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Abstract

An extremum principle is developed that determines three-dimensional
surface orientation from a two-dimensional contour. The principle
maximizes (he ratio of the area to the square of the perimeter, a
measue of the compadness or symmety of the three-dimensional
surface. The principle interprets regular figures comectly, it interprets
skew symmeties as oriented real symmetries, and it is approximated by
(he maximum likelihood method on imegular figures.

1. Introduction

An important goal of early vision is the computation of a rep-
resentaion of the visible sufaces in an image, in particular the
determination of the orientation of those surfaces as defined by their
local suface nomals [Brady 1982, Mam 1982]. processes
contribute to achieving this goal, stereopsis and structure-from-motion
being the most studied in image understanding. In this paper we
consider the computation of shape-from-contour. Figure 1 shows a
number of shapes that arc typically perceived as images of surfaces
which are oriented out of the picture plane. The method we propose
is based on a preference for symmetric, or at least compact, surfaces.
Note that the contour does not need to be dosed in order to be
interpreted as oriented out of the image plane. Also, in general,
contours are interpreted as curved three-dimensional surfaces.

We develop an extremuin principle for determining three-
dimensional surface orientation from a two-dimensional contour.
Initially, we work out thee extrenium principle for the case that the
contour is dosed and that the interpreted surface is planar. Later,
we discuss how to extend our approach to open contours and how to
interpret contours as curved surfaces.

The extremum principle maximizes a familiar measure of the
compadness or symmelry of an oriented surface, namely the ratio
of the aea to the square of the perimeter. It is shown that this
measure is at the heart of the maximum likelihood approach to
shape-from-contour developed by Witkin [1981] and Davis, Janos,
and Dunn [1982]. The maximum likelihood approach hes had some
suooess interpreting imegularly shaped objects. However, the method
is ineffective when the distribution of image tangents is not random,
as is the case, for example, when the image is a regular shape, such
as an eliipse or a parallelogram. Our extremum principle interprets
regular figures correctly. We show that the maximum likelihood
method approximates the extremum principle for imegular figures.

Kanade [1981, page 424] hes suggested a method for determin-
ing the three-dimensional orientation of skew-symmetric figures, un-
der the "heuristic assumption” that such figures arc interpreted as
oriented real symmetries. We prove that our extemum principle
necessarly interprets skew symmetries as oriented real symmetries,
thus dispensing with the need for any heuristic assumption to that

This desabes reseach dore at the Artificial Inellgenoe

of the Institute of Techndogy. Support for the

Artificial Inteligence research is provided in pen WEMHIEdI%eadw
md%&%mdm Office of Naval Resear

¢h oontract NOOO14- the Office of Naval Research under confract

number NOOT480G0E05 and the Sysem Development Foundation.

)

7

{al

tn]

fe]

Egltnﬂ la. Tmﬂnhnemﬂwﬂigjsmwﬁgmaed
ae orented resped o the imae cmmrriy'udged
Aot o5 PEres fek e e i Koy b b
ae (o]
S(ma'sf’epsif‘ataremtrarpretedasawedtfIeedw'\er‘rﬂorlalr&Eped ol S

effect. Kanade shows that there is a one-parameter family of pos-
sible orientations of a skew-symmetic figure, forming a hyperbola
in gradient space. He suggess that the minimum slant member of
the oneparameter family is perceived. In the special case of a real
symmetry, Kanade's suggeston implies that symmetiic shapes are
perceived as lying in the image plane, that is having zero slant. It is
cear from the ellipse in figure 1 that this is not comrect. Our method
interprets real symmetries correctly.

First, we review the maximum likelihood method. In Section
3, we discuss several previous extremum principles and justify our
choice of the measure. In Section 4, we derive the
mathematics necessary to cxtremile the compadness measure, and
relate the extremum principle to the maximum likelihood method.
In Section 5, we investigate Kanadcs work on skew symmefry. One
approach o extending the extremum principle to interpret curved
surfaces, such as that shown in Figure Ic, is sketched in Section 6.

This paper is an abbreviated version of [Brady and Yuille, 1983],
which should be referred to for the details of derivations. In that
paper we aso discuss the psychophysical literature on slant estimation
and lkcuchi's work on shepe from texture.

2. The Sampling Approach

Witkin [1981] hes treated the determination of shape-from-
contour as a problem of signal detection. Recently, Davis, Janos,
and Dunn [1982] have comrected some of Witkin's mathematics and
proposed two efficient algorithms to compute the orientation of a
planar surface from an image contour. Witkin's approach uses a

ic model of (orthographic) projection and a statistical model
of (a) the distribution of surfaces in space (statistics of the universe)
and (b) of the distribution of tangents to the image contour. We
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utilize the geometric model, but dispense with the second part of the
statistical model in {aor of an extremum principle.

IFirsl, the geometric medel. Suppuse that o curve is drawn in
the planc (o, ) and denewe by 8 the angle that the tangent makes at
a typical paint on the curve, Lot o be he ingent angle in the image
plane it the pomnt corresponding W 8. Then a and 8 are related by
tan(o — 1) =: lan f/cos g.

We now turn 1o the statistical model, which consists of two
assumptions called netropy and fdependence. Isotropy reasenably
supposcs 1hat all surface orientations are equally likely 10 occur in
nalure and that tsngents to surface curves are cgually likely in all
dircetions. More succinetly, it is assumed that the guantities (o, 7) are
randomly distribuled. and that their joint prabability density function
("density”) B{e, r) is given by [1Javis, Janos, and Dunn, 1982]

Dig, 1) = :-r-uincr

The independence assumption requires that the image tangenls
{o:1 <1< n}

are statistically independent. That is, it is assumed that the tangent
directions st different points on the image curve are independent
This is pnly true if the contour is highly irrepularly shaped, or if
the number of samples is small.  In any case. the assumplion of
independence is an inherent weakness of the sampling approach (see
for cxample [Witkin 1981, p 36]p

11 is casy to show that the conditional demity D{elo,r) of an
individual image tangent angle a projected rom a plane {z, 7] is given
by [Witkin 1981}:

Diele,7)= ! 8o e {2.1)
™ cos{a — 7) -+ coe? osin’{a — 7)

Denate the sample (e, @s,... a.) by A {the sample s independent
by assumption). 1t hus conditional density

DA, 1) = f[ Dia,|o,7) (2.2)

Dy Bayes’ formula we obtain

D{o,|A) = A2 1)Dke,7)

T T D(Ajo, 7)D{a, 7 )dodr

. Ohhserve that the aumerator is independent of ¢ and 7. The sampling
appruach takes a srandom sample A and defines the most likely
oricatation of the plane {g,7) W be that which extremizes D{z, 1|A).
Witkin |1981] guantizcs ¢ and r. and deseribes an algorithm 1o find
the maximizing (o,, 7. Davis, Janos, and Dunn [1982] develop a
mure cfficient algorithm that fisst estimates « and = and then uses
those cstimates in a Newton iterative process, ‘They provide evidence
that their method is mare accurale than Witkin's, Curionsly, however,
they state [Davis, Janos, and Bunn 1982, p 24] that "the iterative
algorithm was not used Jin the experiments they reporl] because the
intitial estimates (whase computation is trivial) are very accurate and
the iterauve scheme ofien failed 1o converge to the solution™,

(2.3)

3. Extremum Principles.

Brady and Hom [1983] survey the use of extremum principles in
image understanding. The choice of performance index or measure o
be extremizcd. and the dass of functions over which the extrcmi/ation
takes place, are justified by appealing to a model of the geometry or
photometry of image forming and constraints such as smoothness. For
example, the use of extremum principles in surface reconstruction is
based upon surface consistency theorems [Crimson 1981, Yuille 1983
and a thin plate model of visual surfaces [Brady and Hom 1983,
Terzopoulos 1983]. Urady and Yuille [1983| discuss the relationship
between extremum principles and Praognarz theories in perceptual
psychology.

There arc several plausible measures of a curve that might be
extremized in order to compute shape-from-contour. Confrary to
what appears to be a popular belief, given an elipse in the image
plane, / n“ds is not extremed in the plane that transforms the ellipse
into a circle [lirady and Yuille 1983, Appendix A]. Since elipses are
nomally perceived as slanted circles, we reject the square curvature
as a suitable measure.

Another possible measure is by Bamow and Tencnbaum
[1981, p89]. Assuming planarity (the torsion i is zero), it reduces to

de?
f (ds) d

The first strong objection to this measure is that it involves high-order
derivatives of the curve. This means it is overly dependent on small
scae behaviour. Consider, for example, a curve which is circular
except for a small kink. The circular part of the curve will contribute
a tiny proportion to the integral even when the plane containing
the curve is rotated. The kink, on the other hand, will contribute
an arbitrarily large proportion and so will dominate the integral no
matter how small it is compared with the rest of the curve. This is
clearly undesirable. For example, it suggests that the measure will be
highly sensitive to noise in the position and orientation of the points
forming the contour.

A second objection to the measure proposed by BaMow and
Tononbaum is that it is minimized by, and hence hes an intrinsic
preference for, straight lines, for which dk/ds zero. This means that
the measure hes a bias towards planes that comespond to the (non-
general) sideon viewing position. These planes arc perpendicular fo
the image plane and have slant = /2.

We bese our choice of measure on the following observations.

1. Contours that arc the projection of curves in planes with large
slant are most effective for eliciting a three-dimensional interpretation.

2. A curve is foreshorted by projection by the cosine of the slant
ange in the tilt direction, and not at all in the orthogonal direction.

We condude that three-dimensional interpretations are most
readily elicited for shapes that arc highly elongated in one direction.
Another way to express this idea is that the image contour hes large
asped ratio or is radially asymmetric. The measure we suggest will
pick out the plane orientation for which the curve is most compact
or most radially symmetric. Specifically, our measure is

_ (Area)

" (Perimeter)?’
This is a scae invariant number characteri/ing the curve. For all
possible curves it is maximized by the most symmetiic one, a circle.
This gives the measure an upper bound of 1/4r. Its lower bound is
clearly zero and it is achieved for a straight line. It follows that our
measure hes a buikin prejudice against sideon views for which the
slant is = /2.

(3.1)



In general, given a contour, our extremum principle will choose
the orientation in which the deprojected contour maximizes M. For
example an ellipse is interpreted as a slanted circle. The tilt ange
is given by the major axis of the ellipse. It is also straightforward
to show that a parallelogram coresponds to a rotated square. Brady
and Yuille [1983, Appendix B] show how several simple shapes arc
interpreted by the measure. In particular, an ellipse is interpreted as a
slanted circle, a parallelogram as a slanted square, and a triangle as a
slanted equilateral triangle. In Section 5 we extend the parallelogram
result o the more general case of skewed symmetry.

We note that the quantity M is commonly used in pattem
recognition and industrial vision systems [Ballard and Brown 1982 as
a feature that measures the compadness of an object. Furthermore,
we can show that the measue M defined in Eq. (3.1) is at the heart
of the geometric model in the maximum likelihood approach.

From Section 2, we see that the maximum likelihood approach
maximizes the product of a number of terms of form

fla)= — -2 32)
cor?(x — 714 con? omin*fer - - 1)

Differentiating the geometric mode! with respect to the arc length s.
along the image curve and sr along the rotated curve respectively we
obtain

L] d.l_l 1

wpdsy  fla) 33)
where K/ and KR arc the curvature at comesponding points of the
image contour and its deprojection in the rotated plane respectively.
In fact, KI = da/dsi and KR= dBdsR. There is no sigma or r
dependence in the numerator of equation (3.3). We can write each
tem nds as dsds/pds where p is the radius of curvature. Now
observe that pds/dsds is just a local computation of area divided by
perimeter squared! Hence maximizing each /(alpha) in the maximum
likelihood approach is equivalent to locally maximizing area over
perimeter squared. In secion (4) we will examine this connection
more rigorously.

4. Extremizing the Measure

We now wrile down the measure for o curve with arbitrary
arientation and then extremize with respect o the orientation,  Let
the unit normals to the image plane and e rotued plane be k and
n respectively. The slant o of the rotated plane is given by the scalar
product cosg = k- n.

let Ty and T be the contour in the rotated and image plancs.
A vector r in the image plane satisfics r- % = D, and is the projection
of a vector ¥ in the totated planc that satisfies ¥v-n = 0. Now 'y and
T, have {vector) areas Ay, and Ay are related by

_HAd
As] = =

In gencral there is no simple relutionship between the perimeters
analogous to that holding between the arcas, Nevertheless, we have
ArfPY = Ai/P% con0.

and so our extremum principle is equivalent to extremizing
cost @ Py, which we write as

J = fru {(“ ke + (I{In 'd'ga}i

We extremize this with tespect to the orientation n of the rotated
plane, maintaining the constraint thal » is a unit vector by a lL.agrange
multiplier A. Afier algebraic manipulation [Brady and Yuilie 1983],
this reduces to

We find
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2f{°°!2° + - e — K x (k ﬂ)f{“’s:a’ Fn- e

where t -= drf||dr|] is the unit langent W the bnage contour. [et the
unil vechurs in the = and y dhirections in the image plane be i and j
and let k be the nonnad o the image plane. The wngent vectar t and
the normal ncan he written:

t = cos ai -} sin aj

n=:ginocosri + sinoainyj 4 corok
where o is the tangent angie in the image. We now form the scalar
preducts of equation abuse with i and | (o oblain evenlually

i(—- B f[cm“ o - sin? ocos?{a — 1))} dr) =0 4.1
80\ cast o

i':1(——]»-- f[colza + uin? gcon{e — f}}idr) == 0 (4.2)
O\ cost o

o emphasize that they correspond to extremizing with respect to o
and r.

Te conclude this Section, we show thal these equalions are
similar. though not identical, o thase obtiined by the maximum
likelihoad method iy the limit as (he number of sampled wangents
tends to inAnity. Lo sce this we recall tat this inethod involves ¢x-
tremizing P Ale, 7) with respectta ¢ amdd £, Since the denominator is
independent of e and , this amounts W exiremizing D{A|a, 7)o, 7).
This is the same as extremizing log D{Aje, 1}, 7). We find

E — nlogeono + logsing — E log{coe®{a, — 1)+ cos? msin*{a - 1))
—1

where we have ignored Lactors of -+ which will vanish on differentiation.

Dividing E by n and wking the limit as n tends to infinity gives:

F = log coaafdr — f log[coaa[a R cos® csin,{a — 7))dr.
Using the identity:
cos’(a — 1) + cos® osin®(a — 1) = - cos’ o + ain® ocoa’(@ — 1)

pives
F = logeoro {dr — ?(log{r.v::nz o + ain® ocos? (& — r))dr

This formula is similar to Fgs 41 and 42. Thus we expect the
Extremum Method to give similar results to the Sampling Method
when the contour is sufficiently imegular. We arc currently carrying
out experiments to verify this.

5. Skew Symmetry

We now consider a more general dass of shapes for which the
maximum likelihood approach is not effective. Kanade [1981, sec.
6.2] has introduced skewed symmetries, which are two-dimensional
linear (affine) transformations of real symmetries. There is a bijective

between skew symmeties and images of symmetric
shapes that lie in planes oriented to the image plane. Kanade proposes
the heuristic assumption that a skew symmetry is interpreted as an
oriented real symmefry, and he considers the problem of computing
the slant and tilt of the oriented plane.

Denote the anges between the x-axis of the image and the
images of the symmetry axis and an axis orthogonal fo it (the skewed
fransverse axis) by a and B respectively. The orthogonality of the
symmetry and fransverse axes enable one constraint on the orientation
of the plane to be derived. Kanade uses gradient space (p,q)
(see Brady [1982] for references) to represent surface orientations.
He shows [Kanade 1981, p. 425] that the heuristic assumption is
equivalent to requiring the gradient (p, q) of the oriented plane to lie
on the hyperbola

pjcos’ [r.r_;_ﬁ_! — ghin? (02;,8) = — cos{a — B) (5.1
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o+
2

@ = —p ain[E-":,tE} -} qeosf

Py 4 quin( 212
a+ 8’

7 )
Kanade [1981, p. 426] further proposes that the vertices of the hy-
perbola, which comrespond to the least slanted orientation, are chosen
within this one-parameter family. This proposal is in accordance
with a heuristic observation of Stevens [1980]. In the special case
that the skew symmetry is a real symmetry, that is in the case that
a- fi = +4=/2 the hyperbola reduces to a pair of orthogonal lines
[Kanadc 1981, page 426] passing through the origin. In such cases
the slant is zero. In other words, Kanade's proposal predicts that real
symmetries are inevitably, interpreted as lying in the image plane, and
hence having zero slant. Inspection of Figure 1 shows that this is
not the case. A (symmetric) ellipse is typically perceived as a slanted
circle, particularly if the major and minor axes do not line up with
the horizontal and vertical.

Although Kanade's minimum slant proposal does not seem fo
be correct, there is evidence (for example [Stevens 19801) for Kanade's
assumption that skew symmetries are interpreted as real symmetries.
We can show that the assumption can in fact be deduced from our
Extremum Principle [Brady and Yuille 1983, Section 5]. As a corollary
we can determine the slant and tilt of any given skcwcd-symmetiie
figure [Brady and Yuillc 1983, Appendix CJ; only in special cases
docs it comespond to the minimum slant member of Kanade's one-
parameter family.

6. Interpreting Image Contours as Curved Surfaces

Figure le shows a number of contours that arc interpreted as
curved surfaces. In this section we discuss one method for extending
our extremum principle to this general case. The key observation,
as it wes for Wilkin [1981], is that our method can be applied
locally. To do this, we assume that the surface is locally planar.
At the surface boundary, comresponding to the deprojeclion of the
image contour, the binomial coincides with the surface normal. The
idea is to compute a local estimate of the surface nomal by the
extrcmum principle described in the previous sections and then to
use an algorithm, such as that developed by Terzopoulos [1982)
to interpolate the surface orientation in the interior of the surface.
Details of one implementation can be found in [Brady and Yuillc
1983].

P = peos(
6.2
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