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ABSTRACT—The extrema in a signal and its first 
few derivatives provide a useful general-purpose qualitative 
description for many kinds of signals. A fundamental prob­
lem in computing such descriptions is scale: a derivative 
must be taken over some neighborhood, but there is seldom 
a principled basis for choosing its size. Scale-space filtering 
is a method that describes signals qualitatively, managing 
the ambiguity of scale in an organized and natural way. 
The signal is first expanded by convolution with gaussian 
masks over a continuum of sizes. This "scale-space" image 
is then collapsed, using its qualitative structure, into a tree 
providing a concise but complete qualitative description 
covering all scales of observation. The description is further 
refined by applying a stability criterion, to identify events 
that persist of large changes in scale. 

1. Introduct ion 

Hardly any sophisticated signal understanding task can 
be performed using the raw numerical signal values directly; 
some description of the signal must first be obtained. An 
initial description ought to be as compact as possible, and 
its elements should correspond as closely as possible to 
meaningful objects or events in the signal-forming process. 
Frequently, local extrema in the signal and its derivatives— 
and intervals bounded by extrema—are particularly ap­
propriate descriptive primitives: although local and closely 
tied to the signal data, these events often have direct 
semantic interpretations, e.g. as edges in images. A 
description that characterizes a signal by its extrema and 
those of its first few derivatives is a qualitative description 
of exactly the kind we were taught to use in elementary 
calculus to "sketch" a function. 

A great deal of effort has been expended to obtain this 
kind of primitive qualitative description (for overviews of 
this literature, see [1,2,3].) and the problem has proved 
extremely difficult. The problem of scale has emerged con­
sistently as a fundamental source of difficulty, because the 
events we perceive and find meaningful vary enormously in 
size and extent. The problem is not so much to eliminate 
fine-scale noise, as to separate events at different scales 
arising from distinct physical processes.[4] It is possible 
to introduce a parameter of scale by smoothing the signal 
with a mask of variable size, but with the introduction 
of scale-dependence comes ambiguity: every setting of the 
scale parameter yields a different description; new extremal 
points may appear, and existing ones may move or disap­
pear. How can we decide which if any of this continuum of 
descriptions is "right"? 

There is rarely a sound basis for setting the scale 
parameter. In fact, it has become apparent that for many 

tasks no one scale of description is categorically correct: 
the physical processes that generate signals such as images 
act at a variety of scales, none intrinsically more interest-
ing or important than another. Thus the ambiguity intro-
duced by scale is inherent and inescapable, so the goal of 
scale-dependent description cannot be to eliminate this am­
biguity, but rather to manage it effectively, and reduce it 
where possible. 

This line of thinking has led to considerable interest in 
multi-scale descriptions [5,2,6,7]. However, merely com­
puting descriptions at multiple scales does not solve the 
problem; if anything, it exacerbates it by increasing the 
volume of data. Some means must be found to organize or 
simplify the description, by relating one scale to another. 
Some work has been done in this area aimed at obtaining 
"edge pyramids" (e.g. [8]), but no clear-cut criteria for con­
structing them have been put forward. Marr [4] suggested 
that zero-crossings that coincide over several scales are 
"physically significant," but this idea was neither justified 
nor tested. 

How, then, can descriptions at different scales be related 
to each other in an organized, natural, and compact way? 
Our solution, which we call scale-space filtering, begins by 
continuously varying the scale parameter, sweeping out a 
surface that we call the scale-space image. In this repre­
sentation, it is possible to track extrema as they move con­
tinuously with scale changes, and to identify the singular 
points at which new extrema appear. The scale-space image 
is then collapsed into a tree, providing a concise but com­
plete qualitative description of the signal over all scales of 
observation.1 

2. The Scale-Space Image 

Descriptions that depend on scale can be computed in 
many ways. As a primitive scale-parameterization, the 
gaussian convolution is attractive for a number of its 
properties, amounting to "well-behavedness": the gaussian 
is symmetric and strictly decreasing about the mean, and 
therefore the weighting assigned to signal values decreases 
smoothly with distance. The gaussian convolution behaves 
well near the limits of the scale parameter, sigma, approach­
ing the un-smoothed signal for small 0, and approaching 
the signal's mean for large cr. The gaussian is also readily 
differentiated and integrated. 

The gaussian is not the only convolution kernel that 
meets these criteria. However, a more specific motivation 
for our choice is a property of the gaussian convolution's 

*A complementary approach to the "natural" scale problem 
has been developed by Hoffman [9]. 
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Figure 1. A sequence of gaussian smoothings of a 
waveform, with decreasing from top to bottom. Each graph 
is a constant- profile from the scale-space image. 

zero-crossings (and those of its derivatives): as decreases, 
additional zeroes may appear, but existing ones cannot in 
general disappear; moreover, of convolution kernels satisfy­
ing "well behavedness" criteria (roughly those enumerated 
above,) the gaussian is the only one guaranteed to satisfy 
this condition [12]. The usefulness of this property will be 
explained in the following sections. 

The gaussian convolution of a signal /(z) depends both 
on z, the signal's independent variable, and on a, the gaus-
sian's standard deviation. The convolution is given by 

( i ) 
where "*" denotes convolution with respect to x . This 
function defines a surface on the (z, )-plane, where each 
profile of constant is a gaussian-smoothed version of /(z), 
the amount of smoothing increasing with sigma. We will call 
the (z,<r)-plane scale space , and the function, F, defined in 
(1), the scale-space image of f.2 Fig. 1 graphs a sequence of 
gaussian smoothings with increasing , These are constant-
<r profiles from the scale-space image. 

At any value of , the extrema in the nth derivative of 
the smoothed signal are given by the zero-crossings in the 
(n + l)th derivative, computed using the relation 

where the derivatives of the gaussian are readily obtained. 
Although the methods presented here apply to zeros in any 
derivative, we will restrict our attention to those in the 
second. These are extrema of slope, i.e. inflection points. In 
terms of the scale-space image, the inflections at ail values 
of a are the points that satisfy 

(2) 

2lt is actually convenient to treat log as the scale parameter, 
uniform expansion or contraction of the signal in the z-
direction will cause a translation of the scale-space image along 
the log axis. 

Figure 2. Contours of Fxx = 0 in a scale-space image. 
The x-axis is horizontal; the coarsest scale is on top. To simu­
late the effect of a continuous scale-change on the qualitative 
description, hold a straight-edge (or better still, a slit) horizon­
tally. The intersections of the edge with the zero-contours are 
the extremal points at some single value of a. Moving the edge 
up or down increases or decreases 

using subscript notation to indicate partial differentiation.3 

3. Coarse-to-fine Tracking 

The contours of mark the appearance and mo­
tion of inflection points in the smoothed signal, and provide 
the raw material for a qualitative description over all scales, 
in terms of inflection points. Next, we will apply two 
simplifying assumptions to these contours: (1) the identity 
assumption, that extrema observed at different scales, but 
lying on a common zero-contour in scale space, arise from 
a single underlying event, and (2) the localization assump­
tion, that the true location of an event giving rise to a 
zero-contour is the contour's z location as — 0. 

Referring to fig. 2, notice that the zero contours form 
arches, closed above, but open below. The restriction that 
zero-crossings may never disappear with with decreasing a 
(see section 2) means that the contours may never be closed 
below. Note that at the apexes of the arches, Fxxx = 0, 
so by eq. (2), these points do not belong to the contour. 
Each arch consists of a pair of contours, crossing zero with 
opposite sign. 

The localization assumption is motivated by the obser­
vation that linear smoothing has two effects: qualitative 
simplification—the removal of fine-scale features—and spa­
tial distortion—dislocation, broadening and flattening of 
the features that survive. The latter undesirable effect may 
be overcome, by tracking coarse extrema to their fine-scale 
locations. Thus, a coarse scale may be used to identify ex­
trema, and a fine scale, to localize them. Each zero-contour 
therefore reduces to an (z, ) pair, specifying its fine-scale 
location on the z-axis, and the coarsest scale at which the 
contour appears. 

A coarse-to-fine tracking description is compared to the 

3Note that the second condition in (2) excludes zero-crossings 
that are parallel to the z-axis, because these are not zero-
crossings in the convolved signal. 
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Figure 3. Above is shown a signal with a coarse-to-
fine tracking approximation superimposed. The approxima­
tion was produced by independent parabolic fits between 
the localized inflections. Below is shown the corresponding 
(qualitatively isomorphic) gaussian smoothing. 

corresponding linear smoothing in Fig. 3.4 

4. The Interval Tree 

While coarse-to-fine tracking solves the problem of 
localizing large-scale events, it does not solve the multi-scale 
integration problem, because the description still depends 
on the choice of the continuous global scale parameter, 

, just as simple linear filtering does. In this section, we 
reduce the scale-space image to a simple tree, concisely but 
completely describing the qualitative structure of the signal 
over all scales of observation. 

This simplification rests on a basic property of the scale-
space image: as sigma is varied, extremal points in the smoothed 
signal appear and disappear at singular points (the tops of 
the arches in fig. 2.) Passing through such a point with 
decreasing sigma, a pair of extrema of opposite sign appear in 
the smoothed signal. At these points, and only these points, 
the undistinguished interval (i.e. an interval bounded by ex­
tremal points but containing none) in which the singularity 
occurs splits into three subintervals. In general, each undis­
tinguished interval, observed in scale space, is bounded on 
each side by the zero contours that define it, bounded above 
by the singular point at which it merges into an enclosing 
interval, and bounded below by the singular point at which 
it divides into sub-intervals. 

Consequently, to each interval, /, corresponds a node 
in a (generally ternary-branching) tree, whose parent node 
denotes the larger interval from which / emerged, and 
whose offspring represent the smaller intervals into which / 
subdivides. Each interval also defines a rectangle in scale-
space, denoting its location and extent on the signal (as 
defined by coarse-to-fine tracking) and its location and ex­
tent on the scale dimension. Collectively, these rectangles 

4In this and all illustrations, approximations were drawn by 
fitting parabolic arcs independently to the signal data on 
each interval marked by the description. This procedure is 
crude, particularly because continuity is not enforced across 
inflections. Bear in mind that this procedure has been used 
only to display the qualitative description. 

Figure 4. A signal with its interval tree, represented as 
a rectangular tesselation of scale-space. Each rectangle is 
a node, indicating an interval on the signal, and the scale 
interval over which the signal interval exists. 

tesselate the (x, sigma)-plane. See fig. 4 for an illustration of 
the tree. 

This interval tree may be viewed in two ways: as describ­
ing the signal simultaneously at all scales, or as generat-
ing a family of single-scale descriptions, each defined by a 
subset of nodes in the tree that cover the z-axis. On the 
second interpretation, one may move through the family 
of descriptions in orderly, local, discrete steps, either by 
choosing to subdivide an interval into its offspring, or to 
merge a triple of intervals into their parent.6 

We found that it is in general possible, by moving in­
teractively through the tree and observing the resulting 
"sketch" of the signal, to closely match observers' spon­
taneously perceived descriptions. Thus the interval tree, 
though tightly constrained, seems flexible enough to cap­
ture human perceptual intuitions. Somewhat surprisingly, 
we found that the tree, rather than being too constraining, 
is not constrained enough. That is, the perceptually salient 
descriptions can in general be duplicated within the tree's 
constraints, but the tree also generates many descriptions 
that plainly have no perceptual counterpart. This observa-
tion led us to develop a stability criterion for further pruning 
or ordering the states of the tree, which is described in the 
next section. 

5. Stabil i ty 

Recall that to each interval in the tree corresponds a 
rectangle in scale space. The x boundaries locate the inter­
val on the signal. The sigma boundaries define the scale range 
over which the interval exists, its stability over scale changes. 
We have observed empirically a marked correspondence be­
tween the stability of an interval and its perceptual salience: 
those intervals that survive over a broad range of scales 

5For previous uses of hierarchic signal descriptions see e.g. 
[10,11,2]. 
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Figure 5. Several signals, with their maximum-stability 
descriptions. These are "top-level" descriptions, generated 
automatically and without thresholds. You should compare 
the descriptions to your own first-glance "top-level" percepts, 
(the noisy sine and square waves are synthetic signals.) 

tend to leap out at the eye, while the most ephemeral are 
not perceived at all. To capture this relation, we have 
devised several versions of a stability criterion, one of which 
picks a "top-level" description by descending the tree until 
a local maximum in stability is found. Another iteratively 
removes nodes from the tree, splicing out nodes that are 
less stable than any of their parents and offspring. Both 
of these radically improve correspondence between the in­
terval tree's descriptions and perceptual features (see fig. 

We are currently developing applications of scale-space 
filtering to several signal matching and interpretation prob­
lems, and investigating its ability to explain perceptual 
grouping phenomena. The method is also being extended 
to apply to two-dimensional images: the scale-space image 
of a 2-D signal occupies a volume, containing zero-crossing 
surfaces.6 
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0. Summary 

Scale-space filtering is a method that describes signals 
qualitatively, in terms of extrema in the signal or its deriva­
tives, in a manner that deals effectively with the prob­
lem of scale precisely localizing large-scale events, and 
effectively managing the ambiguity of descriptions at mul­
tiple scales, without introducing arbitrary thresholds or 
free parameters. The one-dimensional signal is first ex­
panded into a two-dimensional scale-apace image, by con­
volution with gaussians over a continuum of sizes. This con­
tinuous surface is then collapsed into a discrete structure, 
using the connectivity of extremal points tracked through 
scale-space, and the singular points at which new extrema 
appear. The resulting tree representation is a a concise 
but complete qualitative description of the signal over all 
scales of observation. The tree is further constrained using 
a maximum-stability criterion to favor events that persist 
over large changes in scale. 
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