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Abstract 
An extremum principle is developed that determines three-dimensional 
surface orientation from a two-dimensional contour. The principle 
maximizes (he ratio of the area to the square of the perimeter, a 
measure of the compactness or symmetry of the three-dimensional 
surface. The principle interprets regular figures correctly, it interprets 
skew symmetries as oriented real symmetries, and it is approximated by 
(he maximum likelihood method on irregular figures. 

1. Introduction 

An important goal of early vision is the computation of a rep­
resentation of the visible surfaces in an image, in particular the 
determination of the orientation of those surfaces as defined by their 
local surface normals [Brady 1982, Marr 1982]. Many processes 
contribute to achieving this goal, stereopsis and structure-from-motion 
being the most studied in image understanding. In this paper we 
consider the computation of shape-from-contour. Figure 1 shows a 
number of shapes that arc typically perceived as images of surfaces 
which are oriented out of the picture plane. The method we propose 
is based on a preference for symmetric, or at least compact, surfaces. 
Note that the contour does not need to be closed in order to be 
interpreted as oriented out of the image plane. Also, in general, 
contours are interpreted as curved three-dimensional surfaces. 

We develop an extremuin principle for determining three-
dimensional surface orientation from a two-dimensional contour. 
Initially, we work out thee extrcnium principle for the case that the 
contour is closed and that the interpreted surface is planar. Later, 
we discuss how to extend our approach to open contours and how to 
interpret contours as curved surfaces. 

The extremum principle maximizes a familiar measure of the 
compactness or symmetry of an oriented surface, namely the ratio 
of the area to the square of the perimeter. It is shown that this 
measure is at the heart of the maximum likelihood approach to 
shape-from-contour developed by Witkin |1981] and Davis, Janos, 
and Dunn [1982]. The maximum likelihood approach has had some 
success interpreting irregularly shaped objects. However, the method 
is ineffective when the distribution of image tangents is not random, 
as is the case, for example, when the image is a regular shape, such 
as an ellipse or a parallelogram. Our extrcmum principle interprets 
regular figures correctly. We show that the maximum likelihood 
method approximates the extrcmum principle for irregular figures. 

Kanade [1981, page 424] has suggested a method for determin­
ing the three-dimensional orientation of skew-symmetric figures, un­
der the "heuristic assumption" that such figures arc interpreted as 
oriented real symmetries. We prove that our extrcmum principle 
necessarily interprets skew symmetries as oriented real symmetries, 
thus dispensing with the need for any heuristic assumption to that 
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Figure 1. la. Two-dimensional contours that arc often interpreted as planes 
that are oriented with respect to the image plane. The commonly judged 
slant is shown next (o each shape, lb. Some unfamiliar shapes that are also 
interpreted as planes that are oriented with respect to the image plane, lc. 
Some shapes that are interpreted as curved three-dimensional surfaces. 

effect. Kanade shows that there is a one-parameter family of pos­
sible orientations of a skew-symmetric figure, forming a hyperbola 
in gradient space. He suggests that the minimum slant member of 
the one-parameter family is perceived. In the special case of a real 
symmetry, Kanade's suggestion implies that symmetric shapes are 
perceived as lying in the image plane, that is having zero slant. It is 
clear from the ellipse in figure 1 that this is not correct. Our method 
interprets real symmetries correctly. 

First, we review the maximum likelihood method. In Section 
3, we discuss several previous extrcmum principles and justify our 
choice of the compactness measure. In Section 4, we derive the 
mathematics necessary to cxtrcmi/e the compactness measure, and 
relate the extrcmum principle to the maximum likelihood method. 
In Section 5, we investigate Kanadc's work on skew symmetry. One 
approach to extending the extrcmum principle to interpret curved 
surfaces, such as that shown in Figure lc, is sketched in Section 6. 

This paper is an abbreviated version of [Brady and Yuille, 1983], 
which should be referred to for the details of derivations. In that 
paper we also discuss the psychophysical literature on slant estimation 
and lkcuchi's work on shape from texture. 

2. The Sampling Approach 
Witkin [1981] has treated the determination of shape-from-

contour as a problem of signal detection. Recently, Davis, Janos, 
and Dunn [1982] have corrected some of Witkin's mathematics and 
proposed two efficient algorithms to compute the orientation of a 
planar surface from an image contour. Witkin's approach uses a 
geometric model of (orthographic) projection and a statistical model 
of (a) the distribution of surfaces in space (statistics of the universe) 
and (b) of the distribution of tangents to the image contour. We 
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3. Extremum Principles. 
Brady and Horn [1983] survey the use of extremum principles in 

image understanding. The choice of performance index or measure to 
be extremizcd. and the class of functions over which the extrcmi/ation 
takes place, are justified by appealing to a model of the geometry or 
photometry of image forming and constraints such as smoothness. For 
example, the use of extremum principles in surface reconstruction is 
based upon surface consistency theorems [Crimson 1981, Yuille 1983] 
and a thin plate model of visual surfaces [Brady and Horn 1983, 
Terzopoulos 1983]. Urady and Yuille |1983| discuss the relationship 
between extremum principles and Pracgnanz theories in perceptual 
psychology. 

There arc several plausible measures of a curve that might be 
extremized in order to compute shape-from-contour. Contrary to 
what appears to be a popular belief, given an ellipse in the image 
plane, / n'2ds is not extremed in the plane that transforms the ellipse 
into a circle [lirady and Yuille 1983, Appendix A]. Since ellipses are 
normally perceived as slanted circles, we reject the square curvature 
as a suitable measure. 

Another possible measure is proposed by Barrow and Tcncnbaum 
[1981, p89]. Assuming planarity (the torsion i is zero), it reduces to 

The first strong objection to this measure is that it involves high-order 
derivatives of the curve. This means it is overly dependent on small 
scale behaviour. Consider, for example, a curve which is circular 
except for a small kink. The circular part of the curve will contribute 
a tiny proportion to the integral even when the plane containing 
the curve is rotated. The kink, on the other hand, will contribute 
an arbitrarily large proportion and so will dominate the integral no 
matter how small it is compared with the rest of the curve. This is 
clearly undesirable. For example, it suggests that the measure will be 
highly sensitive to noise in the position and orientation of the points 
forming the contour. 

A second objection to the measure proposed by BarVow and 
Tcncnbaum is that it is minimized by, and hence has an intrinsic 
preference for, straight lines, for which dk/ds zero. This means that 
the measure has a bias towards planes that correspond to the (non-
general) sideon viewing position. These planes arc perpendicular to 
the image plane and have slant 

We base our choice of measure on the following observations. 
1. Contours that arc the projection of curves in planes with large 

slant are most effective for eliciting a three-dimensional interpretation. 
2. A curve is foreshorted by projection by the cosine of the slant 

angle in the tilt direction, and not at all in the orthogonal direction. 
We conclude that three-dimensional interpretations are most 

readily elicited for shapes that arc highly elongated in one direction. 
Another way to express this idea is that the image contour has large 
aspect ratio or is radially asymmetric. The measure we suggest will 
pick out the plane orientation for which the curve is most compact 
or most radially symmetric. Specifically, our measure is 

(3.1) 

This is a scale invariant number charactcri/.ing the curve. For all 
possible curves it is maximized by the most symmetric one, a circle. 
This gives the measure an upper bound of Its lower bound is 
clearly zero and it is achieved for a straight line. It follows that our 
measure has a buikin prejudice against sideon views for which the 
slant is 
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In general, given a contour, our extremum principle will choose 
the orientation in which the deprojected contour maximizes M. For 
example an ellipse is interpreted as a slanted circle. The tilt angle 
is given by the major axis of the ellipse. It is also straightforward 
to show that a parallelogram corresponds to a rotated square. Brady 
and Yuille [1983, Appendix B] show how several simple shapes arc 
interpreted by the measure. In particular, an ellipse is interpreted as a 
slanted circle, a parallelogram as a slanted square, and a triangle as a 
slanted equilateral triangle. In Section 5 we extend the parallelogram 
result to the more general case of skewed symmetry. 

We note that the quantity M is commonly used in pattern 
recognition and industrial vision systems [Ballard and Brown 1982] as 
a feature that measures the compactness of an object. Furthermore, 
we can show that the measure M defined in Eq. (3.1) is at the heart 
of the geometric model in the maximum likelihood approach. 

From Section 2, we see that the maximum likelihood approach 
maximizes the product of a number of terms of form 

(3.2) 

Differentiating tne geometric model with respect to the arc length s; 
along the image curve and sr along the rotated curve respectively we 
obtain 

(3.3) 

where K/ and KR arc the curvature at corresponding points of the 
image contour and its deprojection in the rotated plane respectively. 
In fact, KI = da/dsi and KR = dBdsR. There is no sigma or r 
dependence in the numerator of equation (3.3). We can write each 
term nds as dsds/pds where p is the radius of curvature. Now 
observe that pds/dsds is just a local computation of area divided by 
perimeter squared! Hence maximizing each /(alpha) in the maximum 
likelihood approach is equivalent to locally maximizing area over 
perimeter squared. In section (4) we will examine this connection 
more rigorously. 

4. Extremizing the Measure 

This formula is similar to Fqs 4.1 and 4.2. Thus we expect the 
Extremum Method to give similar results to the Sampling Method 
when the contour is sufficiently irregular. We arc currently carrying 
out experiments to verify this. 

5. Skew Symmetry 

We now consider a more general class of shapes for which the 
maximum likelihood approach is not effective. Kanade [1981, sec. 
6.2] has introduced skewed symmetries, which are two-dimensional 
linear (affine) transformations of real symmetries. There is a bijective 
correspondence between skew symmetries and images of symmetric 
shapes that lie in planes oriented to the image plane. Kanade proposes 
the heuristic assumption that a skew symmetry is interpreted as an 
oriented real symmetry, and he considers the problem of computing 
the slant and tilt of the oriented plane. 

Denote the angles between the x-axis of the image and the 
images of the symmetry axis and an axis orthogonal to it (the skewed 
transverse axis) by a and B respectively. The orthogonality of the 
symmetry and transverse axes enable one constraint on the orientation 
of the plane to be derived. Kanade uses gradient space (p,q) 
(see Brady [1982] for references) to represent surface orientations. 
He shows [Kanade 1981, p. 425] that the heuristic assumption is 
equivalent to requiring the gradient (p, q) of the oriented plane to lie 
on the hyperbola 
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where 

(5.2) 

Kanade [1981, p. 426] further proposes that the vertices of the hy­
perbola, which correspond to the least slanted orientation, are chosen 
within this one-parameter family. This proposal is in accordance 
with a heuristic observation of Stevens [1980]. In the special case 
that the skew symmetry is a real symmetry, that is in the case that 

the hyperbola reduces to a pair of orthogonal lines 
[Kanadc 1981, page 426] passing through the origin. In such cases 
the slant is zero. In other words, Kanade's proposal predicts that real 
symmetries are inevitably, interpreted as lying in the image plane, and 
hence having zero slant. Inspection of Figure 1 shows that this is 
not the case. A (symmetric) ellipse is typically perceived as a slanted 
circle, particularly if the major and minor axes do not line up with 
the horizontal and vertical. 

Although Kanade's minimum slant proposal does not seem to 
be correct, there is evidence (for example [Stevens 19801) for Kanade's 
assumption that skew symmetries are interpreted as real symmetries. 
We can show that the assumption can in fact be deduced from our 
Extremum Principle [Brady and Yuille 1983, Section 5]. As a corollary 
we can determine the slant and tilt of any given skcwcd-symmetrie 
figure [Brady and Yuillc 1983, Appendix C]; only in special cases 
docs it correspond to the minimum slant member of Kanade's one-
parameter family. 

6. Interpreting Image Contours as Curved Surfaces 
Figure Ie shows a number of contours that arc interpreted as 

curved surfaces. In this section we discuss one method for extending 
our extremum principle to this general case. The key observation, 
as it was for Wilkin [1981], is that our method can be applied 
locally. To do this, we assume that the surface is locally planar. 
At the surface boundary, corresponding to the deprojeclion of the 
image contour, the binomial coincides with the surface normal. The 
idea is to compute a local estimate of the surface normal by the 
extrcmum principle described in the previous sections and then to 
use an algorithm, such as that developed by Terzopoulos [1982J 
to interpolate the surface orientation in the interior of the surface. 
Details of one implementation can be found in [Brady and Yuillc 
1983]. 
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