
USING EXAMPLES TO GENERATE INSTANTIATIONS OF SET VARIABLES

W. W. Bledsoe
Department of Mathematics and Computer Science

The University of Texas at Austin
Austin, Texas 78712, USA

ABSTRACT

Examples play a crucial role in automated theorem proving, not only as counterexamples
to help prune unproductive subgoals, but also to help guide proof discovery. In this paper
we show how examples (interpretations) might be used to help determine Instantiations of
set variables. We also discuss the role of piecewise-linear continuous functions, and give
some results of computer runs using these methods.

I INTRODUCTION

This is part of an ef for t to use examples
(Interpretations) to help in automatic proof dis
covery [1] , We believe that examples are not only
useful as "counterexample sieves", to prune the
proof-search tree, but also can be used to help
guide the search. One way this is done, is in
finding instantiations of variables. See [1 ,
Section 2] . Here we show how examples might be
used to help instantiate set variables.

One reason that examples are so valuable in
theorem proving is that they allow us to calcu
la te , as opposed to prove. And since calculating
is usually easier than proving, this gives an
advantage. But of course the results from
examples are less general, so the attack has to
be balanced - with some calculation and some
proving.

Let us start with the following problem:
Given a continuous function f on [a ,b] , with
maximum value at x = l.

in terva l , attains i ts maximum on that
in te rva l , "

using the least upper bound axiom

LUB "Every non-empty, bounded, set A has a
least upper bound, sup A",

then we must have a value of A (i . e . , a descrip
t ion of A in terms of f, a, b), before we can
u t i l i ze LUB in the proof.

Once A has been given, the theorem w i l l
have been reduced to a theorem in f i r s t order
logic about general inequal i t ies.

More generally, when we are trying to prove
a theorem of the form

(1)

using the LUB axiom to produce a set A for which
l - sup A, then (1) can be writ ten

(2)

(a higher order theorem)

which is equivalent to

(3)

E.g.,
H(f)

W. Bledsoe 893

IMV

If we further assume that for each f sat
isfying H(f) , there is a largest l in [a,b]
for which (1) holds, then (3) is equivalent to

(4)

So our objective is to prove

(4)

This has the general form

(5)

So for this form of theorems our problem is :

Given H and
Generate Q for which (5) holds. How? We pro
pose to do this (automatically) by using inter
pretations (examples) f of f (and interpre
tations of the other function and predicate
symbols appearing in H and

We w i l l f i r s t state our problem in a more
general setting and then (in Section 4) return to
the forms (5) and (4) as special cases.

Now suppose that we are to prove a theorem of the
form

(6)

The object then is to f ind (generate) a Q which
satisf ies (6).

We propose the following general method for finding
Q.

(i) Obtain an interpretation of P which
satisf ied

(i i) Generate a predicate Q, in terms of P,
which sat isf ies

(i i i) Test Q on other

(iv) Prove (6) using the Q so obtained.

Of course, finding Q is equivalent to proving a
theorem in higher order logic, which requires the
higher order variable Q to be instantiated. The
central idea is th is : if a Q can be found which
satisfies (which satisfy), then
hopefully that Q w i l l also satisfy We
w i l l indeed see that that is the case for some
special instances given in Section 4 below.

We w i l l defer discussion of Step (i) , the
fabrication of P, un t i l Section 3 (a subroutine,
INSTANTIATIONS, does th is) , and concentrate now
on (i i) , the generation of Q for which >
holds. Step (i i i) is rather straightforward, and
Step (iv) is not within the scope of this paper*.

So let there be given an interpretation P
satisfying H(P). We desire an algorithm GENERATE
which w i l l generate a Q satisfying Of
course such a Q may not be unique (even for a
fixed P.

If the algorithm GENERATE is indeed to gen
erate such a Q, then it must use an association
between the members of P and those of P. Because,
Q is to be given in terms of the symbols in P, not
p, and it must satisfy the condition > where
every P i n P has been replaced by an interpre
tation P.

It is not obvious how to build such an algo
rithm GENERATE, but somehow it should key on the
structure of iii. The following, GENERATE, is a
f i r s t attempt at such an algorithm. It is bu i l t
on several additional assumptions, given below,

* I t is often the case, as in the examples of
Section 4, that once an instantiation Q of Q has
been given, the resulting theorem VP[H(P)-ij)(P,Q)]
is f i r s t order. And while it s t i l l may not be easy
to prove i t , nevertheless, lends i t se l f to standard
procedures*

894 W. Bledsoe

about P and (The symbol ''Q": in the following
algorithms w i l l always represent the predicate we
are looking for - i . e . , trying to generate.)

We w i l l assume that complete typing* informa
t ion is available on Q, and members of P.
Thus, for example, Q might be a predicate over
the reals, s o that f o r i s either
true or false. (E.g.,

For our f i r s t version we w i l l assume that Q
is a function of one real variable x. (In general
we might rest r ic t Q to a function on Rn.)

We w i l l start with a ca l l to

GENERATE

with n=l , and where is the argu
ment of Q. B is treated as a set of bindings,
tying members of P to those of P. (I . e . , 8 is a
subst i tut ion). B w i l l be expanded as new va r i
ables and their instantiations are added. If A
is a formula then AB is used to denote the result
of applying the substitution B to A.

The integer n is the number of variables
used in the description of then Q is
expressed only in terms of if
n=2 then Q is expressed in terms of x and y,

(Note: The
parameter n counts both bound and free variables.)

The f i r s t ca l l to GENERATE is made with n=l .
If this f a i l s (returns NIL), then n is increased
by 1 and a new ca l l made to GENERATE, etc. , up
to a maximum allowable value for n.

(Before presenting the algorithms GENERATE,
TALLY and ALL-SOME, let us t ry to help the reader
by pointing out that we are looking for statements
that can be deduced from a given example, function
f, that might hold for the whole interval [a,b] or
for a part of i t ; that the method works by looking
at the c r i t i c a l points of the example function;
that GENERATE, TALLY, and ALL-SOME, return families
of conditions that are true on the subintervals;
that these families of conditions are combined in
appropriate ways to give candidates for the Q that
we are looking for ; and f i na l l y that th is combining
action is governed by the structure of the formula

containing Q.)

GENERATE

The objective is to f ind a Q for which
PIP is true, x is a variable. It starts as
the argument of Q.

Form of ACTION

1.

Put Q1 = GENERATE

*See, for example, Peter B. Andrews, "Resolution
in Type Theory", J. Sym. Logic 36 (1971), 414-

*Similarly for open and half open intervals (a,b),
[a,b), (a ,b] . In these cases the open endpoints
are not selected for x, but "nearby" points are
selected (see Section 3.5).

The number k used here is a parameter supplied
by the user. See Section 3.5 below for an a l ter
nate way of selecting the x1 when f is a piece-
wise l inear continuous function.

W. Bledsoe 895

896 W. Bledsoe

Our implementation of COMBINE-ALL-S allows
both options; the simpler version produces more
tractable answers for instant iat ion of set va r i
ables (see IMV and AMI in Section 4), but the more
complicated version was needed for EX 5 of Section
4.

I l l Obtaining Interpretations P

The fabrication of an interpretation P of P
which sat isf ies H(P) for a given H, is i t se l f a
challenging problem. In general it cannot be
handled automatically.

It is not the main purpose of this paper to
discuss the problem of fabricating these P's but
in using them. However, we do have some sugges
t ions.

W. Bledsoe 897

A. Human Supplied Interpretations

One possib i l i ty is that the user supplies the
P's, either at run time, or in a convenient know
ledge base which the program can effectively access.
See, for example, [3] . Such a collection of ex
amples could accumulate over a period of time and
be used for a number of applications. In the ex
amples of Section 4, we show the obtaining of the
needed interpretations by a ca l l to a subroutine
INTERPRETATIONS.

B. Piecewise-linear continuous functions

For the special case when the examples needed
are interpretations of continuous functions on a
closed interval of the real l i ne , we might employ
piecewise-linear continuous functions (pel f 's) in
a number of applications.

If one needs a plcf f which satisf ies an
additional constraint H(f) , then one can either:
generate f's and test them u n t i l one satisfying
H(f) is found; or t ry to build into the generating
routine the ab i l i t y to rest r ic t such f ' s . Again
this second approach appears to be d i f f i c u l t in
general, though we were able to realize it for
special cases such as:

It might also be useful to build up a special
set of routines for handling p f c f ' s , for evaluating
f at specific x's (numbers), and for computing
their maximum, minimum, zeros, etc.

C. In f in i te Number of Corners

If a plcf with an i n f i n i t e number of corners
is needed, then one might use a formula for com
puting the x and y instead of the l i s t of
number pairs. For example,

898 W. Bledsoe

or "cubic" knees if the derivative of f is re
quired to be continuous, etc. Again one would need
to develop a set of routines for evaluating f at
part icular x ' s , and for finding maxima, minima,
zero's , e tc . , for such f ' s .

We do not recommend that polynomials be used
as f's because in order to obtain an example with
a few undulations, it is necessary to use a poly
nomial of order four or higher, and these are very
d i f f i c u l t to compute.

E. Using the "Corners" of f

p lc f ' s have another advantage besides being
easy to compute. For example, if we are trying to
ta l l y the formula (f(x) < f(.499)) for values of
x within the interval I1, , the program could just
as well use the corner points of f, that is only
x's for which (x,y) z f. Thus in the algorithm
GENERATE, Steps 3 and 4, where random points, x1,
. . . X n , are selected, we might instead have used
for the x1's, the x's corresponding to the corners

Corresponding corner points

Thus x is allowed to take the values x1 ,x2 , . . . ,
x10» which lie within I1 and once x is given such
a value, x, y is also allowed to take these values
x1 , . . . , xn (within I2) as well as other values
"close to" X (see Section 3.6) and points corre
sponding to them. Of course, this lacks generality
but can be shown to be adequate in certain theorems
about inequal i t ies. For instance, it was success
fu l l y used in the examples of Section 4.

F. Choosing Points From Open Intervals

In algorithms GENERATE-1 and ALL-SOME we often
are required to select points x1 xn (or y1's or
y ! 's) from open and half open intervals as well as
closed intervals, so we cannot always automatically
include the endpoints. In these cases we have used
a parameter e (small) to pick points "close" to
the endpoints. For example, from the interval
(a,b] we would select (among others) the point
a + e. The parameter z is allowed to diminish in
value by multiplying it by 1/10 each time it is
used. For an open interval (c,d) we have

W. Bledsoe 899

A ca l l to CALCULATE-L yields l - 1/2, (In the
sp i r i t of the "calculate vs. prove" remarks In Sec
tion 1, we of course ca l l on the program to calcu
late a value of I satisfying the theorem (for a
particular f)) .

*We have chosen to represent f (x) - 0 as f(x) <; 0
AO < f (x) , which is required by our present pro
gram. It is not at a l l clear whether we can easily
change the program to handle th is example other
wise.

900 W. Bledsoe

W. Bledsoe 901

V Comments

A. Higher Order Logic

Since instantiating set variables is a part
of higher order logic, one could also use proce
dures l ike those of Andrews [5] , Huet [6] ,
Darlington [7] , or possibly Bledsoe [8] . In gen
eral we would expect these to be less eff icient
than the technique discussed here, but further
experience is needed.

B. Conjecturing

The central component of this work is the
routine GENERATE which attempts to general (des
cribe) a predicate Q(x) satisfying a particular
form iKQ(x)h This is much in the sp i r i t of
Lenat's work [2] , where various conjectures are
derived from examples.

In Lenat's work as well as ours, there is
given a set of examples and the program is asked
to determine "what is true" about them. There is
a difference however: whereas Lenat asks a l l that
is true (about his examples), we ask what is
specifically true about certain objects in P, such
as f.

Such conjecturing seems to play an important
role in a l l of human endeavor, and we would expect
a prominant place for it in future automatic
reasoning systems.

D. Other Example Theorems
We hope to extend these results to other

example theorems such as: Heine-Borel Theorem,
Nestled Interval Theorem, Baire Category Theorem,
Balzano-Weierstrass Theorem, etc.

In many of these one w i l l work with families
of sets (intervals) instead of functions. There
is a natural analogy between piecewise-wise linear
continuous functions (plcf 's) and f i n i t e families
of intervals. Accordingly we would expect instan
tiations which consist of a f i n i t e family of inter
vals, to suffice for many applications. But i n f i
nite families w i l l also be needed. See [9] .

REFERENCES

[1] Ballantyne, A. Michael, and Bledsoe, W. W.
On Generating and Using Examples in Proof
Discovery. Machine Intelligence 10. E l l i s
Harwood Limited, Chichester, 1982, pp. 3-39.

[2] Davis, R., and Lenat, D. Knowledge-Based
Systems in A r t i f i c i a l Intelligence. McGraw-
H i l l , 1982.

[3] Rissland, E., and Soloway, E. Generating
Examples in LIPS: Data and Programs. COINS
Technical Report 80-07, Amherst: Department
of Computer and Information Science: Uni
versity of Massachusetts at Amherst, 1980.

[4] Bledsoe, W. W., and Hines, LarryD Variable
Elimination and Chaining in a Resolution-
Based Prover for Inequalities„ F i f th Con
ference on Automated Deduction, Les Arcs,
France, July 12, 1980, Springer Lecture Notes
in Computer Science,

[5] Andrews, P. Bo Resolution in Type Theory.
Jour, of Symbolic Logic, 36, 1971, pp. 414-
432.

[6] Huet, G. P. Constrained Resolution: A
Complete Method for Higher Order Logic. Ph.Do
Thesis, Jennings Computer Center Report 1117,
Cleveland, Case Western Reserve University,
1972.

[7] Darlington, J. L. Deduction Plan Formation
in Higher Order Logic, Machine Intelligence 7,
1972, pp. 129-137. (eds. Meltzer, B. and
Michie, D0), Edinburgh University Press.

Darlington, J. L. Talk at Oberwolfach Con
ference on Automatic Theorem Proving, 1976,
Oberwolfach, Germany.

[8] Bledsoe, W. W. A Maximal Method for Set Var-
iables in Automatic Theorem Proving, Machine
Intelligence 9, E l l i s Harwood L td . ,
Chichester, 1979, pp. 53-100.

[9] Bledsoe, W. W. Using Examples to Generate
Instantiations for Set Variables, The Uni
versity of Texas Math. Dept. Memo, ATP-67,
July 1982.

