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Abstract 

We are currently extending the rewrite system labora­
tory REVE to handle associative-commutative operators. In 
particular, we are incorporating a set of rules for Boolean 
algebra that provides a refutationally-complete theorem 
prover and a new programming paradigm. To that end, we 
describe methods for proving termination of associative-
commutative systems. 

1. Introduction 

Term-rewriting systems have been widely used in 
formula-manipulation and theorem-proving systems. As pro­
grams, they have a very simple syntax and semantics based 
on equalities, and are declarative with no explicit control. In 
addition, canonical systems, i.e. systems that always rewrite a 
term to a unique normal form, are used as decision procedures 
for equational theories. (For a survey of the theory and appli­
cation of rewrite systems, see Huet and Oppen [1980].) 

where u and v are variables of the rewrite system and match 
any term, x is the symbol with respect to which an expression 
is differentiated, and a is any atomic symbol other than z. 

Unfortunately, associativity and commutativity of func­
tions cannot be handled by including these axioms as rules. 
Instead, special unification algorithms are used to take associ­
ativity and commutativity into account. Let R be a rewrite 
system for a set of terms T(FUG), constructed from 
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associative-commutative function symbols F and regular sym­
bols g. The equat ional theory AC consists of the axioms 

f(u,v) = /(v.u) 
f(u,f(v,w)) - f(f(u,v),w), 

for each symbol fEF. A rule l+r in R is applied to a term 
tET if / matches any subterm s of t, under the assumption 
of associativity and commutativity of symbols in F, i.e. if 
there is a term t' that is-equal to t in the theory AC, and 
there is a substitution a for the variables of /, such that 
(T(1)=« for some subterm s of /' . 

In the next section, we describe two applications of AC-
rewriting in the context of the REVE term rewriting environ­
ment (Lescaune [1982]): a refutat ionally complete theorem 
proving strategy based on a canonical rewrite system for 
Boolean algebra, and a programming paradigm for computing 
with AC arithmetic operators. In Section 3, we suggest 
methods for proving termination of rewrite systems contain­
ing A C operators. 

2. Applications and Implementations 
The Kuuth-Bcndix [1970] completion procedure was 

introduced as a means of deriving canonical term-rewriting 
systems to serve as decision procedures for given equational 
theories. The procedure creates new rewrite rules to resolve 
ambiguities resulting from existing rules that overlap. The 
REVE environment provides an interactive mechanism for 
generation of canonical rewriting systems, allowing the user to 
specify and construct (semi-automatically) any of several 
different orderings for completion of his system. Using com­
pletion, REVE is able to prove inductive theorems without 
explicitly invoking induction (see, for example, Huet and Hul-
lot [I980]). An implementation of A C-rewriting has been 
incorporated into the REVE term rewriting environment. To 
extend the system to our purposes, we have added an AC 
unification algorithm (Stickel [1981]), and a mechanism for 
efficiently finding basis solutions to the linear Diophantine 
equations which arise from it (Huet [1978]). In addition, the 
completion procedure has been modified to handle 
associative-commutative operators (see Peterson and Stickel 
[1981]). We plan a series of experiments using this system. 
In particular, we are interested in using AC unification and a 
complete rewrite system for Boolean algebra for refutational 
theorem proving and logic programming. 
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where ~ is 'not', A is 'and', V is 'inclusive-or\ © is 
Vxclusive-or\ and > is 'implies'. Both A and © are impli­
citly AC operators. That means, for example, that the rule 
uAU-»U applied to (p/\q)/\p yields pf\q. Since these func­
tions are associative, there is no significance to the parent hesi­
tation, and accordingly terms are "flattened" by removing 
embeddings of associative functions symbols, e.g. [p/\q)l\p is 
written p/\ q/\p. 

That this system is sound follows from the fact that 
each rule is a proposit ional equivalence and A and © are in 
fact associative and commutative. Any term that is not a 
sum of conjunctions is reducible, since it must either contain 
a symbol other than A, in which case one of the first three 
rules can reduce it, or else it must contain a conjunction of a 
sum, in which case it is reducible by the fourth rule. The 
methods of the following section can be used to prove termi­
nation of the rules. The system is confluent, since all its criti­
cal pairs reduce to the same term. When, as in this example, 
some of the functions on the left-hand sides of / or /' are 
associative and commutative, then an associative-
commutative unification algorithm (Livesey and Siekmann 
[1970], Stickel [1981]) is used to find sigma such that /[sigma] and /' [sigma] 
overlap. The definition of "overlap" must include cases in 
which two rules have overlapping subtcrms of the same 
associative-commutative symbol (Lankford and Ballantyne 
[1977], Peterson and Stickel [1981]). To do this, pseudo-rules 
/ ( / ,u ' )—►/(r ,u' ) are considered for each rule whose left-hand 
side / has an associative-commutative outermost symbol /. 
All such critical pairs must reduce to the same terra up to 
permutation of arguments of the associative-commutative 
symbols. 

Rewrite systems may be used as "logic programs" 
(Kowliski [1974]), in addition to their straightforward use for 
computation by rewriting. The programming paradigm 
described below allows for the advantageous combination of 
both computing modes. The result is a Prolog-like program­
ming language the main differences being that rewrite rules 
are equivalences, rather than implications in Horn-clause 
form, and that the completion procedure acts as the inter­
preter, rather than resolution. Hogger [1981] suggested the 
use of equivalences to specify Prolog programs. 

For example, the following is a program to compute the 
quotient and remainder of two integers: 

where + is associative and commutative. The first rule is the 
main recursive case; the second is the main base case; the 
third simplifies sums; the remainder are special cases. For 
example, to compute the quotient and remainder of the two 
numbers 7 and 3 with this system (the numerals are just 
abbreviations for their unary representation as sums of ones), 
the rule 

is added, meaning that q are r are the answer if and only if 
they are the quotient and remainder, respectively, of 7 and 3. 
The AC completion procedure then generates the rules: 
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3. Termination 

3.3. Polynomial Interpretations Since addition and mul­
tiplication are themselves associative and commutative, poly­
nomial interpretations, as used, for example, in Lank ford 
[1975], are sometimes helpful. For example, to show termina­
tion of the Boolean algebra example, it is easily verified that 
T(l)>r(r) for each of the rules and pseudo-rules /—>r, where 
T\I) is defined inductively on the structure of J: 

.3.4. Semantic Path Ordering 

Intuitively, the Boolean algebra system terminates, since 
distributivity docs, and the other rules only simplify matters. 
The following ordering attempts to capture that intuition. 

Let p(t) be some function mapping terms t into the 
natural numbers (or any well-founded set) and let > be a 
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3.5. Associative Path Ordering 

In the recursive path ordering, to show s>rpot, it is 
sometimes necessary to show that a given subterm of s is 
greater than more than one subterm of (, but it is never 
necessary to show that a given subterm of t is less than more 
than one subterm of s. Therefore, if we transform s and t 
and can make choices in the transformations, it is easy to 
show that for all choices for s there is a choice for t such that 
s>t . However, it is much harder to show the reverse (for all 
choices for t there is a choice for s such that s>t). With 
this motivation, we define the associative path ordering as fol­
lows: With term t we associate a set M(t) of transforms of t. 

associative path ordering if 
Thus, the sets M(t) are 

ordered by their small elements. M(t) is formed by succes­
sively applying three transforms to the "flattened" version of 
t. (Note that during flattening, / (u) is replaced by u when 
/ is associative.) The role of M1 is to transform subterms, of 
M2 to transform terms at the top level, and of M3 to again 
transform subterms. Composing the three operations, we get 

The transforms are given by: 

For example, F(g(c ,d))={c(d),d(c)} if g>c,d and g is asso­
ciative. 

Example: Consider the Boolean algebra system. Using the 
ordering 1 ,a,b,c >0>A > © (i.e. constants are big), validates 
a®a-»0 since the ordering on function symbols implies 
x>apo0 for any term /. (Making constants large is, in fact, 
necessary for >apo to work on this example.) Transforming 
the left and right hand sides of the distributivity rule yields 

Note that the condition VuEA/(*) ;lr€A/(0 u > rpo v 
depends only on the minimal elements of M(s) and M{t). 
Hence we need only compute minimal elements of A/(/) at 
each step (including subterms of t). This can greatly speed 
up the computations. In fact, if the ordering on operators is 
total, only one minimum element need be kept. We have 
implemented the associative recursive path ordering and are 
making it interactive for AC completion in REVE and are 
working on comparing terms with variables in >apo. 
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