
A MANY-SORTED CALCULUS BASED ON RESOLUTION AND PARAMODULATION 

Chr i s toph Walther 

I n s t i t u t f u r I n f o r m a t i k I , U n i v e r s i t a t Kar l s ruhe 

Abstract The f i rst-order calculus whose well 
formed formulas are clauses and whose sole inference 
rules are factor izat ion, resolution and paramodulat-
ion is extended to a many-sorted calculus. As a basis 
for Automated Theorem Proving, this many-sorted 
calculus leads to a remarkable reduction of the 
search space and also to simpler proofs. The sound­
ness and completeness of the new calculus and the 
Sort-Theorem, which relates the many-sorted calculus 
to i t s one-sorted counterpart, are shown. In addition 
results about term rewrit ing and uni f icat ion in a 
many-sorted calculus are obtained. Practical examples 
and a proof protocol of an automated theorem prover 
based on the many-sorted calculus are presented. 

7. Introduction 

Sor ts are f r e q u e n t l y used i n p r a c t i c a l 
a p p l i c a t i o n s o f the f i r s t - o r d e r p r e d i c a t e 
c a l c u l u s . For example we w r i t e formulas l i k e 

( i ) 

and t r e a t them formally as abbreviation* f o r 

( i i ) ). 

We use we.ll sorted formulas because they 
p rov ide a convenient shor thand n o t a t i o n f o r 
o r d i n a r y f i r s t - o r d e r fo rmu las . But s o r t s 
a l so inflence, the, deduction* from a g i ven 
se t o f w e l l so r ted fo rmu las . For i n s t a n c e , 
i f P is a p r e d i c a t e on ly de f i ned on the s o r t 
% of i n t e g e r s , we w i l l never per form a 
deduc t ion l i k e . Proofs 
are s i m p l i f i e d , because a many -sorted 
ca l cu l us is more adapted to a many - sorted 
theory and hence not s u r p r i s i n g l y deduction* 
which respects sorts as w e l l as the usage of 
wel l borted formulas r e f l e c t the everyday 
usage o f p r e d i c a t e l o g i c . 

Let us sketch how a many-sorted (mehrsort ig) 
c a l c u l u s is developed from a g iven (sound 
and complete) f i r s t - o r d e r one-sor ted ( e i n -
s o r t i g ) c a l c u l u s : Assume we have a se t of 
sort symbols, ordered by a g iven subsort 
order. V a r i a b l e and f u n c t i o n symbols (of 
our g i ven ca l cu lus ) are assoc ia ted w i t h a 
c e r t a i n s o r t symbol. The sor t of a term is 
determined by the s o r t o f i t s outermost 
symbol. In the c o n s t r u c t i o n o f we l l Sor ted 
( so r ten rech t ) f o rmu las , we on ly a l l ow w e l l 
so r ted terms of a c e r t a i n domainsort or of 
a subsort of t h i s domainsort f o r each a rgu ­
ment p o s i t i o n of a f u n c t i o n or p r e d i c a t e 
symbol . 

The inference rule* of the many-sorted 
c a l c u l u s are the i n f e r e n c e r u l e s o f the 
g i ven c a l c u l u s , but w i t h the r e s t r i c t i o n 
t h a t only well *orted formula* can be 
deduced by an a p p l i c a t i o n of the r e s t r i c t e d 
i n f e r e n c e r u l e s . S t a r t i n g w i t h w e l l so r ted 
formulas t h i s guarantees t h a t on ly w e l l 
so r ted formulas are de r i ved in a deduc t ion 
i n the many-sorted c a l c u l u s . 

Taking J. Herbrand* t h e s i s [Her30] as the 
s t a r t i n g - p o i n t , va r i ous many-sorted ve rs ions 
o f d i f f e r e n t f i r ' s t - o r d e r c a l c u l i have been 
proposed and i n v e s t i g a t e d by A. Schmidt 
[Sch38,Sch51] , H. Wang [Wan52], P.C.Gilmore 
[ G i l 5 8 ] , T. Hailperin [ H a i 5 7 ] , A. Oberschelp 
[Obe62] and A. V. Idehon [ I d e 6 4 ] . 

The advantages of a many-sor ted ca l cu l us 
are w e l l recogn ized w i t h i n the f i e l d o f 
Automated Theorem Proving, e . g . [Hay71 , 
Hen7 2 ] . Severa l theorem p rov ing programs 
are a l so based on some k i n d of a many-sor ted 
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c a l c u l u s , e . g . [Wey77 ,Cha78 ,BM79](unfortunate­
ly w i t h o u t a sound t h e o r e t i c a l f o u n d a t i o n ) . 
As a r e s u l t of t h i s the works c i t e d above 
become o f p r a c t i c a l s i g n i f i c a n c e . 

Most theorem p rov ing programs are based 
on a f i r s t - o r d e r c a l c u l u s whose i n f e r e n c e 
r u l e s are factor izat ion, resolut ion and 
panamadulate on [Rob65, WR73] and whose 
formulas ( c a l l e d clauses.) are in skolemized 
c o n j u n c t i v e normal form [Lov78 ] . We c a l l 
such a c a l c u l u s an 

In t h i s paper , we s h a l l d e f i n e the RP-
c a l c u l u s , i . e . a many-sor ted v e r s i o n o f the 
RP-ca l cu lus , and we s h a l l i n t r o d u c e a n o t i o n 
o f E - u n s a t i s f i a b i l i t y o f se ts o f w e l l so r ted 
c l auses , c a l l e d 

Obvious ly we are on ly i n t e r e s t e d in a many-
so r ted c a l c u l u s which is sound and comple te , 
but in a d d i t i o n we can ask: Which formulas 
do we expect as theorems of the 
compared to those of the RP-calcu lus? To 
f a c i l i t a t e a comparison between both these 
c a l c u l i , we represent the r e l a t i o n s between 
the f u n c t i o n symbols and the s o r t symbols 
as w e l l as the subsor t o rder by the se t 
of sor t axioms (Sor tenax iome) , i . e . a se t 
o f f i r s t - o r d e r f o rmu las . For a w e l l s o r t e d 
fo rmula , as e . g . ( i ) above, the relat ivization 

(Sortenbeschrankung , Relat v ie rung) of 
is the unabbrev ia ted v e r s i o n of , as e . g . 
( i i ) , where s o r t symbols are used as unary 
p r e d i c a t e symbols to express the s o r t of a 
v a r i a b l e symbol . Now the r e l a t i o n between 
the RP- and the - c a l c u l u s can be expressed 
by the f o l l o w i n g d iagram: 

Here S denotes the ex tens ion of a se t S of 
w e l l s o r t e d c lauses b y a l l f u n c t i o n a l l y -
r e f l e x i v e axioms and D denotes the 
empty c l ause . denotes a deduc t ion in the 
ERP-calculus and stands f o r a deduc t ion 
in the RP-ca l cu lus . We assume t h a t the se t 

of s o r t axioms is in c l a u s a l form and we 
A 

l e t S denote the se t o f a l l r e l a t i v i z a t i o n s 
o f the w e l l so r t ed c lauses in S . 
In the d iagram, (1) and (3) express the 
soundness and completeness of the 
the RP-ca lcu lus r e s p e c t i v e l y . The equivalences 
(2.1) and (2.2) are c a l l e d the Sort-Theoicm 
(Sor tensa tz ) , (2.1) i s i t s m o d c l t h e . o K e . t i c 
p a r t and (2.2) i t s p roo f the ro re t i c . pant . 
The Sort-Theorem e s t a b l i s h e s the connec t ion 
between both c a l c u l i and a l so shows the 
advantages we have in us ing a many-sor ted 
c a l c u l u s : We o b t a i n a shorter r e f u t a t i o n of 
a smaller se t of shorter c l a u s e s , when 
p rov ing i n s t e a d o f T h e 
reason i s t h a t deduc t ions about s o r t - r e l a t ­
i o n s h i p s , which are performed e x p l i c i t l y i n 
the one-so r ted c a l c u l u s , are b u i l t i n t o the 
in ference, mechanism in the many-sor ted 
c a l c u l u s . 

In t h i s paper, we s h a l l show the soundness 
and completeness of the ERP-calculus ( 1 ) , 
as w e l l as the m o d e l t h e o r e t i c p a r t of the 
Sort-Theorem ( 2 . 1 ) , i . e . we show t h a t the 
above diagram is commutat ive. We s h a l l a l so 
cons ider term rewriting under sorts because 
impo r t an t aspects o f paramodula t ion are 
r e l a t e d t o term r e w r i t i n g . 

We s h a l l demonstrate t h a t the ERP-calculus 
i s on ly complete i f i t con ta ins a s p e c i a l 
i n f e r e n c e r u l e , the s o - c a l l e d weakening 
ru le . Th is r u l e i s s p e c i f i c to a many-sorted 
c a l c u l u s , because i t cannot b e a p p l i e d i f 
on ly one s o r t i s g i v e n , and hence in our 
f o r m u l a t i o n the RP-ca lcu lus i s but a s p e c i a l 
case of the We a l so present 
s p e c i a l r e s u l t s about u n i f i c a t i o n under so r ts 
which are n e c e s s i t a t e d by the weakening r u l e . 

The p r a c t i c a l a p p l i c a t i o n o f the - c a l c u l u s 
in Automated Theorem Prov ing leads to a 
drastic r e d u c t i o n of the search space as 
compared to the RP-ca l cu lus . Th is has been 
demonstrated by an imp lementa t ion of the 
ERP-calculus in an e x i s t i n g proof procedure 
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[BES81,Ohl82]. 
This paper is a shortened version of the 
technical report [Wal82a] to which the reader 
i s r e f e r r e d f o r the omi ted p r o o f s . 

2. Formal Preliminaries 

It is assumed that the reader is familiar 
with the basic terminology of resolution 
and paramodulation based theorem proving 
(e.g. [Lov78]). 

The RP-Calculus Let T denote the set of a l l 
well formed terms over the alphabet of 
variable. the alphabet of constant 
symbols C and the alphabet of function 
symbols F. AT (LIT) is the set of a l l well 
formed atoms ( l i tera ls) over and the 
alphabet of predicate symbols P. 

For each l i tera l L, is the atom of L 
and denotes L's complement which is 
obtained from L by applying (or omiting) the 
negation sign not. The clause language C is 
the set of a l l clauses, a is the empty clause. 

For a set D of terms, l i terals or clauses, 
vars (D) is defined as the set of a l l variable 

symbols in D. The subscript abbreviates 
ground, e . g . i s the set of a l l ground 
terms . 

When concerned with equality reasoning, we 
use E as the syntactic equality sign and 
assume denotes the extension of the 
clause set S by a l l functionally-reflexive 
axioms The set of a l l equality atoms 

is defined as 

SUB is the set of a l l Substitutions and e 
denotes the Identity substitution. The domain 
o f a substitution denoted : , i s the 
set of a l l variable symbols x with 
The codomaln of denoted is defined 
as We say that two substitutions 

denoted 

A (ground) term rewriting system is a set of 
directed equations 
where We define 

We shall also manipulate ground literals 
by a term rewriting system and extend ir 
the obvious way. For a set I of l i terals, 
the term rewriting system R(I) contained In 
I is defined as 

Given a variable disjoint set S of clauses 
and a clause denotes the existence 
of a deduction of C from S, using the in­
ference rules of factorization, resolution 
and paramodulation. is a deduction 
without paramodulation and is a 
deduction without resolution. denotes 
the set of a l l ground Instances of the 
clauses in S. 

A (possibly infinite) subset I of is 
called an Interpretation i f f for each LEI, 

. I is E-closed i f f for each L € I and 
each KGI whenever . I i. 
an E-interpretation i f f I is E-closed and 

for each 

The Let be a set of sort 
symbols ordered by the subsort order 
a p a r t i a l o rder which i s r e f l e x i v e , a n t i ­
symmetr ic and t r a n s i t i v e . We use as 
an a b b r e v i a t i o n f o r : such t h a t t h e r 
is no s w i t h V a r i a b l e , constant 
and f u n c t i o n symbols are assoc ia ted w i t h a 
c e r t a i n s o r t symbol , c a l l e d the rangeso r t o 
the r e s p e c t i v e symbol . The s o r t [ t ] o f a 
term t is the rangeso r t o f the outermost 
f u n c t i o n , cons tan t o r v a r i a b l e symbol o f t . 

A l l argument p o s i t i o n s o f a f u n c t i o n or pre 
d i c a t e symbol are assoc ia ted w i t h a c e r t a i n 
s o r t symbol c a l l e d the domalnsor t . I n the 
c o n s t r u c t i o n o f the s e t o f a l l 
(or well sorted terms) and of the set 

of a l l of the 
, only those terms may f i l l an 

argument position of a function or predicat 
symbol, whose sorts are subsorts of the 
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The f i r s t column l i s t s the s t a t i s t i c a l 
va lues f o r the proof us ing the many-sorted 
c a l c u l u s , t h e second column l i s t s the values 
f o r the one-sor ted ca l cu lus and the t h i r d 
column shows the r a t i o between the values 
of both example runs . 

I n the proof s t a t i s t i c s , the va lue f o r 
'number of l i n k s genera ted ' corresponds to 
the s i ze o f the search space, the va lue f o r 
•number of steps executed ' is a measure of 
the expense of the a c t u a l search and ' l e v e l 
o f p r o o f represents the search dep th . 

The comparison between the s t a t i s t i c a l 
values of both p ro toco l s immediate ly revea ls 
the advantages of us ing an automated theorem 
prover based on the ZRP-calcu lus. The values 
are t y p i c a l f o r a l l examples (and o f course 
f o r more complex ones) t h a t have been proved 
by t h i s system. 
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