USNG EXAVPLES TO GENERATE INSTANTIATIONS OF SET VARIABLES

W. W. Bledsoe
Department of Mathematics and Computer Science
The University of Texas at Austin
Austin, Texas 78712, USA

ABSTRACT

Examples play a crucial role in automated theorem proving, not only as counterexamples
to help prune unproductive subgoals, but also to help guide proof discovery. In this paper
we show how examples (interpretations) might be used to help determine Instantiations of
set variables. We also discuss the role of piecewise-linear continuous functions, and give

some results of computer runs using these methods.

I INTRODUCTION

This is part of an effort to use examples
(Interpretations) to help in automatic proof dis-
covery [1], We believe that examples are not only
useful as "counterexample sieves", to prune the
proof-search tree, but also can be used to help
guide the search. Ore way this is done, is in
finding instantiations of variables. See [1,
Section 2]. Here we show how examples might be
used to help instantiate set variables.

Ore reason that examples are so valuable in
theorem proving is that they allow us to calcu-
late, as opposed to prove. And since calculating
is usually easier than proving, this gives an
advantage. But of course the results from
examples are less general, so the attack has to
be balanced - with some calculation and some
proving.

Let us start with the following problem:
Given a continuous function f on [a,b], with
maximum value at x = |

\\.
L

\l\\
N

N4 Ny, -

o find a subset A of {a,b] for which R = sup A.
Jescribe A 1In general terms, in terms of f, a,
7» Euf.,

A= {xc{abli Vy<xf(y) s f(x!}
We desize to generate such an A auto-
iatically, How? Why? Motivation for this ex-

mple: If we wish to prove the theorem that

iMl  "Each continuous functior on a closed

'—ﬁt
AM1 Wf[f s continuous on [a,b] A a

interval, attains its maxmum on that
interval,"

using the least upper bound axiom

LUB "Every non-empty, bounded, set A has a
least upper bound, sup A",

then we must have a value of A (i.e., a descrip-
tion of A in terms of f, a, b), before we can
utilize LUB in the proof.

Once A has been given, the theorem will
have been reduced to a theorem in first order
logic about general inequalities.

More generally, when we are trying to prove
a theorem of the form

(1) YelH(f) + I e [a,b] P(F,0)]

using the LUB axiom to produce a set A for which
|- sup A, then (1) can be written

(2) WE{H(f) » Ja& [a,p] F(f,sup A)],
(a higher order theorem)

which is equivalent to

(3) we[u{f) ~ 30 r{f,sup{x € [a,b] Q(x) )]

E.g.,
H(f)

1
b

= 3t e la,b] ¥x e [ab] {(£(x) £ (¢N]
.
P{f, 1)

€8,



H(E)

\
Mv YE[f is continuous on [a,b] o a 5 b
afi{a) <0 & £(b) 20
+ 3% ¢ [a,b] £(2) = 0O
ki
If we further assume that f&ffadéh f sat-

isfying H(f), there is a largest | in [a,b]
for which (1) holds, then (3) is equivalent to

(4) WI[H(E) + 3Q(L = sup{x € [a,b]: Q(x)}
AVLY £ [a,2) Fx e (2',08(x)
A¥x & (4,b] ~ Q(x)

AP{f,2))]

So our objective is to prove

=

(4)  WEH{(E) ~ 3Q(2 = sup {x £ [a,b]: Q{x)}
AL £ [a, ) Ix e (27,0) o)
Andx £ (R,p] Q(x)
AP(f,2))]

This has the general form

(5) WE(H(E) ~ Jq: v(Q,f)].

So for this form of theorems our problem is:

Given Hand ¥

Generate Q for which (5) holds. How? We pro-
pose to do this (automatically) by using inter-
pretations (examples) f of f (and interpre-
tations of the other function and predicate
symbols appearing in H and #}.

We will first state our problem in a more
general setting and then (in Section 4) return to
the forms (5) and (4) as special cases.

I1  GENERATING PREDICATES

Suppose that P is a list of uninterpteted
function symbols and predicate symbols {which
does not contatn the symbol Q). Let L= { A\
o, ¥, 3 ,5,<,%}, [Ew® {5 <}, and let H and ¢
be functions over the symbols of P UL U {Q}. By
an interpretation of P we mean & list of inter-
pretations of its members. For example, if P is
{a,b,2,f} , then P 1 {z,b,%,8} , vhere a, b, £,

,couldbea=0, 6=1, T=1/2, f =ax(2x - 1),
for example.

W. Bledsoe 893

Now suppose that we are to prove a theorem of the
form

(6) YPIu(P) + Q¢ (P, 1.

The object then is to find (generate) a Q which
satisfies (6).

We propose the following general method for finding

(i) Obtain an interpretation P of P which
satisfied H(P)

(ii)  Generate a predicate Q, in terms of P,
which satisfies

w(P,
(iii) Test Q on other P's,

(iv) Prove (6) using the Q so obtained.

Of course, finding Q is equivalent to proving a
theorem in higher order logic, which requires the
higher order variable Q to be instantiated. The
central idea is this: _if a Q can be found which
satisfies ¥(P,Q) for P's (which satisfy B(®), then
hopefully that Q will also satisfy p{P,Q), We
will indeed see that that is the case for some
special instances given in Section 4 below.

We will defer discussion of Step (i), the
fabrication of P, until Section 3 (a subroutine,
INSTANTIATIONS, does this), and concentrate now
on (ii), the generation of Q for which y(P,@
holds. Step (iii) is rather straightforward, and
Step (iv) is not within the scope of this paper®.

So let there be given an interpretation P
satisfying H(P). We desire an algorithm GENERATE
which will generate a Q satisfying y(®,q). Of
?_ourcsje |guch a Q mey not be unique (even for a
ixe .

If the algorithm GENERAIE is indeed to gen-
erate such a Q, then it must use an association
between the members of P and those of P. Because,
Q is to be given in terms of the symbols in P, not
p, and it must satisfy the condition y(®,q>where
Eavte.ry PFin P has been replaced by an interpre-
ation P.

It is not obvious how to build such an algo-
rithm GENERATE, but somehow it should key on the
structure of iii. The following, GENERATE, is a
first attempt at such an algorithm. It is built
on several additional assumptions, given below,

*It is often the case, as in the examples of
Section 4, that once an instantiation Q of Q has
been given, the resulting theorem VP[H(P)-ij)(P,Q) ]
is first order. And while it still may not be easy
to prove it, nevertheless, lends itself to standard
procedures*



894 W. Bledsoe

about P and . (The symbol "Q": in the following
algorithms will always represent the predicate we
are looking for - i.e., trying to generate.)

We will assume that complete typing* informa-
tion is available on ¢, Q, and members of P.
Thus, for example, Q might be a predicate over
the reals, so that each x € R, Q{x) s either
true or false. (E.g., Q{x) = £f{x) £ 0).

For our first version we will assume that Q
is a function of one real variable x. (In general
we might restrict Q to a function on R")

We will start with a call to
GENRRATE(n, B, ¥, 'x},

with n=1, and where 8 =P x P and 'x is the argu-
ment of Q. B is treated as a set of bindings,
tying members of P to those of P. (l.e., 8 is a
substitution). B will be expanded as new vari-
ables and their instantiations are added. If A
is a formula then AB is used to denote the result
of applying the substitution B to A.

The integer n is the number of variables
used in the description of @, If n=1, then Q is
expressed only in terms of x, e.g., 0 5 f(x); |if
n=2 then Q is expressed in terms of x and v,
e.g., ¥y € [a,x) f(y) £ £(x); ete. (Note: The
parameter n counts both bound and free variables.)

The first call to GENERAIE is made with n=I.
If this fails (returns NIL), then n is increased
by 1 and a new call made to GENERATE, etc., up
to a maxmum allowable value for n.

(Before presenting the algorithms GENERATE,
TALLY and ALL-SOME, let us try to help the reader
by pointing out that we are looking for statements
that can be deduced from a given example, function
f, that might hold for the whole interval [a,b] or
for a part of it; that the method works by looking
at the critical points of the example function;
that GENERATE, TALLY, and ALL-SOME, return families
of conditions that are true on the subintervals;
that these families of conditions are combined in
appropriate ways to give candidates for the Q that
we are looking for; and finally that this combining
action is governed by the structure of the formula

containing Q.)

GENERATE(n, B, ¥, x}
The objective is to find a Q for which ¥{P,@

PIP is true, x is a variable. It starts as 'x,
the argument of Q.

Fom of ¢ ACTION

1. t{)l ALY,

Put Q1 = CENERATE(n, B, tl'-'l, x}

*See, for example, Peter B. Andrews, "Resolution
in Type Theory", J. Sym. Logic 36 (1971), 414-

Q, = GENERATE(n, B, ¥y» x)
Return (Ql n Qz)
{Each of Ql and Qz is a set of formulas).
Note: altermatively we might generate Q, and

verify it in u.iz {or generate 02 afid-verify
it in wl).

. Yhv,
Put Q, = GENERATE(n, B, V¥, x)
Q, = GENERATE(R, B, wz, X}
Return (Ql U QZJ
3. ¥wx' ¢ [a,b]*P(x',Q)

Select randomlyt points K aee X from [a,b],
including the endpoints.

Put Bi =8 U{(x', xi)}

Q, = GENERATE{n, B, P("i'QJ’ x),

1
1=1, 2, viuy k

f n n
Return Q1 Q2 ven Qk

4, Ix’ € {a,bl*P(x",qQ)

Select randomly, points X,, ..., x from
[a,b], Including the endpoints.

Put Bi =B U (x',xi}
Q, = GENERATE(n, B, P(x,,Q),x),
1=1,2, sou, k

Return Ql U Q2 Uaaa d 2

*Similarly for open and half open intervals (a,b),
[a,b), (a,b]. In these cases the open endpoints
are not selected for x, but "nearby" points are
selected (see Section 3.5).

The number k used here is a parameter supplied
by the user. See Section 3.5 below for an alter-
nate way of selecting the x1 when f is a piece-
wise linear continuous function.



5. =~
Put Q' = GENERATE (n, B, ¢, x}
Return ~Q'*

6. QURI**
Put B =B U {{(x,0}

x-1ist = {x}, Xx-list = {x}

If n= 1, return TALLY (B, x-list, %-1list, x)
Else return ALL-SOME(n, B, x-list, %-1list, x)
TALLY (B, x-list, x-list, x')

Pis a set of predicate and function symbols,

is a set of interpretations for members of P,
x-1ist 1s a set of variables (e.g., {x,y,2}),
%#-1ist is a set of real numbers, instantiations for

x-1list,
Bis a set of bindings: B= (PxP) u

{x~ligt x x-list),

x' 18 a variable, the last element of x-list.

This routine 1s supposed to determine “what
is true" about U %-11ist (for x' only) and record
that information in terms of P U x-list.

(NOTE: This is similar to the conjecturing of
Lenat [2]. See Section 4 below.)

Let H; be the first and second level terms of
P U x~1ist (i,e., constants, variables, and cne-
level application of function symbels to these
{part of the Herbrand Universe)). (In later ver-
gions we might try to use second-level applica-
tions, etc.}

Let A be theatoms assoclated with P, LE, and Hy,
but only those containing x'.

Let S be the set of all atoms A of A for which

AB 1s true, and for which A is not a tautology.
Retutn S. (Treated as a cenjunction.) (Note:
S might be NIL).

AB is defined to be the result of replacing
any member of P U x-list in A by the corres-
ponding value P U X-1list.

The following 1s an example of the use of
TALLY:

P= {f,a,b,0}, L = {2 <}

P= {ax(2x-1),0,1,0}

x-1ist = {x} (1.e., x" = x).
x~1igt = {1/4} (L.e., X = 1/4),

*Since Q' 1is a 1ist, the list of negations of its
members is returned.

#*Recall that X 1s a real number in [;,ﬁ]. By
the time that step 6 ims applied, all variables will
have values.

W. Bledsoe 895

B = {lx(Zx—l)ff. Ul!ﬂp lfb, lf{')‘x}

Hy = {2, b, 0, x, £(a), £(b}, £(0), £(x}}.

A= {f(x) < £(x), £(x) < £(x), £(x) <0, £(x) £ O,
0 < f(x), 0 £ £f(x)}. (See Remark below).

uttin or P and simplifying we get
Putting P for P and simplifyl
tautologies
™,

~
A PIP = {2x-1 < 2x-1, 2x-1 £ 2x~1, 2x-1 < O,
2x-1 £ 0, 0 < 2x-1, 0 £ 2x-1},
AB = {-1/2 < -1/2, -1/2 £ -1/2, -1/2 < Q, -1/2 ¢
0 < -1/2, 0 5 -1/2},
8= {f(x} <0, f(x) £ 0}.

Remark. The 1list § might be rather large unless
additional restrictions are placed on H. So in
TALLY, it 1s convenient (for efficiency purposes}
to have further "typing" information which, hope-
fully can be derived automatically from the theorem
being proved. For example, in proving the theorem:

continuous f A a < b A f{a) £ 0 5 £(b)
+ Ik(f(x) = 0)

we note that: a, b, 0, x, £(z), £(b), f(x) all
have type Real. But in the context of this
theorem this set can be partitioned into two sub~
sets

{a, b, x} "x~axls reals"

{£(¢z), £(b), £(x), 0} "y-axie reals"

So in TALLY we should not build atoms of the
form x £ 0, a £ 0, but only those of the form
f(a) 2 0, £(x} £ 0, etc. Such additional know-
ledge was uaed in the above example and in those
of Section 4. Thie concept requires much further
study,

ALL-SOME(n, B, x-list, x-list, =x

0)

This routine will not be used unless n 2 Q.
If n = 2 it will introduce a new variable y, and
give it some values ¥j, ...y ¥y in (a, xo), and
¥]s 2evy ¥g In (x b1, and tally "what is true”
ahout each of these Yi 8 and yi 's, {in terms of
P, x-1ist), and finally deduce statements of the
form ¥y ¢ la,x) P(y), 3y e (x,b] P(y)}, etc.,
and return these. If n > 2, then yet another
variable 'z 1s introduced (for each yy, yj), n 1=
decreased by 1, etc.).

1.  Select randomly yj, ..., ¥, from [E,QBJ,
~ ~
yi, ey yi from (xo,b]*.

*{e show here only the case n = 2, For n 2 3, the

procedure is appropriately generalized to handle
intervals of the form (ﬁg.yi). (Yi.ﬁg), étc., as
well as {a,xo) and (xO,G] Also See comment below.



896 W. Bledsoe

2. For each i, put

Bi =By {( y,yi)}, B; =B u {¢ y,y;)}

(NOTE: v is a new varilable symbel).

x,-list = x-1ist y {y}, ii—liat = R-1ist U {y,}

1
21—11sc = x-list U {yy}

3. If a = 2, put
Q - TALLY(Bi. x -lise, x -1ist, ¥}

Q) = TALLY(B}, x,-1ist, x'-1ist, ¥)

i i
Else put
Qi = ALL=SOME(n - 1, Bi’ xi-llst, xi-list, yi)
v - _ ' - oV_ y
Qi ALL-SOME(n - 1, Bi’ X liat, xJ list, yi)
4. Put

QQ = COMBINE-ALL-S(Q,, 1 = 1, k, {3.20))

QQ" = COMBINE-ALL-3(Q}, 4 = 1, k, (QO,GI)

5. Return QQ u QQ'

Comment., We have arbitrarily restricted the new
variable 'y ({see l. above) to the iIntervals
[3,%.) and (%.,B]. This might be too restrictive.
Perhaps we should have also considered y's in the
intervals, (§J,§O) for each ;j in %¥-list, or other
possibilities:

In the case n = 3, the predicate { will be
described 1in terms of three variables x, vy, z. 1In
this case, after the y; have been selected as in-
dicated in Step 1, another call to ALL=50ME will
cause {by Step 1} peints =z., ..., 2, to be se-
lected from each of the Int&rvals (&,%), {QO,S],
(xc,yi). (yi,xo), i=1,k. Similarly when n Z 4.

COMBINE-ALL-S(S, y, 8)
This is used by ALL-SOME.
Here § 1is a set

S-{SI.S ...,Sp}

2!
where each 8y 1is & result from TALLY. The §;

are treated as sete rather than conjunctions,

Sy = {411, . a.ini}

~ M~ -~ ~ A~
::: 8 4is an interval [ao,xo), (xo,ﬁ], (xo,yi),

let oS = Uisi N

and for each 4 € af, let

WyeBs ifscS, forallt, 1=1,p

q{ ) =
Jy ¢ B 4 otherwise

and return the conjunction of the members of the
set

{q{s): s e aS}.
{This might be NIL}.
The Algorithm COMBINE-ALL-S5 as defined here

produces the simplest answer from a set §, as de-
plcted by the following examples.

{{f(x) < £Cy)) {£¢y) < £(x}}}
y="y

B = {x,b]

COMBINE-ALL-S returns

EX 1. §

{3y £ (x,b1f(x) < fy, Jy £ (x,b]f(y) < £{x)}

Ex 2. § = {{a B} {a c} {a D}}
where A, B, C, D are some formulas
y = 'z
B = (y bl

COMBINE-ALL-5 returns
{¥z e (y,b]a, 3z ¢ (y,b]B, 3z € (y,b]C,
3z ¢ (y,blD}

EX 3. S= {{a B} {BC D}
y ="'z, 8, A4, B, €, D unspecified
COMBINE-ALL=-S returns
{3284 dzepfB, JziBc, J=z = B D}
But in EX 3 {(and similarly in EX 2) it could

have returned the correct but more complicated
answer

{3z e BAABAC), JzeBEACAD?

Our implementation of COMBINE-ALL-S allows
both options; the simpler version produces more
tractable answers for instantiation of set vari-
ables (see IMV and AMI in Section 4), but the more
complicated version was needed for EX 5 of Section
4.

Il Obtaining Interpretations P

The fabrication of an interpretation P of P
which satisfies H(P) for a given H, is itself a
challenging problem. In general it cannot be
handled automatically.

It is not the main purpose of this paper to
discuss the problem of fabricating these P's but
in using them. However, we do have some sugges-
tions.



A. Humen Supplied Interpretations

Ore possibility is that the user supplies the
P's, either at run time, or in a convenient know-
ledge base which the program can effectively access.
See, for example, [3]. Such a collection of ex-
amples could accumulate over a period of time and
be used for a number of applications. In the ex-
amples of Section 4, we show the obtaining of the
needed interpretations by a call to a subroutine
INTERPRETATIONS.

B. Piecewise-linear continuous functions

For the special case when the examples needed
are interpretations of continuous functions on a
closed interval of the real line, we might employ
piecewise-linear continuous functions (pelf's) in
a number of applications.

\ /s
V4

-
iy

AN
£ X
X X
X X
4 X X X
X X X X
X X X X
X X X X X
X X X X X
X X X X X
R e gy ) -
X X X X X
X X X
X X X
X ¥
X XX
X X X
X X X
b4 X X
X X i
X X X
X X X
u ¥ X
Wy S e Y Y ) A Y
X X %
% X %
A xx

Computer Generated Plecewlse-linear Continuous
Functions (Satisfying the hypothesis
£(0) <0 AE(1) > 0)

These have the advantage that are easy to generate
and use. Such an f with n corners, can be gen-
erated for the intervel [a,b], by generating n
random numbers XyaXypsenaX, in the interval [a,b],

W. Bledsoe 897

(sorted), and n + 2 random numbers Yar¥yseess¥ne¥pe
and putting

~
f= {(a.)"a)(xlﬁl) Tea (xn,yn)(b,}fh)}-
Such plcf's were used in the examples of Section 4.

If one needs a plcf f which satisfies an
additional constraint H(f), then one can either:
generate f's and test them until one satisfying
H(f) is found; or try to build into the generating
routine the ability to restrict such f's. Again
this second approach appears to be difficult in
general, though we were able to realize it for
special cases such as:

H{f): f(a) s 0 Af(b) 20

Qr
H{fY: W¥Wx e [a,b] (f(a) £ £(x)).

It might also be useful to build up a special
set of routines for handling pfcf's, for evaluating
f at specific x's (numbers), and for computing
their maximum, minimum, zeros, etc.

C. Infinite Number of Corners

If a plcf with an infinite number of corners
is needed, then one might use a formula for com-
puting the x and y instead of the list of
number pairs. For example,

(/n, (-1)%n), n = 1,2,...
represents the plef

.5¢

A

o![ \/ e \

In working with such & plcf, the computer would
deal with this formula instead of with a list of
pairs of numbera.

In additien to such a description, one might
want to add a finite number of fixed points
(E-S- ’ (0,0))0

D. Plecewise-linear Functions With "knees"

I1f the interpretation f of £ 1a required
to be differentisble as well as continucuse, we
might want to place quadratic "knees” on our plef's,

e AN
VN




898 W. Bledsoe

or "cubic" knees if the derivative of f s re-
quired to be continuous, etc. Again one would need
to develop a set of routines for evaluating f at
particular x's, and for finding maxima, minima,
zero's , etc., for such f's.

We do not recommend that polynomials be used
as f's because in order to obtain an example with
a few undulations, it is necessary to use a poly-
nomial of order four or higher, and these are very
difficult to compute.

E. Using the "Corners" of f

plcf's have another advantage besides being
easy to compute. For example, if we are trying to
tally the formula (f(x) < f(.499)) for values of
x within the interval I1,, the program could just
as well use the corner points of f, that is only
x's for which (x,y) z f. Thus in the algorithm
GENERATE, Steps 3 and 4, where random points, x1,
...Xn, are selected, we might instead have used
for the x1's, the x's corresponding to the corners

of f. /"‘-. ?

X X X - X X
NG I TR NG I
a ’//' X, \-/)/

1/2 .. b

Carner points of 3

I.e., we need only check f(x)s £(.499) for x equal
to the values xl’xZ""’xﬁ'

However, if we are using two variables x and
y in the description of Q (=see algorithm ALL-
SOME, Section 3), and are trying to tally the
formula (f(y) < £{x)} for x in interval I and
v in Interval I3, it is also necessary* to con-~
sider additional x's and y's corresponding** to the
x x

corner peints of £, ;ﬁ/\
5 [

Ti_ {‘R x3 / X4 \\
— O A -
a/////ZZ/ ‘\\\¢{//x7 Xg \\:g(\;;;_hg

o

5 "l0

Corresponding corner points

Thus x is allowed to take the values x1,x2,...,
*10» which lie within |1 and once x is given such
a value, x, y is also allowed to take these values
x1,...,xn (within 12) as well as other values
"close to" X (see Section 3.6) and points corre-
sponding to them. Of course, this lacks generality
but can be shown to be adequate in certain theorems
about inequalities. For instance, it was success-
fully used in the examples of Section 4.

*Necessary because these give all the points a
which simple inequalitles might change truth
values.

#*%We sgy a point x' corresponds to a point x"
(with respect to f) 1f T(x') = £(x™).

F. Choosing Points From Open Intervals

In algorithms GENERATE-1 and ALL-SOME we often
are required to select points x1....x, (or y1's or
y!'s) from open and half open intervals as well as
closed intervals, so we cannot always automatically
include the endpoints. In these cases we have used
a parameter e (small) to pick points "close" to
the endpoints. For example, from the interval
(a,b] we would select (among others) the point
a + e. The parameter z is allowed to diminish in
value by multiplying it by 1/10 each time it is
used. For an open interval (c,d) we have

In this example the points x,, x,, x,, are selected
at the comers of f, while X, ="c + ¢, Xs = d -¢,
for the open interval (c,d).

Using the example of the previous secticn
(3.5), 1f I, 1s (1/2,b], and I, is [a,x), then =x
would be allowed to take the values x4 +¢, Xg, Xg,
x5, X]ps ¥g« And once x is given the value xg,
then y 1s allowed to take the values Ais Kys Ay,

Fzr Y0 F4e ¥yt

1/ "'i \4\\"‘43// ? ;\\ *g g

L]

' S R jﬁ

Y12 11 _ Xip” b
X7 *g

IV Experimental Results .

B

We consider two thecrems IMV and AM1, and show
(partially) how GENERATE works on them, See [%]
for further details and three other examples,
{These examples were all done by a computer program;
however, the program is not considered optimal or
final at this time.)

IMV (The intermediate value theorem}: If f la
& continuous function on the non-empty, closed,
interval [a,b], f{a) £ 0, £{b) 2 O, then for
some x 1in [a,b], fix} = 0,

AM1 Each continuevs function £ on a closed in-
terval, attains in maxiwum (minimum) on that
interval,

using the least upper bound axiom

LUB Every non—empty, bounded from above set A
has a leest upper bound, sup A,

In eymbols we have

IMV LUB A £ 45 continuous on [a,b] A a £ b
Afla) 0, A D 2 f(b)



+ 3% £ [a,b] (E(L) S0 AD < £(Y*,

AMl LUB A f 1s continuous on [a,b] A a £ b
+ 34 € [a,b] ¥x e [a,b]{£({x) $ £(2)),

where,

LU YASRAY O A FnVWxe Alx S 1)
+ JLUTx e Alx 5 ) A Yy[¥z & A{z 5 y)
=L <y,

Our objective in each of IMV and AM1, is to
instantiate the set variable A of the hypothesis
LUB, and thereby reduce both IMV and AM1 to theorems
in first order logic.

Notice that they both have the form (1)}, p. 4,
where for IMV, H{f) is

LUB A continuous f[a,b] A f{a) £ 0 A 0 £ £(b)
and for AM1, H(f) 1is
LUB A continuous fla,b],

and following the steps described on pages 4-6 we
obtain formula {4), p. 6, with

P(f,4) © (F(R) <0 A0 = £(R))
for IMV, and
P(E,2) = ¥x € [a,bl(£{x) 2 £(R))

for AM1.

Example 1 (IMV)

WE[f 18 continruous on [a,bl A a 5 b
Aafa) £0 A0 2 £(B)
+ 3q(& = sup{x € [a,b]: Q{x)]
(N AV £ [a,2) Jx e (47,0 Q(x)
A= Ix(L,b] Q(x) A £(2) = 0)]

a call to INTERPRETATIONS yields a = 0,

=1,
£ = {0 - .2002.2003-.6){1 1)},

J AN\ 1

A call to CALCULATEL yields | - 1/2, (In the
spirit of the "calculate vs. prove" remarks In Sec-
tion 1, we of course call on the program to calcu-
late a value of | satisfying the theorem (for a
particular f)).

We have chosen to represent f(x) - 0 as f(x) <; 0
AO < f(x), which is required by our present pro-
gram. It is not at all clear whether we can easily
change the program to handle this example other-
wise.

W. Bledsoe 899

For these values of a, b, f and £, the formula
(?) reduces to
¥

_A_l
i ]
(7'y 3qIVE e [0,1/2) Ix e (R',1/2) Qx)
R2)
f 1
A~ 3x e (1/2,1] Qfx)
L g J
L

A call is made to GENERATE-1(|). (We suppress the
arguments n, B, and "x} which (by Rule 1 of
GENERATE) recalls itself on Yy and y. GENERATE

L] ]
(Y2 e (0,1/2) 3x e (£',1/2) Q(x)

wl

By Rule 3, the points 11,...,15 are selected
as 1{ =a, 25 = ,2, 15 = .3, ia = ,499% and calls
are made to

(8) GENERATE( Jx € {0,1/2) Q(x))
(% GENERATE( Jx £ {.2,1/2) Q{x)}
(10) GENERATE{ Ix ¢ {.3,1/2) Q(x))
(11) GENERATE( Ix € (.499,1/2) Q(x))

and each of these, by Rule 4, select points xj,...,
x from (£1,1/2) and calls GENERATE(q{xi)) which in
tum calls TALLY.

For example, when &' takes the various values
shown below, the corresponding values of Kyseres
are chosen and calle to GENERATE(Q{x,) and TALLY
yileld the results shown.

N xy'8 Results of Calls to TALLY
¢ ,001,.2,.3,.4999 f£(x}<0, 0<f(x), f(x)<0, £(x)<0
.2 .2001,.3,.4999 0<£(x), £(x)<0, £(x)<0
.3 .3001,.4999 £(x)<0, £(x)<0

499 -4991,.49%9 flx)<0o, f(x)<0

Then from Rule 4 of GENERATE, we obtain the
union of these various subgroups for (8), (9),
(10), and (11). I.e., {f(x) <0, 0 < £(x)} 18 re-
turned from (8); {f(x) < 0, 0 < £{x)} 1s returned
from (9); {f(x) < 0} is returned from (10);

{£(x) < 0} is returned from (11).

These are intersected {by Rule 3 of GENERATE)
to obtain {f(x) < 0}.

Recapitulating from (7'): a call was made to
GENERATE(yy) which ylelded {f(x) < 0).

Next a call is made to GENERATE({,)
= GENEBATE(~ 3x ¢ (1/2,1) 0{x)). By Rule 5, it
calls first GENERATE({ dx e (1/2,1] Q(x}), which
vields {0 < £(x)} and this is negated to cbtain
{f(x) *< 0}. Then by Rule 1, {f(x) <0} and
{£{x) £0} are "intersacted" to obtain {f{x) <0} as
therfinal answer. {In intersecting these, {f{x}<0}

‘is treated as {f(x) < 0, f(x} = DO}).

*e are using the “corners” methed demcribed in
Qentinn .S,



900 W. Bledsoe

This answer, {f(x) £ 0}, is checked against
other values of ¥, and, finally the set A in
Theorem IMV 4a given the value

f14) {x: agx<bA ) <0}

which is a correct instantiation,

Incidently, when A ia instantiated with this
value (14), the theorem IMV is reduced to the
first order theorem:

Vxla £ x b A f(x) <0+x < R)
AVy(Wz(a sz <bAf(z) <0+z2y)+R2y)
A f 15 continuous on [a,b] A f{a) £ O A C 5 £(b)
+ f(R}y <O AD g £(R).
Of course we weuld need to add the definition of
continuity and, unless one uees a general in-

equality prover like [4], also add the axioms for
the densely ordered reals.

Example 2. AM1).

Vi[f 18 contlouous on [a,b] A a < b
+3Q¢L = sup{x ¢ {a,b]: Q(x}}
AVL' £ [a, ) dx e (', L) Qix)
A~dx £ (2,b) Q{x)

AYy € [a,b] (£(y) £ £(2)))]

A call to INTERPRETATIONS yields 2=0, fi=1, £=
(00 (.1.203-.205.507-.NI. DO}

a call to CALCULATE-L ylelds % = 1/2.

As in Example 1 we obtain (exactly) the
formula (7'), and calls are then made successively
to GENERATE({), GENERATE(y,), GENERATE(Y,), which
return the lists, {Vy € [a,x){f(y) < £(x)),
3y € (x,bI(E(x) < £(y)), Iy € (x,bl{£(y) <£(xD],
and {¥y € [a,x)(£(y)} & £(x)}}, which are inter-
sected to obtain { ¥y & [a,x) (£{y) < £(x))} which
is returned by the call GENERATE(Y).

Let us now examine in wore detail the call,
GENERATE(Y,), i.e.,

(15) GENERATE(WZX € [a,8) Ix € (2',2) Q(x)).

Rules 3 and 4 are used to select (E',...,li} equal
to (O, .1, .3, .499), and for each i', Xypeee,Xy
as shown below. We show here some of the corre-
sponding cutput from GENERATE. (See [9] for fur-
ther details.)

In the following table

M.Ll t6 Yy £ [a,x) £(y) < f(x)}
A\LL2 is Yy £ [2,x) £(x} < £y}
M.-L3 is ¥y £ (x,b] £{y) < f{x)
hLLA is ¥y e (x,b] £{x) < £(y)
SOME, is dy € [a,x) £(y) < £(x), ete.

If one of these Is primed, then 5 is used instead
of <.

o x Result From Result From
i GENERATE(Q(xi)) GENERATE( JIx (BT, L) Q(x)

0 .OOl{hLLlSOME3

.1 {aLLISOHE

souza}

3SOHE&}

»3  {ALL,SOME,SOME,} {ALL, ALL,SOME,SOME, }

2 3 2 3
.4999{ALL150HE350MEQ}

.1 {ALLIALLZSOHEISOHE250HE3SOHI4}

.3 {m,l SOME, SOME., SOME , SOME , }

.499 {ALLl SOMESSOHEA}

These are now intersected to yield

(16) {ALLlsom:3

SOME4]
from (15), GENERATE(wl).

The call GENERATE(wz),
(17) GENERATE(~Jx € (1/2,1) Q(x}),
causes (by Rule 5) a call first made to GENERATE-
{dx & (1/2,1) Q(x)), whose result iz negated and
returned for (17).

Rule 3 ig used to select {(,5001 .7 .9 1,) for

(x] %3 X3 x4), and GENERATE)Q{x,)} is called for
each to obtain the results shown below.

x, Result from GENERATE(Q(xi))
. 5001 {Somr.l SOME, ALL3}
.7 {ALLZ ALLA}
.9 {som:1 SOME, ALL3}
1.0 {som?.2 souzl}



The union of these {SOME; SOME, ALL, ALL, ALL,)}
is then returned, and this is negated to yileld

AL' ] ] (] 1
{ LZALLlsonnlsomz“scmﬁ

from cail (17). Finally, (16) ané (18) are inter-
sected to yield {ALL1}= {¥y ¢ [a,x) f(y) < £(x)}
from the call GENERATE(y).

This is checked against other valpes of ?,

and finally, the set A in Theorem AM1 1s given the
value

{xi a<xsb AYy e [a,x) £{y) < £(x)}.

See [5] for further details and three other examplas,

V Comments
A. Higher Order Logic

Since instantiating set variables is a part
of higher order logic, one could also use proce-
dures like those of Andrews [5], Huet [6],
Darlington [7], or possibly Bledsoe [8]. In gen-
eral we would expect these to be less efficient
than the technique discussed here, but further
experience is needed.

B. Conjecturing

The central component of this work is the
routine GENERATE which attempts to general (des-
cribe) a predicate Q(x) satisfying a particular
form iKQ(x)h This is much in the spirit of
Lenat's work [2], where various conjectures are
derived from examples.

In Lenat's work as well as ours, there is
given a set of examples and the program is asked
to determine "what is true" about them. There is
a difference however. whereas Lenat asks all that
is true (about his examples), we ask what is
specifically true about certain objects in P, such
as f.

Such conjecturing seems to play an important
role in all of human endeavor, and we would expect
a prominant place for it in future automatic
reasoning systems.

C. GCalculate va, Prove

We cannot over emphasize the importance of
being able to calculate properties about a partic-
ular f rather them prove the same properties about
the uninetantiated varisble f,

For example, for the continuous functien,
2w dx(bx - 4x2), 1t 1a rather aasy to auto-
matically calculate that £ = 1/2 ig the maximum
of f on the interval [a,b] ~ {0,1]. However, it
is indeed difficult to prove automatically that
any continuous function of {a,b], with a £ b,
attalns its maximem on that interval.

W. Bledsoe 901

D. Other Example Theorems

We hope to extend these results to other
example theorems such as: Heine-Borel Theorem,
Nestled Interval Theorem, Baire Category Theorem,
Balzano-Weierstrass Theorem, etc.

In many of these one will work with families
of sets (intervals) instead of functions. There
is a natural analogy between piecewise-wise linear
continuous functions (plcf's) and finite families
of intervals. Accordingly we would expect instan-
tiations which consist of a finite family of inter-
vals, to suffice for many applications. But infi-
nite families will also be needed. See [9].

REFERENCES

[1] Ballantyne, A. Michael, and Bledsoe, W. W.
On Generating and Using Examples in Proof
Discovery. Machine Intelligence 10. Ellis
Harwood Limited, Chichester, 1982, pp. 3-39.

[2] Davis, R., and Lenat, D. Knowledge-Based
Systems in Artificial Intelligence. McGraw-
Hill, 1982.

[3] Rissland, E., and Soloway, E. Generating
Examples in LIPS: Data and Programs. CONS
Technical Report 80-07, Amherst: Department
of Computer and Information Science: Uni-
versity of Massachusetts at Amherst, 1980.

[4] Bledsoe, W. W., and Hines, Larryp Variable
Elimination and Chaining in a Resolution-
Based Prover for Inequalities, Fifth Con-
ference on Automated Deduction, Les Arcs,
France, July 12, 1980, Springer Lecture Notes
in Computer Science,

[5]1 Andrews, P. Bo Resolution in Type Theory.
Jour, of Symbolic Logic, 36, 1971, pp. 414-
432.

[6] Huet, G. P. Constrained Resolution: A
Complete Method for Higher Order Logic. PhDo
Thesis, Jennings Computer Center Report 1117,
Cleveland, Case Westemn Reserve University,
1972.

[7]1 Darlington, J. L. Deduction Plan Formation
in Higher Order Logic, Machine Intelligence 7,
1972, pp. 129-137. (eds. Meltzer, B. and
Michie, DO0), Edinburgh University Press.

Darlington, J. L. Talk at Oberwolfach Con-
ference on Automatic Theorem Proving, 1976,
Oberwolfach, Gemany.

[8] Bledsoe, W. W. A Maximal Method for Set Var-
iables in Automatic Theorem Proving, Machine
Intelligence 9, Ellis Hawood Ltd.,
Chichester, 1979, pp. 53-100.

[9] Bledsoe, W. W. Using Examples to Generate
Instantiations for Set Variables, The Uni-
versity of Texas Math. Dept. Memo, ATP-67,
July 1982.



