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A b s t r a c t 

This study describes a general framework 
and several algorithms for reducing Bayesian 
networks wi th loops (i.e., undirected cycles) 
into equivalent networks which are singly 
connected. The purpose of this conversion is 
to take advantage of a distributed inference al­
gorithm |6|. The framework and algorithms 
center around one basic operation, node aggre­
gation. In this operation, a cluster of nodes 
in a network is replaced with a single node 
without changing the underlying jo int distri­
bution of the network. The framework for us 
ing this operation includes a node aggregation 
theorem which describes whether a cluster of 
nodes can be combined, and a complexity anal-
ysis which estimates the computational require 
ments for the resulting networks. The algo­
rithms described include a heuristic search al-
gori thm which finds the set of node aggrega­
tions that makes a network singly connected 
and allows inference to execute in minimum 
time, and a "graph-directed" algorithm which 
is guaranteed to find a feasible but not neces­
sary optimal solution and with less computa­
tion than the search algori thm. 

1 I n t r o d u c t i o n 

This study describes a general framework and several 
algorithms which use that framework for converting 
Bayesian networks wi th loops (i.e., undirected cycles) 
into equivalent singly-connected networks. The purpose 
of this conversion is to take advantage of a distributed 
inference algorithm [6]. The framework and algorithms 
center around one basic operation, node aggregation. In 
this operation, a cluster of nodes in a network is replaced 
with a single node without changing the underlying joint 
distr ibut ion of the network. 

Like its predecessor technology, decision/risk tree 
technology, Bayesian Networks (a.k.a. influence dia­
grams) [3], is a technology for representing and making 
inferences about beliefs and decisions. A probabilistic 
Bayesian Network is a directed, acyclic graph (DAG) 
in which the nodes represent random variables, and the 
arcs between the nodes represent possible probabilistic 

dependence between the variables. A network as a whole 
represents the jo int probability distribution between the 
random variables. The representation has proved to be 
an improvement over the older tree technologies for sev­
eral reasons including increased functionality, compact-
ness, and intuitiveness to users. 

While a fast distributed inference algorithm exists for 
singly-connected networks, it has been proved [ l ] that 
no algorithm can be efficient on all Bayesian networks 
with loops. However, there appears to be much room 
for expanding the set of graph topologies which can be 
addressed in a computationally efficient manner. Other 
than the node aggregation approach presented in this 
study, several other approaches have been proposed to 
address the inference problem for arbitrarily-connected 
networks. These approaches include: conditioning |7|, 
cliques [4], using the influence diagram operations such 
as link reversal and node removal [8], and stochastic sim 
ulation [7]. 

In this paper, we have chosen the node aggregation 
method to handle the inference problem in an arbitrary 
network. For all node aggregation methods, the first and 
defining step is to reduce the graph using node aggrega­
tion into a singly connected graph. This step needs only 
occur once. In the second step, the distributed infer 
ence algorithm is applied to the reduced graph to calcu­
late the posterior distributions of each node. Since the 
aggregated nodes in the reduced graph may consist of 
more than one original node, the third step calculates 
the posteriors of the original nodes by marginalizing the 
posterior probabilities of the aggregated nodes. 

The paper is organized as follows. Section 2 describes 
the definitions and theorems which make up the frame-
work. Of principal interest is a node combinability theo­
rem which determines if a set of nodes can be aggregated. 
The effects of a node aggregation on a graph are then 
described. A computational complexity measure is also 
presented in Section 2. Given a graph's topology and the 
state space size for each node in the graph, this measure 
calculates the approximate computation time required 
for each update in inference. In Section 3, an A* search 
algorithm to find the optimal node aggregation parti t ion 
is developed based on the performance criterion obtained 
in Section 2. This algorithm utilizes pruning techniques 
that can substantially reduce the search space and the 
optimal solution is guaranteed to be retained. A much 
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simpler heuristic approach (graph-directed decomposi­
tion) for finding a suitable part i t ion is also presented in 
Section 3. Finally, some conclusions and directions for 
future research are discussed in Section 4. 

2 Framework 
In this section we define the basic definitions and present 
theorems which make up the framework. As directed 
acyclic graphs, there are two major topological classes 
of Bayesian Networks, graphs which are singly-connected 
and graphs which contain undirected cycles (i.e., loops). 
For graphs with loops, the distributed inference algo-
r i thm |6J does not apply since the loops cause the local 
propagation schemes to circulate messages indefinitely 
around these loops. In order to keep the advantages of 
the distributed inference scheme, several methods have 
been proposed to deal wi th this problem. These include 
aggregation, conditioning , and stochastic simulation. In 
this study, we focus on the aggregation method. 

In order to aggregate nodes in a loop, first we need to 
be able to identify all nodes involved in loops for a given 
acyclic graph. This can be done by using well-known 
graph-theoretic algorithms. There may be more than 
one loop in a graph. In that case, we need to identify 
all the loops and group them into independent loop set, 
where two loops are independent if they don't share any 
node. For each independent loop set, the nodes involved 
in the loops are partit ioned into clusters which are then 
aggregated into macro nodes. Note that not all sets of 
nodes can be aggregated. In particular a set of nodes 
cannot be aggregated if it creates a cycle in the network. 
In this section, we wil l describe the basic node aggre­
gation theorem and il lustrate the results of aggregation 
with several simple examples. 

2.1 N o d e A g g r e g a t i o n T h e o r e m 

First a path is defined for a directed graph in the usual 
way. For example, in Figure 1, (ACD) is a path between 
A and D, but (ACFD) is not a path. Second, a pair of 
nodes is called combinable if there is no path between 
the two nodes which contains a third node. Similarly, 
a group of nodes is called combinable if for every pair 
of nodes in the group there exists no path between such 
pair which contains a node outside the group. 

Wi th the above definitions, we have the following 
lemma. 

L e m m a 1 : A pair of nodes in an acyclic graph can be 
combined into a macro node so that the resulting graph 
remains acyclic if and only if the node pair is combinable. 

P r o o f : The proof is given in Appendix A. 
Wi th the above theorem, we also have the following 

node combil iabi l i ty theorem. 
T h e o r e m 1 : A group of nodes in an acyclic graph 

can be combined into a macro node so that the resulting 
graph remains acyclic if and only if the group is combin­
able. 

P r o o f : The proof of this theorem is similar to the 
proof of the above lemma. 

2.2 T h e Resu l t s o f C o m b i n i n g 

When a macro node is created, the predecessors and 
successors of the node as well as its conditional prob-
abil i ty requires definit ion. A macro node's predecessors 
are the union of its component nodes' predecessors, and 
its successors are the union of its component nodes' suc­
cessors. For the conditional probabil i ty distr ibution of 
macro nodes, we have the following lemmas. 

L e m m a 2 : The conditional probabil i ty of the macro 
node given its predecessors is equal to the product of 
all component node's conditional probabilities. For the 
example in Figure 1, if (B,C,D) are combined into a 
macro node M, then the conditional probabil i ty of M 
given the predecessor A is equal to: 

) 
L e m m a 3 : The conditional probabil ity of a macro 

node's successor is equal to the conditional probabil i ty 
of the successor given all the component nodes in the 
macro node, except for those component nodes which 
are not linked directly to the successor, in which case, 
they are irrelevant and will not affect the conditional 
probabil i ty other than increasing the dimension of the 
conditional probabil i ty matr ix. For the same example 
as above, where (B,C,D) are combined into a macro 
node M, then the conditional probabil i ty of E given M 
is equal to: 

(2) 

Since C is not linked directly to E, the conditional prob­
abil i ty only depends on B and D, namely, P(E\B, D) , 
which is already available. Therefore, one only needs 
to fill up the matr ix with appropriate entries, i.e., 

P r o o f : The proofs of Lemmas 2 and 3 are straight-
forward and wil l not be carried out here. 

According to the above theorem and lemmas, for a 
graph which is not singly connected, one may parti­
tion each independent loop set in the graph into several 
clusters and aggregate the nodes in each cluster into a 
macro node so that the graph can be reduced to a singly-
connected graph and the distributed inference algorithm 
[6] can be applied in processing. For the example given 
in Figure 1, there are several ways of aggregating nodes 
and reducing the original graph into a singly-connected 
graph. Each one of these is called a feasible partition. 
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Some of the examples with feasible part i t ion or infeasible 
part i t ion (wi th loops) are given in Figure 2. Obviously, 
certain partit ions are better than others in computation 
requirements in the resulting networks. In order to dis­
tinguish them, a criterion of performance needs to be 
defined. In the next subsection, we develop the compu­
tational requirements for each macro node and define it 
as the performance measure to be considered. 

2.3 C o m p u t a t i o n a l C o m p l e x i t y 

In order to determine the computational efficiency for 
different network structures, we first need to be able to 
quantify the computational requirements for various con­
figurations. Due the characteristics of the distributed 
algori thm [6], the computational requirements for each 
node depend not only on the size of state space of the 
node itself, but also on the number of its predecessors 
and successors as well as their state space sizes. For 
each node in a singly connected network, there are four 
modules in the algorithm, two of them for upward prop­
agation and two of them for downward propagation. In 
a distributed processing environment, each processing 
node may propagate the data upward and downward si­
multaneously, however, due to the interaction between 
the four processing modules, calculating the exact pro­
cessing time needed for each node is not t r iv ia l . We 
may approximate the computation requirements by con­
sidering the number of multiplications that have to be 
performed in all four modules for each update. 

As carried out in Appendix B, for a node X with M 
predecessors and TV successors, the total number of mul-

where n and npi are the state space sizes of node X and 
its i:-th predecessor Xpi respectively. In a tree structure, 
each node can have at most one predecessor, i.e., M — 
1, therefore the number of mult ipl ications reduced to 
2n + nN | 2n2 , where npi is assumed to be equal to n. 
This coincides with the calculations given in [6j. 

In the above calculations, it was assumed that the en­
larged conditional probabil i ty matrices as obtained in 
equations (1) and (2) are stored in their corresponding 
macro node at the time the graph was reduced and " in i ­
t ial ized". Therefore, in normal processing when new evi­
dence is added, only the computational requirements in­
volved in standard propagation as described above need 
be considered. Alternatively the conditional probabili­
ties can also be calculated from the component nodes 
whenever needed instead of storing the matr ix at the 
macro nodes. This alternative is preferable when the 
matrix is very large and a large amount of memory is re­
quired. Nevertheless, more computational resources are 
necessary in this approach since the conditional probabil­
ities need to be re-calculated each time they are needed. 
This kind of trade-off should be considered in choosing 
aggregation part i t ion for various network configurations. 
In the next section, several heuristic algorithms are pro­
posed for finding suitable partit ions. 

3 Aggrega t ion A l g o r i t h m s 

Al l aggregation algorithms face the basic fact that the 
number of possible partitions of a graph with n nodes is 
B(n), where B(n) is given by the recursive formula: 

This sequence of numbers is called the Bell sequence 
[2], and grows exponentially. The first few elements of 
this series are: 1,1, 2, 5, 15, 52, 203, 877, 4140, 21147, 
115975. Thus for a graph with 10 nodes there are about 
116 thousands possible partit ions. 

However, many of these partitions (i.e., reduced 
graphs) are not feasible since they have undirected or 
directed cycles. Although it is possible for certain spe-
cialized structures to find the optimal part i t ion through 
direct inspection of the graph, we have as yet found no 
such general algorithm for the general case. Instead the 
algorithms proposed in this paper, either by searching 
through the space of partit ions or by inspection of the 
graph, find a feasible but not necessary optimal part i­
t ion. In this paper, we have identified several methods 
to use the special (i.e., directed, acyclic) structure of 
Bayesian Networks in order to cut down the number of 
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partitions examined in the search for the optimal par-
t i t ion. In this section, we wil l use the example graph 
shown in Figure J to i l lustrate each concept presented. 

3.1 H e u r i s t i c Search 

In this subsection, an aggregation algorithm is proposed 
which formulates the aggregation problem as a search 
problem and guarantees the identification of the optimal 
part i t ion. In this algor i thm, the nodes in each dependent 
loop set are first ordered, and then partial partit ions are 
generated recursively, with pruning of in feasible parti-
tions occurring at each level. 

It is well known that acyclic graphs can be numbered 
such that every node has a larger number than all of 
its predecessors, and a smaller number than any of its 
successors. The numbers shown in Figure 1 are obtained 
by this scheme. It should be noted that some of the 
decisions are arbitrary, (e.g., B could switch order wi th 

Given the node ordering scheme above, the full set oi 
partit ions for a dependent loop set can be identified by 
the following recursive algor i thm: 

1. Initialize the old-part i t ion-l ist to 0. 
2. For node i from 1 to n 

2a. Start a new-partit ion-l ist 
2b. For each part i t ion in old-part i t ion-l ist 

2 b l . For each cluster in part i t ion 
2b2. Make a new part i t ion by adding node i 

to that cluster 
2b3. Add that new part i t ion to new-parti t ion-

list 
End For (2b1) 

End For (2b) 
3. Set the old-part i t ion-l ist to the new-partit ion-l ist 
End For (2) 

An i l lustration of this expansion algorithm for the ex-
ample graph is shown in Figure 3 up to the fourth node 
( i .e .D) . 

Without pruning, this expansion algori thm for an in­
dependent loo]) set with n nodes wil l produce B(n) num­
ber of complete parti t ions. Two pruning operations have 
been identified to manage the search space without re­
moving any feasible part i t ions. The first pruning op­
eration removes any part i t ion which has a node cluster 
which is not combinable. The part ial part i t ion (AD,), 
BO) (see Figure 3) is one such part i t ion since the nodes 
AD are not combinable. The second pruning operation 
removes any part i t ion which contains a loop. The par­
tial part i t ion (A,B,C,D) is one such part i t ion since the 
nodes ABCD form a loop. The claim that these prun­
ing operations do not remove any feasible partit ions from 
consideration is proven below. 

T h e o r e m 2 : W i th pruning of infeasible partial par­
tit ions which contain at least one loop) or at least one 
node cluster which is not combinable, all feasible com­
plete partit ions are sti l l reachable. 

P r o o f : Because of the ordering scheme, if a node 
cluster in a partial part i t ion is not combinable, the ad-
dit ion of any new node cannot make that node cluster 
combinable. Also if a partial part i t ion contains a loop, 
the addition of any new node wi l l not remove the loop 

from that part i t ion. Thus any successor part i t ion of any 
infeasible partial partit ion will be infeasible. Thus prun­
ing an infeasible partial part i t ion does not prune any 
feasible complete part i t ion. 

In order to use heuristic search techniques, an eval­
uation function must be defined. In particular for the 
A* algori thm, the cost functions g(p) and h(p) must be 
defined where p is a partial part i t ion. The function g(p) 
is an estimate of the cost from the start node to the the 
partial part i t ion. This can be calculated using the com­
putational complexity results derived in Sec 2.3. The 
function h(p) is an estimate of the additional cost of 
getting to the final complete part i t ion and must be less 
than or equal to the "actual" cost of reaching the fi­
nal part i t ion. For h(p) we compute the additional cost 
of completing the part i t ion by assuming the rest of the 
nodes are added singly since this is the minimum cost 
solution. The cost functions g(p) and h(p) are combined 
into the evaluation function f(p) where: 

f(p) - g(p) + h(p) (5) 

While we have chosen to discuss the A* algorithm [5] 
here, other heuristic search techniques could be applied 
as well. 

An additional technique for reducing search is to de­
vise an algorithm for init ial izing f(p) before any search 
starts. Such algorithms find a "good" feasible complete 
solution directly. Such an algorithm is discussed in the 
next subsection. 

In summary, the heuristic search algorithm can be de­
scribed as follows: 

1. Order the nodes in the dependent loop set. 
2. Initialize the old-partit ion-l ist to be 0. 
3. Initialize the minimum cost by an init ial ization algo­

r i thm (e.g., Sec. 3.2) 
4. Choose the partial part i t ion p i with minimum /(p i,) 

to expand. 
4a. Make new partit ions by adding the i + 1 node 

to the partial part i t ion p i 

4b. Prune all partit ions containing a ''non-combin 
able'1 node cluster. 

4c. Prune all partitions containing a loop. 
4d. Evaluate j{pi+1) for each new partial part i t ion. 
4e. if there is a partial part i t ion to expand, go to 4, 

else done. 

3.2 G r a p h - D i r e c t e d A l g o r i t h m 

Another heuristic method developed based on the node 
aggregation theorem is the so called "graph-directed al­
gor i thm". This algorithm is "graph-directed" since the 
aggregation process follows the direction of the graph 
(i.e., from a graph's roots to its leaves). This algorithm 
consists of the following steps : 

1. For each independent loop set, find the root nodes. 
2. Identify all root nodes1 successors which are within 

the loop set. 
3. Group these successors into clusters such that any 

two nodes of different clusters do not share any 
predecessor. 

4. If the nodes in a cluster are combinable, combine 
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them into a macro node. 
5. If the nodes in a cluster are not combinable, collect 

these nodes together wi th their direct successors 
wi th in the loop set and go to step 3. 

6. When all nodes involved in the loop set have been 
considered, done. 

This algorithm reduces a graph with loops into a singly-
connected one. It is not optimal but is simple and re­
quires small amounts of computational resources. It can 
serve as a mechanism for ini t ial iz ing the search algorithm 
described in the previous subsection or can be used as 
a stand-alone algorithm for finding a part i t ion for node 
aggregation. To il lustrate the algori thm, Figure 4 shows 
several example graphs together with their resulting par­
tit ions obtained based on this algori thm. 

4 Conclusions and Discussion 

In this paper, we have presented a general framework 
and several algorithms for converting Baycsian networks 
with loops into equivalent singly-connected networks. 
The purpose of such conversions is to take advantage of 
the distributed algorithm [6] for inferencing in a singly-
connected network. The framework and algorithms cen­
ter around one basic operation, node aggregation. In 
this operation, a cluster of nodes in a network is replaced 
wi th a single node without changing the underlying jo in t 
distr ibution of the network. The framework consists of a 
node combinabil i ty theorem which determines if a set of 
nodes can be aggregated, a description of the results of 
node aggregation and a computational complexity mea-
sure associated wi th the aggregation. 

A search algorithm to find an optimal node aggrega­
tion part i t ion as well as a simpler heuristic approach for 
finding a suitable part i t ion are then presented. While 
the algorithms described in this paper may not in the 
end prove to be the most efficient ones, all of the ba-



sic concepts in the framework and those used in the 
algorithms (e.g., node combinability, computational re­
quirements measure, node ordering, pruning operations) 
are fundamental and useful to all node aggregation algo­
rithms. 

There are at least two primary directions of research 
to pursue, algorithm development wi thin the node aggre­
gation framework and the comparison and integration of 
other methods for dealing with graphs with loops (e.g., 
conditioning, stochastic simulation). 

W i th respect to algorithm development, the most 
promising avenue of research seems to be algorithms 
like the "graph-directed" algorithm which would utilize 
graph features such as connectivity and state space size, 
to directly identify a near optimal if not the optimal so 
lut ion. Search approaches seem less promising since even 
heavy pruning of in feasible and high cost alternatives can 
sti l l be computationally costly for some graphs. Hybrid 
approaches which combine search and algorithms which 
generate an ini t ial feasible solution may also be worth 
looking into. 

For the integration of algorithms, it seems clear that 
wi th each method which has been suggested, there are 
certain graph topologies where that method provides the 
best solution. However, the same method may perform 
very poorly for other topologies. This suggests a direc­
tion of research in which the algorithms are compared 
and integrated based on their individual strength in deal­
ing with various graph topologies. 

A P r o o f of Comb inab i l i t y Theorem 

The proof of the lemma follows, 
Proof : 
(—>) If a cycle is created in the new graph due to the 

combination of the node pair, then there must exist at 
least one path between the two nodes which contains 
a th i rd node. This violates the combinable node pair 
definit ion. Therefore, if a node pair is combinable, then 
the resulting graph (with the node pair combined into a 
macro node) remains acyclic. 

(<—) If a node pair is not combinable, then there exist 
at least one path between the two nodes which contains 
a th i rd node. Now if the pair is combined into a macro 
node, that directed path wil l create a cycle and make the 
resulting graph cyclic. Therefore, in order to maintain 
the resulting graph acyclic, the node pair to be combined 
has to be combinable. 

B C o m p u t a t i o n a l C o m p l e x i t y 

For the four modules in the algorithm [6], the respective 
number of multipl ications needed are, 

M o d u l e I : Calculate . According to the 
updating formula, there are two parts, first calculate the 
transit ion matr ix, then mult iply the matr ix by the vector 

Since wc have M predecessors, the total number 
of mult ipl ications needed is: 
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