
A S S O C I A T I V E - C O M M U T A T I V E R E W R I T I N G *

Nachum Dershowitz
Department of Computer Science

University of Illinois
Urbana, IL 61801

N. Alan Josephson
Department of Computer Science

University of Illinois
Urbana, IL 01801

Abstract

We are currently extending the rewrite system labora­
tory REVE to handle associative-commutative operators. In
particular, we are incorporating a set of rules for Boolean
algebra that provides a refutationally-complete theorem
prover and a new programming paradigm. To that end, we
describe methods for proving termination of associative-
commutative systems.

1. Introduction

Term-rewriting systems have been widely used in
formula-manipulation and theorem-proving systems. As pro­
grams, they have a very simple syntax and semantics based
on equalities, and are declarative with no explicit control. In
addition, canonical systems, i.e. systems that always rewrite a
term to a unique normal form, are used as decision procedures
for equational theories. (For a survey of the theory and appli­
cation of rewrite systems, see Huet and Oppen [1980].)

where u and v are variables of the rewrite system and match
any term, x is the symbol with respect to which an expression
is differentiated, and a is any atomic symbol other than z.

Unfortunately, associativity and commutativity of func­
tions cannot be handled by including these axioms as rules.
Instead, special unification algorithms are used to take associ­
ativity and commutativity into account. Let R be a rewrite
system for a set of terms T(FUG), constructed from

•This work was supported in part by NSF Grant MCS 79-08497.
♦ ♦On leave from University of Illinois.

Jieh Hsiang
Department of Computer Science

State University of New York
Stony brook, NY 11794

David A. Plaisted**
Computer Science Laboratory

SRI International
Menlo Park, CA 91025

associative-commutative function symbols F and regular sym­
bols g. The equat ional theory AC consists of the axioms

f(u,v) = /(v.u)
f(u,f(v,w)) - f(f(u,v),w),

for each symbol fEF. A rule l+r in R is applied to a term
tET if / matches any subterm s of t, under the assumption
of associativity and commutativity of symbols in F, i.e. if
there is a term t' that is-equal to t in the theory AC, and
there is a substitution a for the variables of /, such that
(T(1)=« for some subterm s of /' .

In the next section, we describe two applications of AC-
rewriting in the context of the REVE term rewriting environ­
ment (Lescaune [1982]): a refutat ionally complete theorem
proving strategy based on a canonical rewrite system for
Boolean algebra, and a programming paradigm for computing
with AC arithmetic operators. In Section 3, we suggest
methods for proving termination of rewrite systems contain­
ing A C operators.

2. Applications and Implementations
The Kuuth-Bcndix [1970] completion procedure was

introduced as a means of deriving canonical term-rewriting
systems to serve as decision procedures for given equational
theories. The procedure creates new rewrite rules to resolve
ambiguities resulting from existing rules that overlap. The
REVE environment provides an interactive mechanism for
generation of canonical rewriting systems, allowing the user to
specify and construct (semi-automatically) any of several
different orderings for completion of his system. Using com­
pletion, REVE is able to prove inductive theorems without
explicitly invoking induction (see, for example, Huet and Hul-
lot [I980]). An implementation of A C-rewriting has been
incorporated into the REVE term rewriting environment. To
extend the system to our purposes, we have added an AC
unification algorithm (Stickel [1981]), and a mechanism for
efficiently finding basis solutions to the linear Diophantine
equations which arise from it (Huet [1978]). In addition, the
completion procedure has been modified to handle
associative-commutative operators (see Peterson and Stickel
[1981]). We plan a series of experiments using this system.
In particular, we are interested in using AC unification and a
complete rewrite system for Boolean algebra for refutational
theorem proving and logic programming.

N. Dershowitz 941

where ~ is 'not', A is 'and', V is 'inclusive-or\ © is
Vxclusive-or\ and > is 'implies'. Both A and © are impli­
citly AC operators. That means, for example, that the rule
uAU-»U applied to (p/\q)/\p yields pf\q. Since these func­
tions are associative, there is no significance to the parent hesi­
tation, and accordingly terms are "flattened" by removing
embeddings of associative functions symbols, e.g. [p/\q)l\p is
written p/\ q/\p.

That this system is sound follows from the fact that
each rule is a proposit ional equivalence and A and © are in
fact associative and commutative. Any term that is not a
sum of conjunctions is reducible, since it must either contain
a symbol other than A, in which case one of the first three
rules can reduce it, or else it must contain a conjunction of a
sum, in which case it is reducible by the fourth rule. The
methods of the following section can be used to prove termi­
nation of the rules. The system is confluent, since all its criti­
cal pairs reduce to the same term. When, as in this example,
some of the functions on the left-hand sides of / or /' are
associative and commutative, then an associative-
commutative unification algorithm (Livesey and Siekmann
[1970], Stickel [1981]) is used to find sigma such that /[sigma] and /' [sigma]
overlap. The definition of "overlap" must include cases in
which two rules have overlapping subtcrms of the same
associative-commutative symbol (Lankford and Ballantyne
[1977], Peterson and Stickel [1981]). To do this, pseudo-rules
/ (/ ,u ')—►/(r ,u') are considered for each rule whose left-hand
side / has an associative-commutative outermost symbol /.
All such critical pairs must reduce to the same terra up to
permutation of arguments of the associative-commutative
symbols.

Rewrite systems may be used as "logic programs"
(Kowliski [1974]), in addition to their straightforward use for
computation by rewriting. The programming paradigm
described below allows for the advantageous combination of
both computing modes. The result is a Prolog-like program­
ming language the main differences being that rewrite rules
are equivalences, rather than implications in Horn-clause
form, and that the completion procedure acts as the inter­
preter, rather than resolution. Hogger [1981] suggested the
use of equivalences to specify Prolog programs.

For example, the following is a program to compute the
quotient and remainder of two integers:

where + is associative and commutative. The first rule is the
main recursive case; the second is the main base case; the
third simplifies sums; the remainder are special cases. For
example, to compute the quotient and remainder of the two
numbers 7 and 3 with this system (the numerals are just
abbreviations for their unary representation as sums of ones),
the rule

is added, meaning that q are r are the answer if and only if
they are the quotient and remainder, respectively, of 7 and 3.
The AC completion procedure then generates the rules:

942 N. Dershowitz

3. Termination

3.3. Polynomial Interpretations Since addition and mul­
tiplication are themselves associative and commutative, poly­
nomial interpretations, as used, for example, in Lank ford
[1975], are sometimes helpful. For example, to show termina­
tion of the Boolean algebra example, it is easily verified that
T(l)>r(r) for each of the rules and pseudo-rules /—>r, where
T\I) is defined inductively on the structure of J:

.3.4. Semantic Path Ordering

Intuitively, the Boolean algebra system terminates, since
distributivity docs, and the other rules only simplify matters.
The following ordering attempts to capture that intuition.

Let p(t) be some function mapping terms t into the
natural numbers (or any well-founded set) and let > be a

N. Dershowitz 943

3.5. Associative Path Ordering

In the recursive path ordering, to show s>rpot, it is
sometimes necessary to show that a given subterm of s is
greater than more than one subterm of (, but it is never
necessary to show that a given subterm of t is less than more
than one subterm of s. Therefore, if we transform s and t
and can make choices in the transformations, it is easy to
show that for all choices for s there is a choice for t such that
s>t . However, it is much harder to show the reverse (for all
choices for t there is a choice for s such that s>t). With
this motivation, we define the associative path ordering as fol­
lows: With term t we associate a set M(t) of transforms of t.

associative path ordering if
Thus, the sets M(t) are

ordered by their small elements. M(t) is formed by succes­
sively applying three transforms to the "flattened" version of
t. (Note that during flattening, / (u) is replaced by u when
/ is associative.) The role of M1 is to transform subterms, of
M2 to transform terms at the top level, and of M3 to again
transform subterms. Composing the three operations, we get

The transforms are given by:

For example, F(g(c ,d))={c(d),d(c)} if g>c,d and g is asso­
ciative.

Example: Consider the Boolean algebra system. Using the
ordering 1 ,a,b,c >0>A > © (i.e. constants are big), validates
a®a-»0 since the ordering on function symbols implies
x>apo0 for any term /. (Making constants large is, in fact,
necessary for >apo to work on this example.) Transforming
the left and right hand sides of the distributivity rule yields

Note that the condition VuEA/(*) ;lr€A/(0 u > rpo v
depends only on the minimal elements of M(s) and M{t).
Hence we need only compute minimal elements of A/(/) at
each step (including subterms of t). This can greatly speed
up the computations. In fact, if the ordering on operators is
total, only one minimum element need be kept. We have
implemented the associative recursive path ordering and are
making it interactive for AC completion in REVE and are
working on comparing terms with variables in >apo.

REFERENCES
1. Dersbowitz, N. [1982], Orderings for term-rewriting sys­

tems, J. of Theoretical Computer Science 17:3, pp. 279-

944 N. Dershowitz

301.
2. Dershowitz, N., and Z. Manna [1979], Proving termina­

tion with multiset orderings, Comm. ACM 22:8, pp.
405-470.

3. Hogger, C.J. [Apr. 1981], "Derivation of logic pro­
grams/1 J. ACM, vol. 28, no. 2, pp. 372-392.

4. Ilsiang, J. [1982], Topics in automated theorem proving
and program generation, Ph.D. thesis, Department of
Computer Science, University of Illinois, Urbana, Illinois.

5. Hsiang, J. and Dershowitz, N. [1983], Rewrite methods
for clausal and non-clausal theorem proving, Proc. 10th
EATCS Intl. Golloq. on Automata, Languages and Pro­
gramming. Barcelona, Spain, to appear.

0. Huet, G, and J. Hullot [1980], Proofs by induction in
equational theories with constructors, Proc. 21st Annual
Symposium on Foundations of Computer Science, pp.
90-107.

7. Huet, G., and D. C. Oppen [1980], Equations and rewrite
rules: a survey, in Formal Languages: Perspectives and
Open Problems (R. Book, ed.) Academic Press, New
York.

8. Kamin, S.. and J.J. Levy [1980], Two generalizations of
the recursive path ordering, Unpublished note, Depart­
ment of Computer Science, University of Illinois,
Urbana, Illinois.

9. D. E. Knuth [1908], Fundamental algorithms. The Art of
Computer Programming, vol. 1, Addison-Wcsley, Read­
ing.

10. Knuth, D. E., and P. B. Bendix [1970], Simple word
problems in universal algebras, Computational Problems
in Abstract Algebra (J. Leech, ed.) Pergamon Press,
Oxford, pp. 203-297.

11. Kowalski, R. [1974], Predicate logic as a programming
language, D.C.L. Memo No. 70, Edinburgh University,
Edinburgh, Scotland.

12. Lankford, D. S. [1975], Canonical algebraic simplification
in computational logic, Report No. ATP-25, Department
of Mathematics, Southwestern University, Georgetown,
Texas.

13. Lankford, D. S., and A. M. Ballantyne [1977], Decision
procedures for simple equational theories with commuta­
tive axioms: Complete sets of commutative reductions,
Memo ATP-35, Department of Mathematics and Com­
puter Sciences, University of Texas, Austin, Texas.

14. Lescanne, P. [1983], Computer experiments with the
REVE term rewriting system generator, Proc. 10th Conf.
on Principles of Programming Languages.

15. Livesey, M., and J. Siekmann [1976], Unification of
A + C-terms (bags) and A+C+I-terms (sets), Intern.
Ber. Nr. 5/70, Inst, fur Informatik, University Karlsruhe,
Karlsruhe, W. Germany.

10. Manna, Z., and S. Ness [1970], On the termination of
Markov algorithms, Proc. of the Third Hawaii Interna­
tional Conference on System Science, Honolulu, Hawaii.

17. Peterson, G. E., and M. E. Stickel [1981], Complete sets
of reductions for some equational theories, J. ACM 28:2,
pp. 233-204.

18. Plaisted, D. A. [1978], A recursively defined ordering for
proving termination of term rewriting systems, Univer­
sity of Illinois Report No. UIUCDCS-R-78-943, Depart­
ment Computer Science, University of Illinois, Urbana,
Illinois.

19. Stickel, M.E. [1981], A unification algorithm for
associative-commutative functions, J. ACM, 28:3, pp.
423-134.

20. Watts, D. E., and J. K. Cohen [1980], Computer imple-
mented set theory, American Mathematical Monthly 87:7,
pp. 557-500.

