without the weakening rule. Essentially
there are two reasons for this incomplete~

ness:

{1} the Unification Theorem [Rob65] docs
not hold in the IRP-calculus,

(2) paramodulation is incomplete in the TRP-

calculus (without the weakening rule).
Example 4.1 Let 8 = {A,B,C,D} with D g B

C “g A and let PeP, dEC
and {u,v,w} c ¥ such that A is the only

fcs A and D «5
domainsort of P, D is the rangesort of d
and w, B is the rangesort of u and C is the
rangesort of v. Now consider the set of I-
{{P{u)l,{ret Plv)TY.
f{p(dyl, fuar P@M

But neither o =

clauses 5§ = S5 is EI-un-

satisfiable, becausec 8 =
Igr

is unsatisfiable. {u-vl nor

1t = {v+u} are r-sybstitutions, i.e. no T-re-

solvent can be derived from the two clauses
in 5. But with the weakening rule, we find

a L-refutation of §:

{(C1y wu. {P{u}} . given
(C2Y ¥v. {not Piv)) , given
{(W1) ww. {P{w)} .
{R2) o .

Wl is a weakened variant wC1 of C1, where

v = {uewl, and R2 is a I-resolvent of C2 and
w1,
Pi{w)}.

because o = {v+w! is a I-mgu of {P(v),

Note that we propose the weakening rule as
an additional inference rule only in order
to isolate the crucial point and to obtain

completeness results. In a preoef procedune
this rule is realized by a modification of
the undif{cation afqonithm, i.e. in our system
[BES81,0h182] the empty clause is derived
from C1 and C2 by a single resolution step

using the substitution 6ey = [u+w,v+w}k.

However this modification of the unification
algorithm only covers applications of the
Un-

fortunately there are cases which cannot be

weakening rule as in the above example.

solved using the modified unification

algorithm:

Lxamp{e 4.2 Let § = {A,B} with B “ A and
let PEPF, {b.l,bz}ct and {x,y,z} €? such
that B is the only domainsort of P, A is the
rangesort of x and y,and B is the rangesort
of b.[,b2 and z. 5 = {{P(b1J}. [E{x y}1,

Inot P(b2)11 is a rE-unsatisfiable set of
{[P(b1)},{E(b1 bz}],

v lnnt P(b2)1} is F-unsatisfiable. We can

L~clauses because SF r -

derive four paramodulants from §, namely
[P{x)} IRy Y, Inot Pix)} and {not
not a T-para-

P{y!?! none
of which is5 a r-clause, i.e.

modulant. But with the weakening rule we

find a ¢-refutation of S:

{C1} {P(b1)} ., given
(C2) ¥x,y. {E(x y}) . given
{C3) inet P(bz)} , given
(wWa) vx,z. {E{x z)!} ,
{P5}) ¥z, {P(z)1 .
(R6} o .

W4 is a weakened variant uC2 of C2, where

u = {y<zl, P5 is a ¥-paramcdulant of C1 and

Wd and R6é is a I-resclivent of P5 and C3.

4. Team Rewnditing undex Soats

We present a result for (ground) term re-
writing under sorts, which is essential for
the completeness of the IRP-calculus in the

ground case:

I-Rewnite Theorem If R is a I-maximal term re-

n (o Tygr) =

then +,

writing system, R
+

IR’

4
Igr

The I-Rewrite Theorem obviously also holds
for R-rewrites of ground literals.



5. Ground Completeness of the IRP-Caleufus

At the I-ground level there is no difference
between resolution and I-resclution. Hence

the main difficulty is in showing the result
for paramcdulation, i.e. to prove a result
which links I-deducticns !Ei to deducticns
I3 from a set of I-ground clauses. To this

effect we need the following definition:
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I-Rewrite Theorem L:LER(M )Kc because R{MO)
is r-maximal by Lemma 5.19 Using Lemma 5.2
we obtain KCEMO, i.e. [X,k5) I:MO contra-

dicting that MD Is an interpretation.

It is easily proved by induction on the

E — *
Igr IP C, that Mo
satisfies each clause C € RPar(s), i.e. we

length n of a deduction §

can prove the following:

Definition 5.1

— E
Par(s) = lrcen:grlsm!C ks Ct ,
_ E
Parr(SJ-—{C Eczgr'szgr lEE ct , and
_ E
RPAR(S) = {C € r.grlsEgr FP C, such that no

clause in k; is obtained by para-

modulating into a positive

equality literall.

As a prereqguisite for the proof of the
Ground Completeness Theorem we show that
if ParF(S) is satisfiable, then RPar(8) is

satisfiable. As a first result we obtain:

Lemma 5.7 If ParE(S) is satisfiable, then
it has a model Mot:LITEgr, such that R(Mo)

is a T-maximal term rewriting system.

The above model MO is E-closed, relative to

+ . ‘
_*ER(MO}' i.e. we can prove the following:

Lemma 5.2 If I.EMO and K€ LITgr such that

+
L _-_'L'R(MO) K, then KEMU.

Now let the #ewnite-closure MB of M, be My
extended by all ground literals which are
obtained by rewriting the ground literals
in Mo[which are different from eguality
atoms) using the reductiocn relation i;RtM )
Using the above lemmata, we can prove e
that the rewrite-closure is always an Iinter-

pretation:

Lemma 5,3 If ParE(S} is satisfiable, then
it has a model MQ-::LITE s such that M; is

an interpretation,

gr

If we assume by contradiction that MB con~-
tains a pair of ground literals Q and Qc,
then we can find a pair of I-groundliterals
L and K in M, such that L -5 €. But

. Rim_y K
K ELIngr since KeLIT}:gr' hence by the

Lemma 5.4 If Par (5} is satisfiable, then
it has a model Mo such that M; is a model
of RPar(g8).

and we finally obtain the

Grnound Compfeteness Theonem for IRP If

. . E
is E-unsatisfiable, then S:gr FE o,

szgr

If 8

fgr is E-unsatisfiable, then Par(S) is
E-unsatisfiable because 5

Igr < Par({S). By
Theorem 1 from [WR73) we infer that Par(5)
is unsatisfiable, hence RPar(5) is unsatis-
fiable [Lov78] and by c¢ontraposition of
Lemma 5.4 Parz(S) is unsatisflable, But then
s?gr
[Rob65], because there is no difference

IE-D by the completeness of resolution

between resclution and I-resolution in the
L-ground case and each clause in Parr(S}
can be obtained by a F-deduction | from

E
Szgr‘

533

6. Undification under Sonts

Since the Unification Theorem does not
hold for unification under sorts, we must
content ourselves with a weaker result. For
unificaticon under scorts, the notion of I-

compatibi{fity plays a central role:

Definition 6.! Let DcT, be unifiable.Dis
T-compatibfe iff [x]‘%[y] or [x] as[y] for

all x,y € vars(D) with 1x = 1y, where 1 isg

an mgu of D.

We can show that each I-unjifiable set of I-

compatible I-terms possesses a I-mgu:

Lemma &6.1 Let D::Tz be I-unifiable. If D

is I-compatible, then there exists a I-mgu

cf D.
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This is proved by showing that ameng the
mgu's of D (which are eguivalent up to
variable renamings), we can always find a

I=mgu of D.

For arbitrary sets of I-unifiable r~-terms,
we enforce the existence of a I-mgu using

a weakening substitution:

I-Undfication Theohem Given DeT,, Veb
and O ESUBz with vars{D) € V and ¢ unifies
D, there exist u,o,X ESUBE such that

(1) 4 €EWSUB(V) R
{(2) o is an mgu of wD ., and
{3) 8 = dogop[V] .

that for each f-uni-

fiable set of I-terms D, there exists some
w € WSUB(V) such that uD is still
and in addition is I-compatible.

It is easily proved,

t-unifiable
By Lemma
6.1 there exists a £-mgu o of uD and since
0 i5 an mgu we find some X €SUBE such that
condition {3} is satisfied.

Note that the I-Unification Thecrem ob-
vicusly alsco holds for I-unifiable sets of

I-atoms.
7. Soundness and Compfetencss of the sRP-
Cafcufus

The soundness of the IRP-calculus is an

immediate conseguence of the following:

Soundness Lemma gon IRP Let M be an E-
interpretation and C GLE. If M r-satisfies

S and § IE

C, then M I-satisfies C.

The completeness theorem is shown as usual
for the one-sorted calculus: We prove the
Lifting Lemmata for I-Resolution and for -
Paramodulation in order to justify the

Lifting Theorem for I-Deductions.

Lewma 7.7 (Lifting Lemma for I-Resclution)
Glven A,BE LE‘ LAEA, LBE B and © ESUBE
such that A and B share no variable symbols,
LA and LB are complementary and 0 unifies
Ly, ILBI}. there exist a I-factor A* of
a weakened variant of A, a I-factor B* of a
weakened variant of B, a pair of camplamentary

literals Li € A* and LE € B*, weakened

variants pA* and pB* and some X ,¢ ESUBE
such that

RES(BA,GLA,BB,BLB.E} = A Rﬁ(pﬂ*,pLR,pB',pI%,c] .

The proof is similar tc the proof of the
Lifting Lemma in the RP-calculus. The exigtence
of the various weakened variants is guaran-

teed by the I-Unification Theorem.

With an analogous Lijfting lLemma for E-Fara-
modufation, we can prove the L{fting Theonem
fon I-Peductivns as in the one-sorted
calculus and using the Ground Completeness

Theorem for IRP, we finally obtain the

Compfeteness Theonem fon IRP If S is FE-

then SE

unsatisfiable, IE o.

§. The Soat-Theoxrem

In this section the Sort-Theorem for the
IRP-calculus is stated. We need the follo-

wing two lemmatac:

A
Lemma §.1 If M is an E-model of (5 U AE]gr‘

then M E-satisfies ngr.

This lemma is used to prove one direction of
the equivalence stated in the Sort-Thecrem.
The reverse direction is obtained with more

difficulty:

is E-satisfiable, then

T igr
(g U A ]gr is E-satisfiable.

Lemma §.2 If 8

We obtain an E-model M* of (g U Az)gr from
an E-model M c LIT of szgr by setting

M =(M U [M]) U (M U [M])®, where the hennel
[M] of M is the set of all literals of form
si{t), tETgr and s € §,
ag ETEgr with [g)] z s and E(g t) € M, and
the $-complement (M U |MDC of (M u [M]) is
the set of all literals of the form not sit],
t€T. _and s€§, with s(t) € M U [M]). It

gr
can be proved that M* is an E-interpretation

for which there exists

{whenever M is an E-interpretation with

M A LITgr = @), and that M* satisfies
A L
(S v afy_,.

The connection between the RP- and the IRP-
calculus is now established by the



Sorl-Theorem fon the ERP-Cafeufus S is LE-
A

unsatisfiable iff (S u AE] is E-unsatis-

fiable.

S is LE-unsatisfiable iff Sy r is E-unsatis=-
fiable whlch is equivalent to the Ehunsatisfiability
of (S U A ) by uannata 10.1 and 10.2. But (S u A )
is E—unsatlsflable iff (S u A } is E-unsatisfiable

by the Herbrand Theoram and by the Compactness Theorem.

9. An Automatfed Theoxem Proven fon the IRP-
Caleulus

In [WalB2al a survey is presented of how an

MARKGRAY KARL REFUTATION PROCEDURE,

DATE: 2-NOV-H2 16:46:27

»
»
Y
L3
E]
L]
[

AXIGHS GIVEN 10 THE THEOREM PROVER:
SORT ANIMAL,TALL:IN.ROOM
TYPE BANANA,FLOOR:IN,ROOHA
TYPE CHAIK:TALL
TYPE MONKEY:ANIMAL
TYPE CAN.REACH{ANIMAL IN,RGOM)
TYvrE CLOSE.TO(IN.ROOm IN,ROOM)
TYFE ON{IN.ROOM IN.ROOM}
TYPE UNDER{IN,RCOOM IN.KOOM)
TYPE
TYPE CAN.CLIMB{ANIMAL TALL)
AXM]1 :
AXMZ =

OF CLOSE.T0{X BANANA}

AXM3

AARRAANAXRNAECAREMAARANRANEAERAAAARREARAARARARAARERANEAANANRNANAKAARARARRAARRARRARARTARN

ALL X:ANIMAL Y:In,ROOM NOT CLOSE.TO(X Y)
ALL X:zANIMAL Y:TALL NOT QWX ¥Y)
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automated theorem prover based on the RP-
calculus can be modified to obtain an auto-
mated theorem prover for the IRP-calculus.
The necessary modifications concern the 4n-
put-£anquage compiler, the skofemization
routine, the unifi{cation algorithm, and the
r cemputation of factors, resclvents and para-
modulants. The Markgraf Karl Refutation
Procedure [BES81,0hl182) was adapted to the
IRP-calculus according to the modifications
stated above. Below a proof protocel of the new
system is presented, proving a many~sortes version
of the well-known monhey-banana-probfem [Lov781:

ERAAREEN R A KA AARAAE AR A A A A AN A AAERAREAANAE R A AN AARR KA AR AR AN AARE N ANENANEIARAERANARA NN NRAS

UNI KARLSRUHE, VERSION 12=-0Ci-82

CAN,MOVE. NEAK{ANIMAL IN.ROUM IN.ROOM}

OR  CAN.REACH{X Y}

OR NOT UNDER(Y BANANA)

ALL X:ANIMAL Y:IN.ROOM 2:IN,ROOM NOT CAN.MOVE.NEAR(X Y Z)

OR CLOSE.TO(Z FLOOR) OR UNDER(Y Z)

AXM4E
AXMS
AXMb
AXM7?

NOT CLOSE.TO(BANANA FLOOR)
CAN,CLIMB(MONKEY CHAIR)

THEQREM GIVEN TO THE THEOREM PROVER:

ALL X:ANIMAL Y:TALL NOT CAN.CLIMB{X Y)
CAN.MOVE,NEAR (MORKEY CHAIR UBANANA)

OR  ON(X Y}

ALL X:ANIMAL Y:TALL Z:ANIMAL CLOSE.TO(X BANANA)

OR NOT ON{X CHAIR)
OR  NOT ON{X CHAIR)

OR CAN.REACH(X BANANA}

THME : NOT CAN.REACH(MONKEY BANANA)

AXM2 + AXM3 --> RES]
OR NOT ON{X Y) OR CLOSE.TO(BANANA FLOOR)
OR NOT CAN.MOVE.NEAR{Z Y BANANA)

RES]1 + AXM5 --> RESZ : ALL X:ANIMAL CLOSE.TO{(BANANA FLOOR}
OR CLOSE.TO({X BANANA)

AXM] + RESZ --> RES3 : ALL X:ANIMAL CAN.REACH(X BANANA)}
OR CLOSE,TO(BANANA FLOOR)

AXM6 + RES3 --> RES54 : ALL X:ANIMAL NOT ON(X CHAIR)

THMB + RES4 -—> RES5 ;3 NOT ON({MOHKEY CHAIR)

RESS5 + AXM4 =--> RES6 : NOT CAN.CLIMB(MONKEY CHAIR)

RESE + AXM? --> RES7 : EMPTY

THE FOLLOWING CLAUSES WERE USED IN THE PROOF:
AXM7 AXM4d AXMS AXM3 AXM2 RES]1 RES52 AXM] RES3 AXM6 RES4 THM8 RESS5 RESS RES7 .

THE THEOREM IS PROVED.

END OF PROOF 2-ROV-82 16:47:22.
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In our system, we use the expressions (cf.

[Wal82hl)

SORT Bireses8 38 to denote sy «g 8
TYPE Cpees-1C 8 to denote that <y €C
has rangesort s ’
TYPE 9(51 . ..sn} to denote that P€P
has the domainsorts S1sr.-r8
ALL x:8

quantification of a variable symbol x

and
n !

to denote the universal

wlth rangesort s.

CPU~SECONDS USED: 3.32

NUMBER OF STEPS EXECUTED: 7

NUMSER OF LINKS GENERATED: 22

NUMBER OF LINKS IN INITIAL GRAPH: &

NUMBER OF CLAUSES GENERATED: 15

INITIAL CLAUSES: 8

RESOLVENTS: 7

FACTORS: 8

NUMBER OF LITERALS GENERATED: 29

IN INITIAL CLAUSES: 14

IN DEDUCED CLAUSES: 14

LEVEL OF PROOF: 1

NUMBER OF CLAUSES IN PROOF: 15
G=-PENETRANCE: 1.08 .86
D~PENETRANCE: 1.89 B.75

The first column lists the statistical
values for the proof using the many-sorted
calculus,the second column lists the values
for the one-sorted calculus and the third
column shows the ratio between the values

of both example runs.

In the proof statistics, the value for

'number of links generated' corresponds to
the size of the search space,the value for
snumber of steps executed' is a measure of
the expense of the actual search and 'level

of proof represents the search depth.

The comparison between the statistical
values of both protocols immediately reveals
the advantages of using an automated theorem
prover based on the ZRP-calculus. The values
are typical for all examples (and of course
for more complex ones) that have been proved

by this system.

The system also sclved the monkey-banana -
problem, using the one-sorted axiomatizat-
ion from [Lov78]. The following diagram

shows the proof statistics of both examples

runs:

11.38 29 %
16 44 3
99 22 &%
23 35 %
29 52 %
13

12

4

75 37 %
24

51 ’

12 58 %
25 6¢ %

{#CLAUSES IN PROOF / §CLAUSES GENERATED)
(#DEDUCED CLAUSES IN PROOF / #CLAUSES DEDUCED)
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