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ABSTRACT 

An important problem in computer vision, that of edge 
linking for contour or line drawing extraction, is approached 
from the point of view of a graph labeling problem. A 
Lagrange dual approach to an integer programming 
formulation of this problem will be presented. Although the 
inherent complexity of the problem will not be reduced, the 
techniques presented below will allow for a partial 
decomposition of the solution algorithm. Furthermore, the 
approach which will be presented appears to have certain 
advantages over existing line tracking and graph searching 
algorithms. 

I INTRODUCTION 

Two basic ideas will be pursued in the following 
discussion: The first involves an approach to the problem of 
edge linking. The second involves an introduction to the use 
of dual methods for combinatorial optimization problems 
relevant to issues of artificial intelligence. In order to relate 
these two concepts, edge linking will be modeled in terms of 
a graph labeling problem which will then allow for the direct 
application of the proposed dual methods. 

A. The Problem of Edge Linking in Computer Vision 

The derivation of contours describing the outlines and 
the salient features of objects Is an essential component of 
most model based systems. Once these outlines have been 
derived, well established classification techniques, such as 
syntactic pattern recognition based spline primitives 
(Perkins, 1979, Fu 1974), Fourier shape descriptors (Zahn 
and Roskles, 1972), or generalized Hough transforms 
(Ballard, 1981), can be used to recognize the object from a 
set of known models. It is well known, however, that the 
edge detection process Is not in Itself sufficient to describe 
the required contours, as a primitive edge map will almost 
always contain broken contours or spurious edges. It is for 
this reason that edge linking is considered to be one of the 
most basic problems in computer vision (Marr, 1975). 
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Unfortunately, the problem appears to be as difficult as 
It is important. Although, the inherent difficulty does not 
appear to be so much in the conceptual problem of finding a 
good model to represent the contour or signal, in the 
presence of noise, but rather with the computational 
complexity of the algorithms which extract it. For example, 
in one model based system, the edge extraction and linking 
required approximately 99% percent of the overall 
computational effort (Perkins, 1979). In fact, most current 
edge linking approaches are based on combinatorial search 
or tracking algorithms wherein the points in the state space 
correspond to pixels in the image (Ballard and Brown, 1982). 
The search is usually guided by an evaluation function which 
is in some manner related to the over all length or strength 
of the contour in the original edge map. 

It is not surprising that computational difficulties arise 
in conjunction with a search defined on a space the size of 
a typical image. If it is assumed, therefore, that edge 
linking is inherently a problem in combinatorial optimization, 
and on the other hand, a fundamental problem in computer 
vision, then research into means by which the search can be 
implemented in a highly parallel manner, despite the 
implications for the cost of the supporting hardware, is 
justified. Another basic problem with existing strategies Is 
that they may encounter difficulties if, for example, the 
search is Incorrectly rooted, as will occur if the starting 
point happens to be a noise point, or if, because of some 
ancillary feature in the image, the search continues down a 
strong, but false path. The focus of the work described 
below is in addressing these basic issues. 

B. Dual Approaches to Combinatorial Search Problems 

Because it does not appear that existing graph 
searching methods can be implemented in a parallel manner, 
the approach proposed here is to perform the search in an 
associated dual space. In order to do so, the problem is 
first formulated as an integer programming problem. A 
Lagrange dual (Bazaraa and Shetty, 1 979) realization of the 
problem is then presented. In accordance with price 
directed decomposition theory (Shapiro, 1979), the 
particular form used will allow for the decentralized 
computation of the solution, at least in the initial stages of 
the process. Although graph searching problems occur In 
almost every area of artificial intelligence, the techniques 
presented here are particularly suited to those combinatorial 
search problems where the entire state space is known in 
advance. A graph labeling problem, where the graph is 
defined with respect to an Image raster, is an example of 
this situation. 
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Although several viewpoints on the continuous graph 
labeling problem have been presented (Rosenfeld et al. 
1976, Ullman 1979, and Davis and Rosenfeld 1976), In the 
definition used here, the problem will be to find that 
consistent labeling such that the sum of the initial labeling 
value Is maximum. This definition of the problem is 
attractive because a solution can be extended to many 
established classification rules (Diamond et al., 1982). 
Finally, in the same spirit as Ullmans "simple local 
processes," (Ullman, 1979) we will be interested in 
developing decentralized algorithms which can be 
Implemented on an SIMD or "cellular" architecture. 

As defined above, continuous graph labeling is easily 
shown to be NP-complete. The combinatorial nature of the 
problem will preclude, therefore, the derivation of a local or 
cooperative algorithm which guarantees a globally 
consistent labeling in the general case. This, then is the 
major difficulty of the edge linking strategy proposed here. 
However, as will be demonstrated, the technique described 
below can be used to significantly improve an initial, noisy 
edge map, and if a globally consistent labeling Is required, 
the dual approaches suggested below may be used as a 
front end for further processing. In this sense, these 
techniques may be thought of in the same vein as the 
discrete relaxation processes (Rosenfeld et al., 1976, 
Waltz, 1975) extended to the continuous domain, which 
serve to reduce the combinatorial search space but do not 
necessarily guarantee a globally consistent labeling. 
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only one of these labels can be chosen at once. The same 
holds for the set consisting of label on vertex vi and 
labels and on vertex Such constraints will be 
referred to as pairwise maximally Inconsistent (PMI) sets of 
labels. The PMI sets can be determined, in general, by 
considering the product graph with the addition of edges 
connecting every label on a given vertex with every other 
label on that vertex. The PMI sets then correspond to the 
maximal cliques of this graph (refer to figure 3 ) . 

In the problem formulated in terms of PMI set 
constraints, there is a dual variable associated with each 
PMI set. In general there will be fewer PMI sets than pairs 
of invalid labels between a given pair of vertices. 
Therefore, by restructuring the problem in this manner, there 
will also be fewer dual variables, and this will reduce the 
amount of memory required for a given application. An 
advantage in computation can also be gained as will be 
discussed below. Finally, with this formulation, a 
relationship exists between this problem and the discrete 
relaxation processes, which can be used to understand the 
behavior of the solution algorithms. 

Ill MINIMIZING THE DUAL 

We present below an outline of the algorithm used to 
minimize the dual function. Further details are available In a 
preliminary report (Diamond, 1983), although work on certain 
aspects of this approach is still in progress. 

Figure 3 : augmented complement graph showing maxi­
mal cliques. Edges exist between label and on vertex 
v1 and and on vertex v2 but are not shown. 
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A. The Descent Algorithm 

Each iteration of the descent procedure involves one 
"pass" over the image. A pass involves considering all 
possible pairs of adjacent vertices, or equivalently, edges in 
the graph. Any set of disjoint pairs of vertices (or edges) 
can be considered simultaneously, hence the partial 
decomposition of the algorithm. In considering any such 
pair, say vertex v1 and vertex v1 the following procedure is 
used: 
[1] Calculate the current labeling values, rij, for all labels 

on vertex V1 and V1'. 
[2] Let mi be the maximum of all current labeling values 

associated with labels on vertex V1. Likewise, let m, 
be the maximum of all current labeling values 
associated with labels on vertex vi'. 

[3] Define the set M; to be the set of labels on vertex v, 
whose current labeling value is equal to nrt|. Likewise, 
define the set M| to be the set of labels on vertex vj 
whose current labeling value is equal to my. 

[4] If the sets of labels, Mt and Mj are not contained in a 
PMI set, then no local descent direction exists, 
otherwise, 

[6] Let L| be the set of labels in a covering PMI set 
associated with vertex Vj and Lj be the set of labels in 
that set associated with vertex vi. Let 

[6] Define 

[7] Define 

and finally, 

[8] The descent step is implemented by adding 6 to the 
dual variable associated with the covering PMI set 
constraint. 

An interpretation of this algorithm can be given as 
follows: Initially, one chooses that label at each vertex 
with the greatest associated labeling value, that is, 
according to the local maxima selection process. If the 
resulting labeling is consistent then the original problem has 
been solved, that Is, the resulting labeling is that globally 
consistent labeling such the sum of the Initial labeling 
values is maximum. Otherwise, the strategy involved is to 
"penalize" the labeling values associated with Invalid pairs 
of labels across adjacent vertices in the graph. This 
penalty Is implemented through equations (2.7) by 
Increasing the value of the associated dual variable. The 
hope Is, that reducing the values of the labels which 
participate in inconsistent labeling pairs will, at the next 
Iteration, result In different labels being chosen at the 
respective vertices. This process will then reduce the 
overall number of Inconsistent labeling pairs. 

Although the algorithm appears on the surface to be 
quite detailed, In fact It is very easy and efficient to 
Implement. By bit encoding the labels at each vertex 

participating in a given operation (e. g., sets M1 and M|) as 
well as the labels in a given PMI set, the processing 
required for a given pair of vertices can be reduced to a 
couple dozen machine instructions per vertex pair per 
iteration. For the label set discussed in the introduction, 
only 8 PMI sets are required to cover all the constraints 
between a given pair of vertices, so the search required to 
find a cover is minimal. Finally, from the basic operations 
involved it can be estimated that this algorithm will run well 
over 100 times faster than any of the algorithms associated 
with the so called "relaxation labeling" processes. 

B. Spacer Steps 

One of the immediate drawbacks with the algorithm 
given above is that it will generate fixed points with 2 or 
more labels with associated labeling values tied for the 
greatest value at each vertex in the graph. When this 
happens, and when the resulting sets of chosen labels 
cannot be covered by a PMI set at any vertex, then the 
dual can not be minimized any further on a local basis. In 
this case, it is not possible, in general, to choose a label 
from among those which are tied with the best current 
labeling value except on the basis of informal heuristics. 
For this reason a "spacer step" will be used after every 
iteration of the descent algorithm given above. In the 
experiments described below the spacer step consists of 
an Iteration of the "average-max" updating rule (Diamond, 
1983) which updates the current labeling value cj of a 
label Xj on vertex v, by: 

Thus, a processor performing the updating for label Xj on 
vertex v, would generate N values to be averaged (along 
with the current labeling value one such value 
corresponding to each vertex in the neighborhood, by taking 
the maximum of the current labeling values associated with 
labels consistent with on vertex vj. 

If Is the current labeling chosen by the local maxima 
selection process and is the sum of the associated 
current labeling values, then the average-max updating rule 
can be shown to have the following properties: 
[1] If it is not a consistent labeling, then the sum of the 

current labeling values with .. will have decreased 
after the next iteration, that is 

[2] If is consistent then i = c(Xt) and the labeling 
selected at each iteration t > t will be the same. 

[3] From [1] and [2] the value is a non-increasing 
function of t. Furthermore, it can be shown that the 
value associated with a consistent labeling will 
increase at each iteration, If that labeling is not the 
one selected by the local maxima selection process. 
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IV EXPERIMENTS 

Figure 4a shows a scene taken from the General 
Motors, "Bin of parts" database after the application of 
feature detectors sensitive to each of the scene events 
shown in figure 1. Those labels at each pixel such that the 
corresponding feature detector outputs are maximal are 
shown in this figure. Figures 4b and 4c are the results of 
choosing the best labels at each pixel after 8 and 20 
iterations of the procedure described above. In the case of 
labels tied for the best at each vertex, preference was 
given to the label corresponding to the blank pixel. 
Otherwise, that label which was consistent with the 
greatest number of labels on vertices in the neighborhood 
was chosen. Beyond this, ties are broken arbitrarily. 

V DISCUSSION 

We have described an approach to the problem of edge 
linking which is based on the graph labeling model. A 
Lagrange dual approach to the integer programming 
formulation of the associated continuous graph labeling 
problem has been discussed. Obviously much detail has 
been left out as the intention here has been to limit this 
presentation to an overview of current results related to an 
ongoing research effort. 

The approach described here, as is the case with many 
of the other cooperative algorithms applied to problems in 
computer vision, the relaxation labeling processes in 
particular, is heuristic in nature. Nonetheless, the existence 
of an underlying problem definition as well as the direct 
relationship between the model and the application is a 
major advantage which this approach has over the 
relaxation labeling algorithms. In the latter case such a 
definition is not present. There are other advantages. For 
example, because the dual function is convex, one can with 
certain precautions, guarantee that the descent algorithm 
converges. Although we can offer no theoretical limit on the 
convergence time (i.e. the number of iterations required 
before the labeling chosen by a local maxima selection 
process does not change), it has been observed that the 
algorithms described here will converge on the order of 16 
to 20 iterations for the examples given above. These 
figures appear to be independent of the particular problem. 

However, there are also problems in using heuristic 
techniques to solve a combinatorial optimization problem In a 
decentralized manner. For example, these algorithms will 
almost always result in a fixed point with multiple labels tied 
for the maximum value. As noted previously, in this case 
there is no basis on which to make an intelligent labeling 
choice in a purely local manner even though there may exist 
a globally consistent labeling among the labels tied for the 
best value. Finally, the process is somewhat sensitive to 
the amount of noise in the image, and very sensitive to the 
way in which the initial labeling values are derived. 

If the main interest is in the application itself, then a 
more sensible approach would be to relax the requirement of 
a totally decentralized solution, that is, to Incorporate some 
form of an enumeratlve scheme as with the graph searching 
methods described in the Introduction. Even so, the graph 
labeling model of the edge linking application offers an 

advantage since many aspects of a branch and bound 
approach can then be implemented In a decentralized 
manner. For example, a variation of the Lagrange dual 
algorithm presented here could be used as a means for 
generating bounds in a branch and bound approach 
(Geoffrlon, 1974), and the discrete relaxation process 
(Rosenfeld et al., 1976) could be used as part of a 
feasibility test of a given candidate subproblem. 

Furthermore, this model offers the potential of adapting 
techniques from other classes of 0-1 integer programs to 
the edge linking application. The graph labeling problem, as 
defined here, is a special case of the well established set 
partitioning problem (Balas and Padberg, 1974). It is also 
easily transformed to the vertex and set packing problems, 
as well as the set covering problem, for which heuristic 
algorithms to handle large scale situations exist. 

In order to make the general model more useful, a 
better understanding of the graph labeling problem is 
needed. Current efforts towards a formal understanding of 
this problem involves both an investigation into the nature 
of its linear programming relaxation, which is the problem of 
section 2.1 with equation (2.4) replaced by: 

and the relationship between the Lagrange dual and this 
relaxation. Although, aspects of the algorithm presented 
above are still not understood, the results from the 
application of these techniques to real world scenes, for 
example, the industrial scenes shown in section 4, are 
encouraging. Finally, some effort is being directed towards 
developing techniques for solving the problem when the 
underlying graph has a particular regular structure such as 
that corresponding to an image, which has pronounced rows 
and columns. When this occurs, a bidirectional dynamic 
programming approach (Diamond, 1983) can be combined 
with the integer programming algorithms described here to 
derive more robust algorithms. 
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