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ABSTRACT 

Examples play a crucial role in automated theorem proving, not only as counterexamples 
to help prune unproductive subgoals, but also to help guide proof discovery. In this paper 
we show how examples (interpretations) might be used to help determine Instantiations of 
set variables. We also discuss the role of piecewise-linear continuous functions, and give 
some results of computer runs using these methods. 

I INTRODUCTION 

This is part of an ef for t to use examples 
(Interpretations) to help in automatic proof dis
covery [1 ] , We believe that examples are not only 
useful as "counterexample sieves", to prune the 
proof-search tree, but also can be used to help 
guide the search. One way this is done, is in 
finding instantiations of variables. See [ 1 , 
Section 2 ] . Here we show how examples might be 
used to help instantiate set variables. 

One reason that examples are so valuable in 
theorem proving is that they allow us to calcu
la te , as opposed to prove. And since calculating 
is usually easier than proving, this gives an 
advantage. But of course the results from 
examples are less general, so the attack has to 
be balanced - with some calculation and some 
proving. 

Let us start with the following problem: 
Given a continuous function f on [a ,b ] , with 
maximum value at x = l. 

in terva l , attains i ts maximum on that 
in te rva l , " 

using the least upper bound axiom 

LUB "Every non-empty, bounded, set A has a 
least upper bound, sup A", 

then we must have a value of A ( i . e . , a descrip
t ion of A in terms of f, a, b), before we can 
u t i l i ze LUB in the proof. 

Once A has been given, the theorem w i l l 
have been reduced to a theorem in f i r s t order 
logic about general inequal i t ies. 

More generally, when we are trying to prove 
a theorem of the form 

(1) 

using the LUB axiom to produce a set A for which 
l - sup A, then (1) can be writ ten 

(2) 

(a higher order theorem) 

which is equivalent to 

(3) 

E.g., 
H(f) 
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IMV 

If we further assume that for each f sat
isfying H(f) , there is a largest l in [a,b] 
for which (1) holds, then (3) is equivalent to 

(4) 

So our objective is to prove 

(4) 

This has the general form 

(5) 

So for this form of theorems our problem is : 

Given H and 
Generate Q for which (5) holds. How? We pro
pose to do this (automatically) by using inter
pretations (examples) f of f (and interpre
tations of the other function and predicate 
symbols appearing in H and 

We w i l l f i r s t state our problem in a more 
general setting and then (in Section 4) return to 
the forms (5) and (4) as special cases. 

Now suppose that we are to prove a theorem of the 
form 

(6) 

The object then is to f ind (generate) a Q which 
satisf ies (6). 

We propose the following general method for finding 
Q. 

( i ) Obtain an interpretation of P which 
satisf ied 

( i i ) Generate a predicate Q, in terms of P, 
which sat isf ies 

( i i i ) Test Q on other 

(iv) Prove (6) using the Q so obtained. 

Of course, finding Q is equivalent to proving a 
theorem in higher order logic, which requires the 
higher order variable Q to be instantiated. The 
central idea is th is : if a Q can be found which 
satisfies (which satisfy ), then 
hopefully that Q w i l l also satisfy We 
w i l l indeed see that that is the case for some 
special instances given in Section 4 below. 

We w i l l defer discussion of Step ( i ) , the 
fabrication of P, un t i l Section 3 (a subroutine, 
INSTANTIATIONS, does th is ) , and concentrate now 
on ( i i ) , the generation of Q for which > 
holds. Step ( i i i ) is rather straightforward, and 
Step (iv) is not within the scope of this paper*. 

So let there be given an interpretation P 
satisfying H(P). We desire an algorithm GENERATE 
which w i l l generate a Q satisfying Of 
course such a Q may not be unique (even for a 
fixed P. 

If the algorithm GENERATE is indeed to gen
erate such a Q, then it must use an association 
between the members of P and those of P. Because, 
Q is to be given in terms of the symbols in P, not 
p, and it must satisfy the condition > where 
every P i n P has been replaced by an interpre
tation P. 

It is not obvious how to build such an algo
rithm GENERATE, but somehow it should key on the 
structure of iii. The following, GENERATE, is a 
f i r s t attempt at such an algorithm. It is bu i l t 
on several additional assumptions, given below, 

* I t is often the case, as in the examples of 
Section 4, that once an instantiation Q of Q has 
been given, the resulting theorem VP[H(P)-ij)(P,Q) ] 
is f i r s t order. And while it s t i l l may not be easy 
to prove i t , nevertheless, lends i t se l f to standard 
procedures* 



894 W. Bledsoe 

about P and (The symbol ''Q": in the following 
algorithms w i l l always represent the predicate we 
are looking for - i . e . , trying to generate.) 

We w i l l assume that complete typing* informa
t ion is available on Q, and members of P. 
Thus, for example, Q might be a predicate over 
the reals, s o that f o r i s either 
true or false. (E.g., 

For our f i r s t version we w i l l assume that Q 
is a function of one real variable x. (In general 
we might rest r ic t Q to a function on Rn.) 

We w i l l start with a ca l l to 

GENERATE 

with n=l , and where is the argu
ment of Q. B is treated as a set of bindings, 
tying members of P to those of P. ( I . e . , 8 is a 
subst i tut ion). B w i l l be expanded as new va r i 
ables and their instantiations are added. If A 
is a formula then AB is used to denote the result 
of applying the substitution B to A. 

The integer n is the number of variables 
used in the description of then Q is 
expressed only in terms of if 
n=2 then Q is expressed in terms of x and y, 

(Note: The 
parameter n counts both bound and free variables.) 

The f i r s t ca l l to GENERATE is made with n=l . 
If this f a i l s (returns NIL), then n is increased 
by 1 and a new ca l l made to GENERATE, etc. , up 
to a maximum allowable value for n. 

(Before presenting the algorithms GENERATE, 
TALLY and ALL-SOME, let us t ry to help the reader 
by pointing out that we are looking for statements 
that can be deduced from a given example, function 
f, that might hold for the whole interval [a,b] or 
for a part of i t ; that the method works by looking 
at the c r i t i c a l points of the example function; 
that GENERATE, TALLY, and ALL-SOME, return families 
of conditions that are true on the subintervals; 
that these families of conditions are combined in 
appropriate ways to give candidates for the Q that 
we are looking for ; and f i na l l y that th is combining 
action is governed by the structure of the formula 

containing Q.) 

GENERATE 

The objective is to f ind a Q for which 
PIP is true, x is a variable. It starts as 
the argument of Q. 

Form of ACTION 

1. 

Put Q1 = GENERATE 

*See, for example, Peter B. Andrews, "Resolution 
in Type Theory", J. Sym. Logic 36 (1971), 414-

*Similarly for open and half open intervals (a,b), 
[a,b), (a ,b ] . In these cases the open endpoints 
are not selected for x, but "nearby" points are 
selected (see Section 3.5). 

The number k used here is a parameter supplied 
by the user. See Section 3.5 below for an a l ter 
nate way of selecting the x1 when f is a piece-
wise l inear continuous function. 
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Our implementation of COMBINE-ALL-S allows 
both options; the simpler version produces more 
tractable answers for instant iat ion of set va r i 
ables (see IMV and AMI in Section 4), but the more 
complicated version was needed for EX 5 of Section 
4. 

I l l Obtaining Interpretations P 

The fabrication of an interpretation P of P 
which sat isf ies H(P) for a given H, is i t se l f a 
challenging problem. In general it cannot be 
handled automatically. 

It is not the main purpose of this paper to 
discuss the problem of fabricating these P's but 
in using them. However, we do have some sugges
t ions. 
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A. Human Supplied Interpretations 

One possib i l i ty is that the user supplies the 
P's, either at run time, or in a convenient know
ledge base which the program can effectively access. 
See, for example, [3 ] . Such a collection of ex
amples could accumulate over a period of time and 
be used for a number of applications. In the ex
amples of Section 4, we show the obtaining of the 
needed interpretations by a ca l l to a subroutine 
INTERPRETATIONS. 

B. Piecewise-linear continuous functions 

For the special case when the examples needed 
are interpretations of continuous functions on a 
closed interval of the real l i ne , we might employ 
piecewise-linear continuous functions (pel f 's) in 
a number of applications. 

If one needs a plcf f which satisf ies an 
additional constraint H( f ) , then one can either: 
generate f's and test them u n t i l one satisfying 
H(f) is found; or t ry to build into the generating 
routine the ab i l i t y to rest r ic t such f ' s . Again 
this second approach appears to be d i f f i c u l t in 
general, though we were able to realize it for 
special cases such as: 

It might also be useful to build up a special 
set of routines for handling p f c f ' s , for evaluating 
f at specific x's (numbers), and for computing 
their maximum, minimum, zeros, etc. 

C. In f in i te Number of Corners 

If a plcf with an i n f i n i t e number of corners 
is needed, then one might use a formula for com
puting the x and y instead of the l i s t of 
number pairs. For example, 
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or "cubic" knees if the derivative of f is re
quired to be continuous, etc. Again one would need 
to develop a set of routines for evaluating f at 
part icular x ' s , and for finding maxima, minima, 
zero's , e tc . , for such f ' s . 

We do not recommend that polynomials be used 
as f's because in order to obtain an example with 
a few undulations, it is necessary to use a poly
nomial of order four or higher, and these are very 
d i f f i c u l t to compute. 

E. Using the "Corners" of f 

p lc f ' s have another advantage besides being 
easy to compute. For example, if we are trying to 
ta l l y the formula (f(x) < f(.499)) for values of 
x within the interval I1, , the program could just 
as well use the corner points of f, that is only 
x's for which (x,y) z f. Thus in the algorithm 
GENERATE, Steps 3 and 4, where random points, x1, 
. . . X n , are selected, we might instead have used 
for the x1's, the x's corresponding to the corners 

Corresponding corner points 

Thus x is allowed to take the values x1 ,x2 , . . . , 
x10» which lie within I1 and once x is given such 
a value, x, y is also allowed to take these values 
x1 , . . . , xn (within I2) as well as other values 
"close to" X (see Section 3.6) and points corre
sponding to them. Of course, this lacks generality 
but can be shown to be adequate in certain theorems 
about inequal i t ies. For instance, it was success
fu l l y used in the examples of Section 4. 

F. Choosing Points From Open Intervals 

In algorithms GENERATE-1 and ALL-SOME we often 
are required to select points x1 xn (or y1's or 
y ! 's) from open and half open intervals as well as 
closed intervals, so we cannot always automatically 
include the endpoints. In these cases we have used 
a parameter e (small) to pick points "close" to 
the endpoints. For example, from the interval 
(a,b] we would select (among others) the point 
a + e. The parameter z is allowed to diminish in 
value by multiplying it by 1/10 each time it is 
used. For an open interval (c,d) we have 
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A ca l l to CALCULATE-L yields l - 1/2, (In the 
sp i r i t of the "calculate vs. prove" remarks In Sec
tion 1, we of course ca l l on the program to calcu
late a value of I satisfying the theorem (for a 
particular f ) ) . 

*We have chosen to represent f (x) - 0 as f(x) <; 0 
AO < f ( x ) , which is required by our present pro
gram. It is not at a l l clear whether we can easily 
change the program to handle th is example other
wise. 
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V Comments 

A. Higher Order Logic 

Since instantiating set variables is a part 
of higher order logic, one could also use proce
dures l ike those of Andrews [5 ] , Huet [6 ] , 
Darlington [7 ] , or possibly Bledsoe [8 ] . In gen
eral we would expect these to be less eff icient 
than the technique discussed here, but further 
experience is needed. 

B. Conjecturing 

The central component of this work is the 
routine GENERATE which attempts to general (des
cribe) a predicate Q(x) satisfying a particular 
form iKQ(x)h This is much in the sp i r i t of 
Lenat's work [2 ] , where various conjectures are 
derived from examples. 

In Lenat's work as well as ours, there is 
given a set of examples and the program is asked 
to determine "what is true" about them. There is 
a difference however: whereas Lenat asks a l l that 
is true (about his examples), we ask what is 
specifically true about certain objects in P, such 
as f. 

Such conjecturing seems to play an important 
role in a l l of human endeavor, and we would expect 
a prominant place for it in future automatic 
reasoning systems. 

D. Other Example Theorems 
We hope to extend these results to other 

example theorems such as: Heine-Borel Theorem, 
Nestled Interval Theorem, Baire Category Theorem, 
Balzano-Weierstrass Theorem, etc. 

In many of these one w i l l work with families 
of sets (intervals) instead of functions. There 
is a natural analogy between piecewise-wise linear 
continuous functions (plcf 's) and f i n i t e families 
of intervals. Accordingly we would expect instan
tiations which consist of a f i n i t e family of inter
vals, to suffice for many applications. But i n f i 
nite families w i l l also be needed. See [9 ] . 
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