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ABSTRACT

An important problem in computer vision, that of edge
linking for contour or line drawing extraction, is approached
from the point of view of a graph labeling problem. A
Lagrange dual approach to an integer programming
formulation of this problem will be presented. Although the
inherent complexity of the problem will not be reduced, the
techniques presented below will allow for a partial
decomposition of the solution algorithm. Furthermore, the
approach which will be presented appears to have certain
advantages over existing line tracking and graph searching
algorithms.

I INTRODUCTION

Two basic ideas will be pursued in the following
discussion: The first involves an approach to the problem of
edge linking. The second involves an introduction to the use
of dual methods for combinatorial optimization problems
relevant to issues of artificial intelligence. In order to relate
these two concepts, edge linking will be modeled in terms of
a graph labeling problem which will then allow for the direct
application of the proposed dual methods.

A. The Problem of Edge Linking in Computer Vision

The derivation of contours describing the outlines and
the salient features of objects Is an essential component of
most model based systems. Once these outlines have been
derived, well established classification techniques, such as
syntactic pattern recognition based spline primitives
(Perkins, 1979, Fu 1974), Fourier shape descriptors (Zahn
and Roskles, 1972), or generalized Hough transforms
(Ballard, 1981), can be used to recognize the object from a
set of known models. It is well known, however, that the
edge detection process Is not in ltself sufficient to describe
the required contours, as a primitive edge map will almost
always contain broken contours or spurious edges. It is for
this reason that edge linking is considered to be one of the
most basic problems in computer vision (Marr, 1975).
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Unfortunately, the problem appears to be as difficult as
It is important. Although, the inherent difficulty does not
appear to be so much in the conceptual problem of finding a
good model to represent the contour or signal, in the
presence of noise, but rather with the computational
complexity of the algorithms which extract it. For example,
in one model based system, the edge extraction and linking
required approximately 99% percent of the overall
computational effort (Perkins, 1979). In fact, most current
edge linking approaches are based on combinatorial search
or tracking algorithms wherein the points in the state space
correspond to pixels in the image (Ballard and Brown, 1982).
The search is usually guided by an evaluation function which
is in some manner related to the over all length or strength
of the contour in the original edge map.

It is not surprising that computational difficulties arise
in conjunction with a search defined on a space the size of
a typical image. If it is assumed, therefore, that edge
linking is inherently a problem in combinatorial optimization,
and on the other hand, a fundamental problem in computer
vision, then research into means by which the search can be
implemented in a highly parallel manner, despite the
implications for the cost of the supporting hardware, is
justified. Another basic problem with existing strategies Is
that they may encounter difficulties if, for example, the
search is Incorrectly rooted, as will occur if the starting
point happens to be a noise point, or if, because of some
ancillary feature in the image, the search continues down a
strong, but false path. The focus of the work described
below is in addressing these basic issues.

B. Dual Approaches to Combinatorial Search Problems

Because it does not appear that existing graph
searching methods can be implemented in a parallel manner,
the approach proposed here is to perform the search in an
associated dual space. In order to do so, the problem is
first formulated as an integer programming problem. A
Lagrange dual (Bazaraa and Shetty, 1 979) realization of the
problem is then presented. In accordance with price
directed decomposition theory (Shapiro, 1979), the
particular form used will allow for the decentralized
computation of the solution, at least in the initial stages of
the process. Although graph searching problems occur In
almost every area of artificial intelligence, the techniques
presented here are particularly suited to those combinatorial
search problems where the entire state space is known in
advance. A graph labeling problem, where the graph is
defined with respect to an Image raster, is an example of
this situation.
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C. Graph laball a Ankin: {am

A graph labeling problam is one In which a unique label
A from some set, A, of labels must be aasigned to each
vertax of a graph, G =(V,E), with vertex set
v =lvy,va,---, vy}, and an edge set ELV xV. In the
application example of saction IV, the graph is defined In
torms of an Image with sach pixel considerad to be
adjacent to its aelght immediate neighbors. The label aet in
this case corresponds to the assertion of the existence of
scene avents, which may Include line segments, elbows, and
comara at varicus orlentations at each pixel, as shown In
figura 1. A conatraint network (Montanari, 1874,
Mackworth, 1977, Freudar, 1978) 13 constructed from the
graph G by aasociating with sach sdge vw c E a binary
reiation, Ry, known as a constra/nt relation, dafined on the
label sat, Ry C A x A. A pair of labels {};,A') on adjacent
vertices v, and vy are consistent It (M,A) €A and
inconsistent otherwlse. For this application, a pair of labels
s consistent If and onty If an adgea segmenta is not broken
across a plxel boundary as glven, for example, In Diamond et
al. (1082). A /abeling A = AVAZ -« + A" which assigns Iabal
A to vertex v| is consistant  every palr of labels on
adjacant verticas Iz consistent. Note that within the
context of this application, a labeling will be consistent if
and only if It deacribas a smooth contour. Associated with
each label Ay on each vertex v la an Initial tabeling value, or
marit figure, c;. For this application, the merit figures are
assumed genarated by feature detactors senaltive to the
varicus scens events as shown in figure 1.

-
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Figure 1: primitive features corresponding to labels for
the edpe linking appiication.

Although several viewpoints on the continuous graph
labeling problem have been presented (Rosenfeld et al.
1976, Ulman 1979, and Davis and Rosenfeld 1976), In the
definition used here, the problem will be to find that
consistent labeling such that the sum of the initial labeling
value Is maximum. This definition of the problem is
attractive because a solution can be extended to many

established classification rules (Diamond et al., 1982).
Finally, in the same spirit as Ulmans "simple local
processes," (Ullman, 1979) we will be interested in

developing decentralized algorithms which can be
Implemented on an SIMD or "cellular" architecture.

As defined above, continuous graph labeling is easily
shown to be NP-complete. The combinatorial nature of the
problem will preclude, therefore, the derivation of a local or
cooperative  algorithm which guarantees a globally
consistent labeling in the general case. This, then is the
major difficulty of the edge linking strategy proposed here.
However, as will be demonstrated, the technique described
below can be used to significantly improve an initial, noisy
edge map, and if a globally consistent labeling Is required,
the dual approaches suggested below may be used as a
front end for further processing. In this sense, these
techniques may be thought of in the same vein as the
discrete relaxation processes (Rosenfeld et al., 1976,
Waltz, 1975) extended to the continuous domain, which
serve to reduce the combinatorial search space but do not
necessarily guarantee a globally consistent labeling.

n ran \ ch to the Graph Labslin

Probigm

A.  General Formulation

For tha purposa of the following discussion, It Is
asaumed that the graph labeling problem Is defined with
respect to a graph with n vertices, |V]| = n, and a label ast
with m labels, |A{ = m. Indices such as | and ' wili always
be used In conjunction with labels, and Aj and A;: will denota
slementa of tha labe! set A 'n a simliar manner, Indices
such as | and ' will always be uaed in conjunction with
vertices, and v, and v; Wl danote elaments of the vertex
sat V. Let cy € R ba tha Inttial strength measure or merit
figure associated with label ) on vertex v;. The integer
programming formulation of the continuous graph labaling
problem la then given by:

Maximize:
oy Xy 2.1
vEV NEA
Subject to:
Y oxy =t 110 22
NEA
xy + xqp =1 2.3

for every Inconalstent pair of labela (A,2) on adjacent
verticea v; and vy.

xy € [0,1), I=10uuly, J=1,0..m 2.4



Az given by constraint (2.4), Xy la a zaro-one declslon
varlable assoclated with Iabel Al on vertex v;. In the
solution, x; = 1, If label A) Is to be salected for vertex v,
Thus, constraint {2.2) aerves to guarantee that exactly one
label is assigned to each vertex and constraint (2.3)
aarves to spaclly that for adjacent varticas v; and vy a pair
of iabels ); and )\j- ara not simultanecualy assignad to these
vaertices if thay ars not consistent.

Let

K= {x11l XKigrsmany xnm)

be the vector of decision varlables. Furthermore, let u be
the set of all four-tuples |Jf)' corresponding to invalid pairs
of jabels (A\,%) on adjacent vertices v, and v. The dual
will be dafined with respect to a vector u, which consists of
components uj, one such componant for each Iff) € s
According to the theory, the primal vector x and dual vector
u are usad In the definition of an auxiliary function:

plxw) = 3% ey xy = F e (xy + xpp = 1) 2.6
) e

By simple algebralc manipulation, p(x,u) is seen to have the
form

v(‘,u) = E E ru x“ + 2 Uy 2.8
vEV .\‘EA e
whaere
fy = - E Uyry 2.7
"= Uk epa(ll) !

Iz the current merlt figure or labeling value, ralative to the
dual vector u. Also, L)) C u ls the aet of all 4-tuples
coiresponding to invalid pairs of labels, in which the labei Ay
on vertex v| participates. The Lagrange dual form of the
original problam is then deflned to ba:

Minimize: 8{u), u=0

Where:
8{u) = sup § wix,u) | 2.8

=t )l? A II'F’EP torr

Here, X Ia the set of all -1 vectors x, which correspond to
(unambiguous) labealinga, that |3, constraint {2.2) |a satlafied
by every x € X. Note, howevesr, that x € X nead not be &
consistent labeling. Thus x nesd not necessarlly satisfy
conatraints (2.3).

The form of the dual given by equations (2.8) allows
for local determination of thoas x € X at which the maximum
value of p(x,u} occurs, for a ghven u. This is because the ry
can ba computed on a lacal basls, and 3 uyy is indepandent
of x. Thus deriving the primal valuea assoclated with a
piven u la equivaiant to choosing a label, 3; at each vertex
such that the current iabeling value r; is maximal, a process
often referrad to as local maxima aelaction (Zucker ot al.,
1078).

8. Example Problem

A simple example to Ilustrate the formulation and
notation used above Is given In figures 2a, and 2b, Figure
2s is 2 | V] x | Al product graph gives each (abal on each
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vertax expilcitly, as well as the paira of consistont iabela
by connecting them with a solid line. Figure 2b shows the
complement of this graph, In which /nconsistent palra of
labels are connected by dotted lines. Because of tha
definition of the dual function, it becomes more Important to
concentrate on the complement graph.

The primal statemant of this problem becomes:

Maximize:

C11X11 + CipXqz + ©13X93 T C21X2y + CaaXag + Ca3Xas

Subject to:
Xyq + g+ Hp =1 2.8

Xz1 + Xz + X33 =1

Xy1 + Xy =1

X12 + %21 5 1 2,10
Xy + Xap <1
xy € [0,14 21
The Lagrange dual formulation is:
Minimize:
O{uy121, Uy 221, Uy122) = en 1 plxu) 4,
v, v,
A A
Az Az
Aa v AS

Figure 2a product graph for the conatraint network of
the exampie.
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with:

gla,u) =

xyq (611 —ugz1 —upz2) + iz ez —uza) + Xigeqa +
xz1 (€21 — Ur121 — Ui221) + Xzp (P22 — Ur122) + Xgy €28 +

Ur12y + U122 + U2

in view of eguation (2.10), the definition of ¢(x,u), and
figura 2b It can be seen that there Ils a dual variable
associated with each such edge between invalid pairs of
labels. The current labeling value associated with each
fabel on each vertex Is the the Initial labeling value minus
the sum of all dual values assoclataed with edges in the dual
graph.

C. PM] Sat

The continuous graph iabeling problem can be
reformulated by combining constraints, to tha extent
posathle on & local basla. For axampls equation (2.10) of
the axample in section 2.2, can be replaced by

Xyq + Xz +Xp1 5 1 2.10a

Xy1 +Xz1 + X257

Note that the set conasisting of labals A; and ), on
vertex vy and label iy on vertex vz has the property that

Figure 2b: complement graph for the constralnt network
of the axampis.

only one of these labels can be chosen at once. The same
holds for the set consisting of label Ay on vertex vi and
labels Ay and Az on vertex wg. Such constraints will be
referred to as pairwise maximally Inconsistent (PMI) sets of
labels. The PMI sets can be determined, in general, by
considering the product graph with the addition of edges
connecting every label on a given vertex with every other
label on that vertex. The PMI sets then correspond to the
maximal cliques of this graph (refer to figure 3 ) .

In the problem formulated in terms of PMI set
constraints, there is a dual variable associated with each
PMI set. In general there will be fewer PMI sets than pairs
of invalid labels between a given pair of vertices.
Therefore, by restructuring the problem in this manner, there
will also be fewer dual variables, and this will reduce the
amount of memory required for a given application. An
advantage in computation can also be gained as will be
discussed below. Finally, with this formulation, a
relationship exists between this problem and the discrete
relaxation processes, which can be used to understand the
behavior of the solution algorithms.

Il MINIMIZING THE DUAL

We present below an outline of the algorithm used to
minimize the dual function. Further details are available In a
preliminary report (Diamond, 1983), although work on certain
aspects of this approach is still in progress.

A’L.J &A,

Figure 3 : augmented complement graph showing maxi-
mal cliques. Edges exist between label Ay and Ag on vertex
v1and Ay and Ag on vertex v2 but are not shown.

'Noto that thers will always be & maximal olique ssscclaigd with the
sot of sl Mbels at & given verisx. The resuliihg constrainty x = 1
s redundant, h view of aquations (2.2). h’m\



A. The Descent Algorithm

Each iteration of the descent procedure involves one
"pass" over the image. A pass involves considering all
possible pairs of adjacent vertices, or equivalently, edges in
the graph. Any set of disjoint pairs of vertices (or edges)
can be considered simultaneously, hence the partial
decomposition of the algorithm. In considering any such
pair, say vertexv1 and vertex v1 the following procedure is
used:

[1] Calculate the current labeling values, rij, for all labels
onvertexV1and V1.

[2] Let mi be the maximum of all current labeling values
associated with labels on vertex V1. Likewise, let m,
be the maximum of all current labeling values
associated with labels on vertex vi'.

[3] Define the set M; to be the set of labels on vertex v,
whose current labeling value is equal to ni. Likewise,
define the set M| to be the set of labels on vertex vj
whose current labeling value is equal to my.

[4] If the sets of labels, M; and Mj are not contained in a
PMI set, then no local descent direction exists,
otherwise,

[6] Let L| be the set of labels in a covering PMI set
associated with vertex Vj and Lj be the set of labels in
that set associated with vertex vi. Let

U=A~L @W=A-L.

[6] Define
m, = maxfe: e, M = maxjep: A egy
[7] Define
6= m — W & = m -~ My
and finally,

d = min }§§, 6}

[8] The descent step is implemented by adding 6 to the
dual variable associated with the covering PMI set
constraint.

An interpretation of this algorithm can be given as
follows: Initially, one chooses that label at each vertex
with the greatest associated labeling value, that is,
according to the local maxima selection process. If the
resulting labeling is consistent then the original problem has
been solved, that Is, the resulting labeling is that globally
consistent labeling such the sum of the Initial labeling
values is maximum. Otherwise, the strategy involved is to
"penalize" the labeling values associated with Invalid pairs
of labels across adjacent vertices in the graph. This
penalty Is implemented through equations (2.7) by
Increasing the value of the associated dual variable. The
hope Is, that reducing the values of the labels which
participate in inconsistent labeling pairs will, at the next
Iteration, result In different labels being chosen at the
respective vertices. This process will then reduce the
overall number of Inconsistent labeling pairs.

Although the algorithm appears on the surface to be
quite detailed, In fact It is very easy and efficient to
Implement. By bit encoding the labels at each vertex
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participating in a given operation (e. g., sets M1 and M|) as
well as the labels in a given PMI set, the processing
required for a given pair of vertices can be reduced to a
couple dozen machine instructions per vertex pair per
iteration. For the label set discussed in the introduction,
only 8 PMI sets are required to cover all the constraints
between a given pair of vertices, so the search required to
find a cover is minimal. Finally, from the basic operations
involved it can be estimated that this algorithm will run well
over 100 times faster than any of the algorithms associated
with the so called "relaxation labeling" processes.

B. Spacer Steps

One of the immediate drawbacks with the algorithm
given above is that it will generate fixed points with 2 or
more labels with associated labeling values tied for the
greatest value at each vertex in the graph. When this
happens, and when the resulting sets of chosen labels
cannot be covered by a PMl set at any vertex, then the
dual can not be minimized any further on a local basis. In
this case, it is not possible, in general, to choose a label
from among those which are tied with the best current
labeling value except on the basis of informal heuristics.
For this reason a "spacer step" will be used after every
iteration of the descent algorithm given above. In the
experiments described below the spacer step consists of
an lteration of the "average-max" updating rule (Diamond,
1983) which updates the current labeling value cj of a
label Xj on vertex v, by:

c +1 = 1_ [(

l’ N+1 "jtz.xl)
Whare N(I) Is the set of vertices adlacant to vertex v,
ri{Al,A;) is one If label A; on vertex v, Is conalstent with
Iabel Ay on vertax vy and zero otherwise, and N = | N(I) |.

Thus, a processor performing the updating for label Xj on
vertex v, would generate N values to be averaged (along
with the current labeling value ), one such value
corresponding to each vertex in the neighborhood, by taking
the maximum of the current labeling values associated with
labels consistent with A; on vertex vj.

If &% Is the current labeling chosen by the local maxima
selection process and e{i® is the sum of the associated
current labeling values, then the average-max updating rule
can be shown to have the following properties:

[1] If it is not a consistent labeling, then the sum of the
current labeling values with A* will have decreased

after the next iteration, that is e(A*1) < e(AY).

[2] If Xtis consistent then e(x**")i = ¢(X') and the labeling
selected at each iteration t > t will be the same.

[3] From [1] and [2] the value e(A%) is a non-increasing
function of t. Furthermore, it can be shown that the
value associated with a consistent labeling will
increase at each iteration, If that labeling is not the
one selected by the local maxima selection process.

max fryaAd ek 3) + efl
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IV EXPERIMENTS

Figure 4a shows a scene taken from the General
Motors, "Bin of parts" database after the application of
feature detectors sensitive to each of the scene events
shown in figure 1. Those labels at each pixel such that the
corresponding feature detector outputs are maximal are
shown in this figure. Figures 4b and 4c are the results of
choosing the best labels at each pixel after 8 and 20
iterations of the procedure described above. In the case of
labels tied for the best at each vertex, preference was
given to the label corresponding to the blank pixel.
Otherwise, that label which was consistent with the
greatest number of labels on vertices in the neighborhood
was chosen. Beyond this, ties are broken arbitrarily.

V  DISCUSSION

We have described an approach to the problem of edge
linking which is based on the graph labeling model. A
Lagrange dual approach to the integer programming
formulation of the associated continuous graph labeling
problem has been discussed. Obviously much detail has
been left out as the intention here has been to limit this
presentation to an overview of current results related to an
ongoing research effort.

The approach described here, as is the case with many
of the other cooperative algorithms applied to problems in
computer vision, the relaxation labeling processes in
particular, is heuristic in nature. Nonetheless, the existence
of an underlying problem definition as well as the direct
relationship between the model and the application is a
major advantage which this approach has over the
relaxation labeling algorithms. In the latter case such a
definition is not present. There are other advantages. For
example, because the dual function is convex, one can with
certain precautions, guarantee that the descent algorithm
converges. Although we can offer no theoretical limit on the
convergence time (i.e. the number of iterations required
before the labeling chosen by a local maxima selection
process does not change), it has been observed that the
algorithms described here will converge on the order of 16
to 20 iterations for the examples given above. These
figures appear to be independent of the particular problem.

However, there are also problems in using heuristic
techniques to solve a combinatorial optimization problem In a
decentralized manner. For example, these algorithms will
almost always result in a fixed point with multiple labels tied
for the maximum value. As noted previously, in this case
there is no basis on which to make an intelligent labeling
choice in a purely local manner even though there may exist
a globally consistent labeling among the labels tied for the
best value. Finally, the process is somewhat sensitive to
the amount of noise in the image, and very sensitive to the
way in which the initial labeling values are derived.

If the main interest is in the application itself, then a
more sensible approach would be to relax the requirement of
a totally decentralized solution, that is, to Incorporate some
form of an enumeratlve scheme as with the graph searching
methods described in the Introduction. Even so, the graph
labeling model of the edge linking application offers an

advantage since many aspects of a branch and bound
approach can then be implemented In a decentralized
manner. For example, a variation of the Lagrange dual
algorithm presented here could be used as a means for
generating bounds in a branch and bound approach
(Geoffrlon, 1974), and the discrete relaxation process
(Rosenfeld et al., 1976) could be used as part of a
feasibility test of a given candidate subproblem.

Furthermore, this model offers the potential of adapting
techniques from other classes of 0-1 integer programs to
the edge linking application. The graph labeling problem, as
defined here, is a special case of the well established set
partitioning problem (Balas and Padberg, 1974). It is also
easily transformed to the vertex and set packing problems,
as well as the set covering problem, for which heuristic
algorithms to handle large scale situations exist.

In order to make the general model more useful, a
better understanding of the graph labeling problem is
needed. Current efforts towards a formal understanding of
this problem involves both an investigation into the nature
of its linear programming relaxation, which is the problem of
section 2.1 with equation (2.4) replaced by:

xy =0 1=1,.,n j=1,.,m,

and the relationship between the Lagrange dual and this
relaxation. Although, aspects of the algorithm presented
above are still not understood, the results from the
application of these techniques to real world scenes, for
example, the industrial scenes shown in section 4, are
encouraging. Finally, some effort is being directed towards
developing techniques for solving the problem when the
underlying graph has a particular regular structure such as
that corresponding to an image, which has pronounced rows
and columns. When this occurs, a bidirectional dynamic
programming approach (Diamond, 1983) can be combined
with the integer programming algorithms described here to
derive more robust algorithms.

REFERENCES

[1] Ballard, D. H. "Generalizing the Hough transform to
detect arbitrary shapes," Pattern Recognition, 13, 2,
1981.

[2] Ballard, D. H, and C. M. Brown Computer Vision,
Englewood Cliffs, Prentice-Hall, 1982

[3] Bazaraa, M. S. and C. M. Shetty, Nonlinear
Programming, John Wiley & Sons, New York, 1979.

[4] Davis, L. S., and A. Rosenfeld "Cooperating processes
for low-level vision: a survey," TR-123, Dept. of
Computer Sciences, University of Texas, Austin.

[5] Diamond, M. D., N. Narisimhamurthi, and S. Ganapathy "A
systematic approach to continuous graph labeling with
application to computer vision," Proc. AAAl Conf. on
Art. Intell., Pittsburgh, July, 1982.

[6] Diamond, M. D. "Report on an optimization approach to
the edge linking problem In computer vision," CRL-FN-
1-83 Computer Research Laboratory, Department of
Electrical and Computer Engineering, University of
Michigan, Ann Arbor, Michigan, February, 1983



[7] Fu, K. S. Syntactic Methods In Pattern Recognition,
New York, Academic Press, 1974.

[8] Freuder, E. C. "Synthesizing Constraint Expressions,"
Comm.ACM, 21,(11), 1978.

[9] Mackworth, A. K. "Consistency In Networks of
Relations," Artificial Intelligence, 8, 1977

[10] Marr, D. "Analyzing natural images; a computational
theory of texture vision." TR-334, Al Lab, MIT, June
1976.

[11] Montanari, U. "Networks of Constraints: Fundamental
Properties and Applications to Picture Processing,"
Information Sciences, 7, 95-132 (1974).

[12] Perkins, W. A. "A model-based vision system for
Industrial parts," I[EEE Trans. Comp., Vol. C-27, No. 2,
February 1978.

[13] Rosenfeld, A, R. A. Hummel, and S. W. Zucker "Scene
labeling by relaxation operations," IEEE Trans. Syst.,
Man, Cybemn., vol. SMC-6, pp. 420-433, 1976

Figure 4a (above): initial labeling.
Figure 4b (above right): labeling after 8 iterations.

Figure 4c (right): labelinj after 20 iterations.

M. Diamond et al. 1009

[14] Shapiro, J. F. Mathematical Programming; Structures
and Algorithms, New York, John Wiley and Sons, 1979.

[16] Ullman, S. "Relaxation and constrained optimization by
local processes," Com put. Graphics and Image
Processing, vol. 10, pp. 115-125, 1979.

[16] Waltz, D. "Generating semantic descriptions from
drawings of scenes with shadows," Ph.D. dissertation/
Al Lab, MIT, 1972.

[17] Zahn, C. T, and R. Z. Roskies, "Fourier descriptors for
plane closed curves," IEEE Trans. Comput. C-21,
1972.

[18] Zucker, S. W., Y. G. Leclerc, and J. L. Mohammed,
"continuous relaxation and local maxima selection:
conditions for equivalence," TR 78-15R, Computer
Vision and Graphics Laboratory, Dept. Electrical
Engineering, McGill University, Montreal, Quebec,
Canada, December, 1978.




