
Node Aggregation for Distributed Inference
in Bayesian Networks

K u o - C h u C h a n g a n d R o b e r t F u n g
Advanced Decision Systmes

1500 P lymouth Street
Mounta in V iew, Cal i fornia 94043-1230

A b s t r a c t

This study describes a general framework
and several algorithms for reducing Bayesian
networks wi th loops (i.e., undirected cycles)
into equivalent networks which are singly
connected. The purpose of this conversion is
to take advantage of a distributed inference al­
gorithm |6|. The framework and algorithms
center around one basic operation, node aggre­
gation. In this operation, a cluster of nodes
in a network is replaced with a single node
without changing the underlying jo int distri­
bution of the network. The framework for us
ing this operation includes a node aggregation
theorem which describes whether a cluster of
nodes can be combined, and a complexity anal-
ysis which estimates the computational require
ments for the resulting networks. The algo­
rithms described include a heuristic search al-
gori thm which finds the set of node aggrega­
tions that makes a network singly connected
and allows inference to execute in minimum
time, and a "graph-directed" algorithm which
is guaranteed to find a feasible but not neces­
sary optimal solution and with less computa­
tion than the search algori thm.

1 I n t r o d u c t i o n

This study describes a general framework and several
algorithms which use that framework for converting
Bayesian networks wi th loops (i.e., undirected cycles)
into equivalent singly-connected networks. The purpose
of this conversion is to take advantage of a distributed
inference algorithm [6]. The framework and algorithms
center around one basic operation, node aggregation. In
this operation, a cluster of nodes in a network is replaced
with a single node without changing the underlying joint
distr ibut ion of the network.

Like its predecessor technology, decision/risk tree
technology, Bayesian Networks (a.k.a. influence dia­
grams) [3], is a technology for representing and making
inferences about beliefs and decisions. A probabilistic
Bayesian Network is a directed, acyclic graph (DAG)
in which the nodes represent random variables, and the
arcs between the nodes represent possible probabilistic

dependence between the variables. A network as a whole
represents the jo int probability distribution between the
random variables. The representation has proved to be
an improvement over the older tree technologies for sev­
eral reasons including increased functionality, compact-
ness, and intuitiveness to users.

While a fast distributed inference algorithm exists for
singly-connected networks, it has been proved [l] that
no algorithm can be efficient on all Bayesian networks
with loops. However, there appears to be much room
for expanding the set of graph topologies which can be
addressed in a computationally efficient manner. Other
than the node aggregation approach presented in this
study, several other approaches have been proposed to
address the inference problem for arbitrarily-connected
networks. These approaches include: conditioning |7|,
cliques [4], using the influence diagram operations such
as link reversal and node removal [8], and stochastic sim
ulation [7].

In this paper, we have chosen the node aggregation
method to handle the inference problem in an arbitrary
network. For all node aggregation methods, the first and
defining step is to reduce the graph using node aggrega­
tion into a singly connected graph. This step needs only
occur once. In the second step, the distributed infer
ence algorithm is applied to the reduced graph to calcu­
late the posterior distributions of each node. Since the
aggregated nodes in the reduced graph may consist of
more than one original node, the third step calculates
the posteriors of the original nodes by marginalizing the
posterior probabilities of the aggregated nodes.

The paper is organized as follows. Section 2 describes
the definitions and theorems which make up the frame-
work. Of principal interest is a node combinability theo­
rem which determines if a set of nodes can be aggregated.
The effects of a node aggregation on a graph are then
described. A computational complexity measure is also
presented in Section 2. Given a graph's topology and the
state space size for each node in the graph, this measure
calculates the approximate computation time required
for each update in inference. In Section 3, an A* search
algorithm to find the optimal node aggregation parti t ion
is developed based on the performance criterion obtained
in Section 2. This algorithm utilizes pruning techniques
that can substantially reduce the search space and the
optimal solution is guaranteed to be retained. A much

Chang and Fung 265

simpler heuristic approach (graph-directed decomposi­
tion) for finding a suitable part i t ion is also presented in
Section 3. Finally, some conclusions and directions for
future research are discussed in Section 4.

2 Framework
In this section we define the basic definitions and present
theorems which make up the framework. As directed
acyclic graphs, there are two major topological classes
of Bayesian Networks, graphs which are singly-connected
and graphs which contain undirected cycles (i.e., loops).
For graphs with loops, the distributed inference algo-
r i thm |6J does not apply since the loops cause the local
propagation schemes to circulate messages indefinitely
around these loops. In order to keep the advantages of
the distributed inference scheme, several methods have
been proposed to deal wi th this problem. These include
aggregation, conditioning , and stochastic simulation. In
this study, we focus on the aggregation method.

In order to aggregate nodes in a loop, first we need to
be able to identify all nodes involved in loops for a given
acyclic graph. This can be done by using well-known
graph-theoretic algorithms. There may be more than
one loop in a graph. In that case, we need to identify
all the loops and group them into independent loop set,
where two loops are independent if they don't share any
node. For each independent loop set, the nodes involved
in the loops are partit ioned into clusters which are then
aggregated into macro nodes. Note that not all sets of
nodes can be aggregated. In particular a set of nodes
cannot be aggregated if it creates a cycle in the network.
In this section, we wil l describe the basic node aggre­
gation theorem and il lustrate the results of aggregation
with several simple examples.

2.1 N o d e A g g r e g a t i o n T h e o r e m

First a path is defined for a directed graph in the usual
way. For example, in Figure 1, (ACD) is a path between
A and D, but (ACFD) is not a path. Second, a pair of
nodes is called combinable if there is no path between
the two nodes which contains a third node. Similarly,
a group of nodes is called combinable if for every pair
of nodes in the group there exists no path between such
pair which contains a node outside the group.

Wi th the above definitions, we have the following
lemma.

L e m m a 1 : A pair of nodes in an acyclic graph can be
combined into a macro node so that the resulting graph
remains acyclic if and only if the node pair is combinable.

P r o o f : The proof is given in Appendix A.
Wi th the above theorem, we also have the following

node combil iabi l i ty theorem.
T h e o r e m 1 : A group of nodes in an acyclic graph

can be combined into a macro node so that the resulting
graph remains acyclic if and only if the group is combin­
able.

P r o o f : The proof of this theorem is similar to the
proof of the above lemma.

2.2 T h e Resu l t s o f C o m b i n i n g

When a macro node is created, the predecessors and
successors of the node as well as its conditional prob-
abil i ty requires definit ion. A macro node's predecessors
are the union of its component nodes' predecessors, and
its successors are the union of its component nodes' suc­
cessors. For the conditional probabil i ty distr ibution of
macro nodes, we have the following lemmas.

L e m m a 2 : The conditional probabil i ty of the macro
node given its predecessors is equal to the product of
all component node's conditional probabilities. For the
example in Figure 1, if (B,C,D) are combined into a
macro node M, then the conditional probabil i ty of M
given the predecessor A is equal to:

)
L e m m a 3 : The conditional probabil ity of a macro

node's successor is equal to the conditional probabil i ty
of the successor given all the component nodes in the
macro node, except for those component nodes which
are not linked directly to the successor, in which case,
they are irrelevant and will not affect the conditional
probabil i ty other than increasing the dimension of the
conditional probabil i ty matr ix. For the same example
as above, where (B,C,D) are combined into a macro
node M, then the conditional probabil i ty of E given M
is equal to:

(2)

Since C is not linked directly to E, the conditional prob­
abil i ty only depends on B and D, namely, P(E\B, D) ,
which is already available. Therefore, one only needs
to fill up the matr ix with appropriate entries, i.e.,

P r o o f : The proofs of Lemmas 2 and 3 are straight-
forward and wil l not be carried out here.

According to the above theorem and lemmas, for a
graph which is not singly connected, one may parti­
tion each independent loop set in the graph into several
clusters and aggregate the nodes in each cluster into a
macro node so that the graph can be reduced to a singly-
connected graph and the distributed inference algorithm
[6] can be applied in processing. For the example given
in Figure 1, there are several ways of aggregating nodes
and reducing the original graph into a singly-connected
graph. Each one of these is called a feasible partition.

266 Search

Some of the examples with feasible part i t ion or infeasible
part i t ion (wi th loops) are given in Figure 2. Obviously,
certain partit ions are better than others in computation
requirements in the resulting networks. In order to dis­
tinguish them, a criterion of performance needs to be
defined. In the next subsection, we develop the compu­
tational requirements for each macro node and define it
as the performance measure to be considered.

2.3 C o m p u t a t i o n a l C o m p l e x i t y

In order to determine the computational efficiency for
different network structures, we first need to be able to
quantify the computational requirements for various con­
figurations. Due the characteristics of the distributed
algori thm [6], the computational requirements for each
node depend not only on the size of state space of the
node itself, but also on the number of its predecessors
and successors as well as their state space sizes. For
each node in a singly connected network, there are four
modules in the algorithm, two of them for upward prop­
agation and two of them for downward propagation. In
a distributed processing environment, each processing
node may propagate the data upward and downward si­
multaneously, however, due to the interaction between
the four processing modules, calculating the exact pro­
cessing time needed for each node is not t r iv ia l . We
may approximate the computation requirements by con­
sidering the number of multiplications that have to be
performed in all four modules for each update.

As carried out in Appendix B, for a node X with M
predecessors and TV successors, the total number of mul-

where n and npi are the state space sizes of node X and
its i:-th predecessor Xpi respectively. In a tree structure,
each node can have at most one predecessor, i.e., M —
1, therefore the number of mult ipl ications reduced to
2n + nN | 2n2 , where npi is assumed to be equal to n.
This coincides with the calculations given in [6j.

In the above calculations, it was assumed that the en­
larged conditional probabil i ty matrices as obtained in
equations (1) and (2) are stored in their corresponding
macro node at the time the graph was reduced and " in i ­
t ial ized". Therefore, in normal processing when new evi­
dence is added, only the computational requirements in­
volved in standard propagation as described above need
be considered. Alternatively the conditional probabili­
ties can also be calculated from the component nodes
whenever needed instead of storing the matr ix at the
macro nodes. This alternative is preferable when the
matrix is very large and a large amount of memory is re­
quired. Nevertheless, more computational resources are
necessary in this approach since the conditional probabil­
ities need to be re-calculated each time they are needed.
This kind of trade-off should be considered in choosing
aggregation part i t ion for various network configurations.
In the next section, several heuristic algorithms are pro­
posed for finding suitable partit ions.

3 Aggrega t ion A l g o r i t h m s

Al l aggregation algorithms face the basic fact that the
number of possible partitions of a graph with n nodes is
B(n), where B(n) is given by the recursive formula:

This sequence of numbers is called the Bell sequence
[2], and grows exponentially. The first few elements of
this series are: 1,1, 2, 5, 15, 52, 203, 877, 4140, 21147,
115975. Thus for a graph with 10 nodes there are about
116 thousands possible partit ions.

However, many of these partitions (i.e., reduced
graphs) are not feasible since they have undirected or
directed cycles. Although it is possible for certain spe-
cialized structures to find the optimal part i t ion through
direct inspection of the graph, we have as yet found no
such general algorithm for the general case. Instead the
algorithms proposed in this paper, either by searching
through the space of partit ions or by inspection of the
graph, find a feasible but not necessary optimal part i­
t ion. In this paper, we have identified several methods
to use the special (i.e., directed, acyclic) structure of
Bayesian Networks in order to cut down the number of

Chang and Fung 267

partitions examined in the search for the optimal par-
t i t ion. In this section, we wil l use the example graph
shown in Figure J to i l lustrate each concept presented.

3.1 H e u r i s t i c Search

In this subsection, an aggregation algorithm is proposed
which formulates the aggregation problem as a search
problem and guarantees the identification of the optimal
part i t ion. In this algor i thm, the nodes in each dependent
loop set are first ordered, and then partial partit ions are
generated recursively, with pruning of in feasible parti-
tions occurring at each level.

It is well known that acyclic graphs can be numbered
such that every node has a larger number than all of
its predecessors, and a smaller number than any of its
successors. The numbers shown in Figure 1 are obtained
by this scheme. It should be noted that some of the
decisions are arbitrary, (e.g., B could switch order wi th

Given the node ordering scheme above, the full set oi
partit ions for a dependent loop set can be identified by
the following recursive algor i thm:

1. Initialize the old-part i t ion-l ist to 0.
2. For node i from 1 to n

2a. Start a new-partit ion-l ist
2b. For each part i t ion in old-part i t ion-l ist

2 b l . For each cluster in part i t ion
2b2. Make a new part i t ion by adding node i

to that cluster
2b3. Add that new part i t ion to new-parti t ion-

list
End For (2b1)

End For (2b)
3. Set the old-part i t ion-l ist to the new-partit ion-l ist
End For (2)

An i l lustration of this expansion algorithm for the ex-
ample graph is shown in Figure 3 up to the fourth node
(i .e .D) .

Without pruning, this expansion algori thm for an in­
dependent loo]) set with n nodes wil l produce B(n) num­
ber of complete parti t ions. Two pruning operations have
been identified to manage the search space without re­
moving any feasible part i t ions. The first pruning op­
eration removes any part i t ion which has a node cluster
which is not combinable. The part ial part i t ion (AD,),
BO) (see Figure 3) is one such part i t ion since the nodes
AD are not combinable. The second pruning operation
removes any part i t ion which contains a loop. The par­
tial part i t ion (A,B,C,D) is one such part i t ion since the
nodes ABCD form a loop. The claim that these prun­
ing operations do not remove any feasible partit ions from
consideration is proven below.

T h e o r e m 2 : W i th pruning of infeasible partial par­
tit ions which contain at least one loop) or at least one
node cluster which is not combinable, all feasible com­
plete partit ions are sti l l reachable.

P r o o f : Because of the ordering scheme, if a node
cluster in a partial part i t ion is not combinable, the ad-
dit ion of any new node cannot make that node cluster
combinable. Also if a partial part i t ion contains a loop,
the addition of any new node wi l l not remove the loop

from that part i t ion. Thus any successor part i t ion of any
infeasible partial partit ion will be infeasible. Thus prun­
ing an infeasible partial part i t ion does not prune any
feasible complete part i t ion.

In order to use heuristic search techniques, an eval­
uation function must be defined. In particular for the
A* algori thm, the cost functions g(p) and h(p) must be
defined where p is a partial part i t ion. The function g(p)
is an estimate of the cost from the start node to the the
partial part i t ion. This can be calculated using the com­
putational complexity results derived in Sec 2.3. The
function h(p) is an estimate of the additional cost of
getting to the final complete part i t ion and must be less
than or equal to the "actual" cost of reaching the fi­
nal part i t ion. For h(p) we compute the additional cost
of completing the part i t ion by assuming the rest of the
nodes are added singly since this is the minimum cost
solution. The cost functions g(p) and h(p) are combined
into the evaluation function f(p) where:

f(p) - g(p) + h(p) (5)

While we have chosen to discuss the A* algorithm [5]
here, other heuristic search techniques could be applied
as well.

An additional technique for reducing search is to de­
vise an algorithm for init ial izing f(p) before any search
starts. Such algorithms find a "good" feasible complete
solution directly. Such an algorithm is discussed in the
next subsection.

In summary, the heuristic search algorithm can be de­
scribed as follows:

1. Order the nodes in the dependent loop set.
2. Initialize the old-partit ion-l ist to be 0.
3. Initialize the minimum cost by an init ial ization algo­

r i thm (e.g., Sec. 3.2)
4. Choose the partial part i t ion p i with minimum /(p i,)

to expand.
4a. Make new partit ions by adding the i + 1 node

to the partial part i t ion p i

4b. Prune all partit ions containing a ''non-combin
able'1 node cluster.

4c. Prune all partitions containing a loop.
4d. Evaluate j{pi+1) for each new partial part i t ion.
4e. if there is a partial part i t ion to expand, go to 4,

else done.

3.2 G r a p h - D i r e c t e d A l g o r i t h m

Another heuristic method developed based on the node
aggregation theorem is the so called "graph-directed al­
gor i thm". This algorithm is "graph-directed" since the
aggregation process follows the direction of the graph
(i.e., from a graph's roots to its leaves). This algorithm
consists of the following steps :

1. For each independent loop set, find the root nodes.
2. Identify all root nodes1 successors which are within

the loop set.
3. Group these successors into clusters such that any

two nodes of different clusters do not share any
predecessor.

4. If the nodes in a cluster are combinable, combine

268 Search

them into a macro node.
5. If the nodes in a cluster are not combinable, collect

these nodes together wi th their direct successors
wi th in the loop set and go to step 3.

6. When all nodes involved in the loop set have been
considered, done.

This algorithm reduces a graph with loops into a singly-
connected one. It is not optimal but is simple and re­
quires small amounts of computational resources. It can
serve as a mechanism for ini t ial iz ing the search algorithm
described in the previous subsection or can be used as
a stand-alone algorithm for finding a part i t ion for node
aggregation. To il lustrate the algori thm, Figure 4 shows
several example graphs together with their resulting par­
tit ions obtained based on this algori thm.

4 Conclusions and Discussion

In this paper, we have presented a general framework
and several algorithms for converting Baycsian networks
with loops into equivalent singly-connected networks.
The purpose of such conversions is to take advantage of
the distributed algorithm [6] for inferencing in a singly-
connected network. The framework and algorithms cen­
ter around one basic operation, node aggregation. In
this operation, a cluster of nodes in a network is replaced
wi th a single node without changing the underlying jo in t
distr ibution of the network. The framework consists of a
node combinabil i ty theorem which determines if a set of
nodes can be aggregated, a description of the results of
node aggregation and a computational complexity mea-
sure associated wi th the aggregation.

A search algorithm to find an optimal node aggrega­
tion part i t ion as well as a simpler heuristic approach for
finding a suitable part i t ion are then presented. While
the algorithms described in this paper may not in the
end prove to be the most efficient ones, all of the ba-

sic concepts in the framework and those used in the
algorithms (e.g., node combinability, computational re­
quirements measure, node ordering, pruning operations)
are fundamental and useful to all node aggregation algo­
rithms.

There are at least two primary directions of research
to pursue, algorithm development wi thin the node aggre­
gation framework and the comparison and integration of
other methods for dealing with graphs with loops (e.g.,
conditioning, stochastic simulation).

W i th respect to algorithm development, the most
promising avenue of research seems to be algorithms
like the "graph-directed" algorithm which would utilize
graph features such as connectivity and state space size,
to directly identify a near optimal if not the optimal so
lut ion. Search approaches seem less promising since even
heavy pruning of in feasible and high cost alternatives can
sti l l be computationally costly for some graphs. Hybrid
approaches which combine search and algorithms which
generate an ini t ial feasible solution may also be worth
looking into.

For the integration of algorithms, it seems clear that
wi th each method which has been suggested, there are
certain graph topologies where that method provides the
best solution. However, the same method may perform
very poorly for other topologies. This suggests a direc­
tion of research in which the algorithms are compared
and integrated based on their individual strength in deal­
ing with various graph topologies.

A P r o o f of Comb inab i l i t y Theorem

The proof of the lemma follows,
Proof :
(—>) If a cycle is created in the new graph due to the

combination of the node pair, then there must exist at
least one path between the two nodes which contains
a th i rd node. This violates the combinable node pair
definit ion. Therefore, if a node pair is combinable, then
the resulting graph (with the node pair combined into a
macro node) remains acyclic.

(<—) If a node pair is not combinable, then there exist
at least one path between the two nodes which contains
a th i rd node. Now if the pair is combined into a macro
node, that directed path wil l create a cycle and make the
resulting graph cyclic. Therefore, in order to maintain
the resulting graph acyclic, the node pair to be combined
has to be combinable.

B C o m p u t a t i o n a l C o m p l e x i t y

For the four modules in the algorithm [6], the respective
number of multipl ications needed are,

M o d u l e I : Calculate . According to the
updating formula, there are two parts, first calculate the
transit ion matr ix, then mult iply the matr ix by the vector

Since wc have M predecessors, the total number
of mult ipl ications needed is:

References

| l] G. F. Cooper. Probabilistic inference using belief net-
works in np-hard. Report KSL-81-21, Medical Com­
puter Science Group, Stanford University, 1987.

[2] 11. W. Gould. Bell and Catalan numbers: research
bibliography of two special number sequences, (Com­
binatorial Research Institute, 1977.

[3] R.A. Howard and .J. E. Matheson. Influence dia­
grams. In P.A. Howard and J.E. Matheson, editors,
The Principles and Applications of Decision Analy­
sts, vol. II, Menlo Park: Strategic Decisions Group,
1981.

[4] S. L. Lauritzen and 1). J. Spiegelhalter. Local compu­
tations with probabilities on graphical structures and
their application in expert systems. Journal Royal
Statistical Society B, 50, 1988.

[5J P. E. Hart N. J. Nilsson and B. Raphael. A formal
basis for the heuristic determination of min imum cost
path. IEEE Trans. Syst. Science and Cybernetics, 4,
1968.

[G] Judea Pearl. Fusion, propagation, and structuring in
belief networks. Artificial Intelligence, 29, 1986.

[7] Judea Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann Publishers, 1988.

[8] Ross D. Shaehter. Intelligent probabilistic inference.
In L.N. Kanal and J.F. Lemmer, editors, Uncer­
tainty in Artificial Intelligence, Amsterdam: North-
Holland, 1986.

270 Search

