ASSOCIATIVE-COMMUTATIVE

Nachum Dershowitz
Department of Computer Science
University of lllinois
Urbana, IL 61801

N. Alan Josephson
Department of Computer Science
University of lllinois
Urbana, IL 01801

Abstract

We are currently extending the rewrite system labora-
tory REVE to handle associative-commutative operators. In
particular, we are incorporating a set of rules for Boolean
algebra that provides a refutationally-complete theorem
prover and a new programming paradigm. To that end, we
describe methods for proving termination of associative-
commutative systems.

1. Introduction

Term-rewriting systems have been widely used in
formula-manipulation and theorem-proving systems. As pro-
grams, they have a very simple syntax and semantics based
on equalities, and are declarative with no explicit control. In
addition, canonical systems, i.e. systems that always rewrite a
term to a unique normal form, are used as decision procedures
for equational theories. (For a survey of the theory and appli-
cation of rewrite systems, see Huet and Oppen [1980].)

Eremple: The following rewrite system  differentiates an
expression (Knuth [1968]):

D — 1
Doa — 0
Die+v) — Dout D
Dyfu-v) — D,u-D,v
Di-w) — -Du
Difue) — oD utuDv
u [ v
D40 U’ - D, v uD, o
D,(lnw) — D,
u
D(u*y = o’ 'Dous utiloe)D,v

where u and v are variables of the rewrite system and match
any term, x is the symbol with respect to which an expression
is differentiated, and a is any atomic symbol other than z.

Unfortunately, associativity and commutativity of func-
tions cannot be handled by including these axioms as rules.
Instead, special unification algorithms are used to take associ
ativity and commutativity into account. Let R be a rewrite
system for a set of terms T(FUG), constructed from
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associative-commutative function symbols F and regular sym-
bols g. The equat ional theory AC consists of the axioms

f(u,v) = /(v.u)
f(u,f(v,w)) - f(f(u,v),w),

for each symbol fEF. A rule /+r in R is applied to a term
tET if / matches any subterm s of t, under the assumption
of associativity and commutativity of symbols in F, ie. if
there is a term t' that is-equal to t in the theory AC, and
there is a substitution a for the variables of /, such that
(T(1)=« for some subterm s of /" .

In the next section, we describe two applications of AC-
rewriting in the context of the REVE term rewriting environ-
ment (Lescaune [1982]). a refutationally complete theorem
proving strategy based on a canonical rewrite system for
Boolean algebra, and a programming paradigm for computing
with AC arithmetic operators. In Section 3, we suggest
methods for proving termination of rewrite systems contain-
ing A C operators.

2. Applications and Implementations

The Kuuth-Bendix [1970] completion procedure was
introduced as a means of deriving canonical term-rewriting
systems to serve as decision procedures for given equational
theories. The procedure creates new rewrite rules to resolve
ambiguities resulting from existing rules that overlap. The
REVE environment provides an interactive mechanism for
generation of canonical rewriting systems, allowing the user to
specify and construct (semi-automatically) any of several
different orderings for completion of his system. Using com-
pletion, REVE is able to prove inductive theorems without
explicitly invoking induction (see, for example, Huet and Hul-
lot [1980]). An implementation of A C-rewriting has been
incorporated into the REVE term rewriting environment. To
extend the system to our purposes, we have added an AC
unification algorithm (Stickel [1981]), and a mechanism for
efficiently finding basis solutions to the linear Diophantine
equations which arise from it (Huet [1978]). In addition, the
completion procedure has been modified to handle
associative-commutative operators (see Peterson and Stickel
[1981]). We plan a series of experiments using this system.
In particular, we are interested in using AC unification and a
complete rewrite system for Boolean algebra for refutational
theorem proving and logic programming.



The following is a caronical rewrite system for Boolean
algebra (llsiang [1982}, Watts and Cohen [1980]):

—u — u D true
uVr — uAr@ud vy
uDdr -  uArBuBtrue
{u@v)Aw — A uwd e w
ultrue — u
uAfalse — false
uhu — v
u@false — u
w®u — false
where ~ is 'not', A is 'and', V is 'inclusive-or\ © is

Vxclusive-or\ and > is 'implies'. Both A and © are impli-
citly AC operators. That means, for example, that the rule
uAU-»U applied to (p/A\g)/\p vields pfig. Since these func-
tions are associative, there is no significance to the parent hesi-
tation, and accordingly terms are "flattened" by removing
embeddings of associative functions symbols, e.g. [p/\g)/\p is
written p/A g/\p.

That this system is sound follows from the fact that
each rule is a propositional equivalence and A and © are in
fact associative and commutative. Any term that is not a
sum of conjunctions is reducible, since it must either contain
a symbol other than A, in which case one of the first three
rules can reduce it, or else it must contain a conjunction of a
sum, in which case it is reducible by the fourth rule. The
methods of the following section can be used to prove termi-
nation of the rules. The system is confluent, since all its criti-
cal pairs reduce to the same term. When, as in this example,
some of the functions on the left-hand sides of / or /' are
associative and commutative, then an  associative-
commutative unification algorithm (Livesey and Siekmann

[1970], Stickel [1981]) is used to find sigma such that /[sigma] and /" [sigma]

overlap. The definition of "overlap" must include cases in
which two rules have overlapping subtcrms of the same
associative-commutative symbol (Lankford and Ballantyne
[1977], Peterson and Stickel [1981]). To do this, pseudo-rules
/(/,u" I ,u'") are considered for each rule whose left-hand
side / has an associative-commutative outermost symbol /.
All such critical pairs must reduce to the same tema up to
permutation of arguments of the associative-commutative
symbols.

Since the Boolean algebra system is sound, terminating,
and confluent, it is a canonical system for Boolean algebra
and provides a means of deciding the validity of propositional
equivalences. Thus, the system may be used o cbeck for
both validity and unsatisfiability of propositional Lerms by
reducing terms to their unique pormal form: a term that
reduces to true is valid, a term that reduces to false i
unsatisbable, while a Lerm t(hat redures to neither is
salisfiable but not valid.

In Hsiang and Dershowitz [1983] we have shown how the
Boolean algebra system may be used for resolution-like
theorem proving in the brst-order predicate calculus. For
example, adding the rule

~[plz.a)Ap(z.2)Ap(z.2)IA(pl2,f2 WA p (S 2,2 )Vp(2 ,0)])
— true
{where f is a unary function symbol), and applying the AC
complelion procedure, generates
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plz.fz2)Apifz,2) = pl:.a)Dirue
plz.a)Aplz.2)Ap(z,2)Btrue —  true
ple,a)@true —  true
false —  true,

proving Lhat
(¥ p) 3 )~[p(=.9)=(V 2 )~(pz.2)A pl2.2))]

Rewrite systems may be used as "logic programs"
(Kowliski [1974]), in addition to their straightforward use for
computation by rewriting. The programming paradigm
described below allows for the advantageous combination of
both computing modes. The result is a Prolog-like program-
ming language the main differences being that rewrite rules
are equivalences, rather than implications in Hom-clause
form, and that the completion procedure acts as the inter-
preter, rather than resolution. Hogger [1981] suggested the
use of equivalences to specify Prolog programs.

For example, the following is a program to compute the
quotient and remainder of two integers:

divfu,v+ 1,q,r)
true

div{u+ v+ 1o+ Lg+ 1r)
div{u,u+ w+ 1,0,u)

z+0

divfu+ v+ 1,0+ 1.1,r)
div{v+ 1,0+ Lg+ 1,r)
div(v+ 1,e+ 1,1,r)

z
div{u,v+ 1,0,r)
div(0,v+ 1,g,7)
deo{0,v+ 1,0,r)

L A A A

diviu+1,1,g+ 1,r} div{u,l,q,r)
diviu+ 1,1,1,r) div{u,1,0,r)
div(l,l.q+ 1,7} div(0,1,q,r)
die(1,1.1,r}) diw(0,1,0,r)
div{u,u+ 1.0,u) true
div(0,1,0,0) true

where + is associative and commutative. The first rule is the
main recursive case; the second is the main base case; the
third simplifies sums; the remainder are special cases. For
example, to compute the quotient and remainder of the two
numbers 7 and 3 with this system (the numerals are just
abbreviations for their unary representation as sums of ones),
the rule

div(73.97r) — ana(g,r)

is added, meaning that g are r are the answer if and only if
they are the quotient and remainder, respectively, of 7 and 3.
The AC completion procedure then generates the rules:

div(4,3,q.r} —  anslg+ Lr)
div(l1 3.g.r) — snslg+ 2,7)
ont{2,1}) — true,

where the ans predicate conisins the answer values 2 and 1
for g and r, respectively.
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3. Termination

The usual methods for proving termination of rewriti
systems are frequently difficult to apply in the presepee o
associative and commautative symbols. Since A completior
requires an ordering for associative-commutative terms, it &
important that we investigale such orderings. This sectior
presen{s methods for proving termination of term-rewriting
systems containing implicitly AC function symbols.

3.1. Charncterization of AC Orderings

The [ollowing lemma is straightforward. (Iu is slightly
stronger ip the interesting direction than the method in
Manna and Ness [1970])

Lemma 1 . A rewrite aysiem R over a sel of lerma

T terminates, sf and only if there cxirs a well-founded

scl (W, ) and o funelion r mapping terms from T

info W, auch that

s=peAdul>re) D Af(- e NEAf e )
Jor ell auch terms e T and for cach rule d—r in R
Al)>rr)

for every substitution of termex in T for the variabler of
{.

Let ¥ denote the flatiened version of a term ¢, with all
nested occurrences of symbols in Fosaripped, and where the
order of arguments of svmbols in #' is not signilicxnt. Two
terms u and v are equal in AC, if and only if & and T are the
same. Let T={T{ET}. Wer assume that J includes
paeudo rules fil.r)—fir.r). where 1 is a varable otherwise
not occureing in the rule, for each rule {—r in R whose left-
hand side ! or right-hand side r has outermost associative-
commutative symbol fEF or whose right-hand side is just a
variahle. For example, the rule 2@ 00—z in Lhe Boolean alge-
bra system implies the two pseudo-rules 2 0B v—2® u and
{2@0}Au—1Au. (We are includipg more pseudo-rules than
necessary for “compatibility.” See Peterson and Stickel [April
1981].)

Theorem 1. An AC rewrile system K {erminates. of
and anly if there exista a well-founded ordering > on

T such that

u=pvATSPT D fl- T }>f(- T )
for T ¥ET, and
Ior

Jor eack rule and pacudo-rule I—r of H.

3.2. Unsuccenssful Extensions

A muliiset is a set along with a multiplicity assigned to
each element. Apy ordering >* on Lerms can be extended to
a mulliset ordering on terms 3> in the following way
{Dershowitz and Manoa [1979]):

e bt =T

S={uay, ...
if and only if
(IMCIXV LET MY B ES-M)a; >t

Given an ordering > oo function symbols, the recursive path
erdering >, on terms containing those symbols is defined as
follows {Plaisted |1978], Dershowitz [1982]) For Lwo terms

a=f{s,. - 85) and t=g(t,, - - - ¢8,]), we say

13,1
if and only if

I=g ﬂnd{‘ll v "m‘»rpa“l' et "!l!}

ar
I>gand(Vi)e>,,,¢
or
{ i) > ot

where 2, is the multisel extension of >,,,.

The foliowing unsuccessful extensions of the recursive path
ordering indicate some of the difficulties iv finding useful AC
ordermgs,

1) >, on Aatiened terms,
Consicler two A{" operators [ and g with f>g. We
certainly have flab)>,,,¢{n b} However. we cannot
show that £(a.b.0)>,,, f(g(a.b)e).

2] >, on flaticned terms, refining operators by their
arity.
Consider two A(" operators f and g with f>g.
Although we hive f(a.b)>, gla.b}), we cannot show
glflable)>  plab.r).

3] >, on fiutened terms, eliminating identical subterms.
Consitter one function symbol f with f>a>b>r>d.
‘This ordering however is not well-founded:

fl:b,b,(]>,.p,f[d'f']),,,f[ﬂ.d]),,af{b.b,f)-

1) >, on Dattencd terms, looking at powersets of sub-
terms. )
Ceonsidering the collection of terms that can be obtained
from a term f{s). - - .a,} by deleting subterms alse
doex nol give a valid ordering.

3.3. Polynomial Interpretations Since addition and mul-
tiplication are themselves associative and commutative, poly-
nomial interpretations, as used, for example, in Lank ford
[1975], are sometimes helpful. For example, to show termina-
tion of the Boolean algebra example, it is easily verified that
T(l)>r(r) for each of the rules and pseudo-ules /—>r, where
T\l) is defined inductively on the structure of J:

da] = 2
H~o) = ral+3
HaVA) = dAn)éfA)+ dal+ rif)+ 3
Aa2dl = da)*dB)+ fa)+ f{9)+3
Ro@®d) = sa)rrf)+ ]
afAB) = dAa)sr8),

and @ is any atemic symbol, including 0 and 1.

.3.4. Semantic Path Ordering

Intuitively, the Boolean algebra system terminates, since
distributivity docs, and the other rules only simplify matters.
The following ordering attempts to capture that intuition.

Let p(t) be some function mapping terms t into the
natural numbers (or any well-founded set) and let > be a



well-founded ordering of the funciion symbels, one of which
we denote @. The semantic path ordering (Kamin and Levy
[1080]} is an extension of the recursive path ordering and is
defined recursively as follows:

a=f{0 0 ) penlty b))t
if and only if
£l J=1, - n
and one Lhe following holds:
=g or |[f=g=@Ap(a)>plt)]

or
8,2 ot for somei=1,:: m
or
F=9#® and (8, - 2} 325, {1 4]
or

(f=g=®BApls)=p(t)) ond {a, -

where 2 s the multiset extension of >,

. ‘ll}>)l!ﬂ{!l T 'n}

Kamin and L.evy [19R0] have shown that if
a=2tDplf - NZASC ) (*)

holds for all f. then w scmantic recursive ordering (such as
the sbove ene) is well-founded and satisfies the monotonicity
condition of Theorem 1.

The difficulty of using this method lies in picking oft)
and in checking condiiien (v). For the Boolean algebra exam-
ple, let A>@ >1>0. We can prove the termination of Lhe
first four rules {including distributivity) by taking & to be A
and p(¢,A - -+ At,) lo be n. We can then prove the termina-
tion of the romplcte system by taking @ to be A, again, and
pt) to be the length of the longest derivation from ¢ using
those first four rules. That requires verifying that (+} holds
and, for each rule or pyeudo-rule {—s, we have {>,,,r.

3.5. Associative Path Ordering

In the recursive path ordering, to show s>rpot, it is
sometimes necessary to show that a given subterm of s is
greater than more than one subterm of (, but it is never
necessary to show that a given subterm of ¢ is less than more
than one subterm of s. Therefore, if we transform s and t
and can make choices in the transformations, it is easy to
show that for all choices for s there is a choice for t such that
s>t. However, it is much harder to show the reverse (for all
choices for t there is a choice for s such that s>f). With
this motivation, we define the associative path ordering as fol-
lows: With term t we associate a set M(t) of transforms of t.
We say #2>,,f in the associaive path ordering if
Yu€M(s) €M) u>,,,v Thus, the sets M(t) are
ordered by their small elements. M(t) is formed by succes-
sively applying three transforms to the "flattened" version of
t. (Note that during flattening, /(u) is replaced by u when
| is associative.) The role of M1 is to transform subterms, of
M2 to transform terms at the top level, and of M3 to again
transform subterms. Composing the three operations, we get
M(t) = My My M (D))). The transforms are given by:
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Afl{g{up et lum ” = {m viEA’[“i”
Mylfty, o)) = LY F)

Mty ... )= M),
1<5<n
where
Flglvi .. ov)) = {glvs, vl

if g s nol associative or no subterm v; bas function symhol f
for which g> f; otherwise,

Flglvg, oo o)) = {Tilpiyy, - - .
with T,iglr,. ... . v5)) given by:
Jlolo oo ougt o pleoagls o

sal) | 1€i<m},

N B |

L]
il w=f(a,,....80) g and [ arc associative, g>f, wherr
gl.......) appears as an argument k- | times;

Slglo gl h oo gl ong, )

il vy=fla,, ..
g>f.

., 8 ), g is associative, [ in nef associative, and

For example, F(g(c,d))={c(d),d(c)} if g>c,d and g is asso-
ciative.

Example: Consider the Boolean algebra system. Using the
ordering 1,a,b,c >0>A >®© (i.e. constants are big), validates
a®a-»0 since the ordering on function symbols implies
x>apo0 for any term /. (Making constants large is, in fact,
necessary for >gpo to work on this example.) Transforming
the left and right hand sides of the distributivity rule yields

FlaA(b@c)) = {0 D{aAb}D(aNc)}
FilaAb)®(aAc)) = {(aAb)D(aAc)}.

Thus aA(b @& r) >, (aAd) @ {aAc), and this rule, too, is
a reduction. Similarly, for the other rules and pscudo-rules.

Proposition . The ordering >, ¢ well-founded
since it apaliafica the conditions for simplification ord-
erings, as defined in Dershowilz [1982].

Note that the condition VUEA/(*) ;Ir€A/(0 u>rpov
depends only on the minimal elements of M(s) and M(t).
Hence we need only compute minimal elements of A/(/) at
each step (including subterms of f). This can greatly speed
up the computations. In fact, if the ordering on operators is
total, only one minimum element need be kept. We have
implemented the associative recursive path ordering and are
making it interactive for AC completion in REVE and are
working on comparing terms with variables in >apo.
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