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ABSTRACT

We propose a new method for automated theorem pro-

ving in first order modal logic. Essentially, the
method consists in a translation of modal logic in-
to a specially designed typed first order logic cal
led Path Logic, such that classical modal systems

(first order Q, T, 04, S4, S5) can be characteri-
zed by sets of equations. The question of modal
theorem proving then amounts to classical theorem
proving in some equational theories. Different me-
thods can be investigated and in this paper we con-
sider Resolution. We may use Resolution with Para-
modulation, or a combination of Resolution and
Rewriting techniques. In both cases, known results
provide "free of charge" a framework immediately
applicable to Path Logic, with completeness theo-
rems. Considering efficiency, the Rewriting method
seems better and we present here in details its
application to Path Logic. In particular we show
how it is possible to define a special kind of
skolemisation and design a unification algorithm
which insures that two clauses will always have a
finite set of resolvents.

INTRODUCTION

In the so-called possible worlds semantics for Mo-
dal Logic, modal operators are interpreted as quan
tifications over "worlds", constrained by some
"accessibility" relation. But in the language of

modal logic, worlds are not explicitely named, i.e.
there is no syntactic item, such as variables or
constants, denoting them. We consider that much of

the success of Modal Logic comes from this feature,
since the variableless operatorsoand o can be clo-
sely related with current language operators like
"necessary", "always", or "l believe that". But
from a theorem proving point of view, is this choi-
ce appropriate ? This is not that obvious just
observe the difficulties encountered by different
authors who tried to extend Robinson's Resolution
method to first order modal theorem proving [Cial-
dea 86] [Abadi Manna 86] [Konolidge 86]. Indeed it
is certainly not easy to cope with the dependencies
between objects of the discourse domain and worlds,
which are in fact specified by a first order modal
formula, in a formalism which avoids naming the
latter.
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A well-known way of restoring, say, a syntactic
status to the worlds and the accessibility relation
is to translate modal formulas into a first order

classical logic with a binary relation symbol to
denote the accessibility relation. This direction
has been proposed by several authors in the A.Il.
field (f.i. [Moore 80]). But it seems that we loose
much of the structure of the initially given modal
formulas in the process of translation, and this is
to be paid in terms of efficiency.

In this paper we propose another method for mo-
dal theorem proving. This method is based on a
translation into a first order classical logic, but

the target logic is tailored to better fit the
structure of modal formulas.
We call this logic Path Logic. It possesses

three types A, W and I). Objects of type I) are those
of the discourse domain. Objects of type W represent
worlds. Concerning A, we can see it as the type of
operators on objects of type W. The idea is to cap-
ture the notion of accessibility relation in the
following way "the world w' is accessible from w"
will be expressed by the sentence "w* is obtained
from w by application of an operator in A". Through
our translation in Path Logic, the various systems
of modal logic are mapped into equational theories
expressing some constraints on the system of opera-
tors. Proposition 1 provides the correspondance for
Q, T, Q4, S4 and S5.

The question of modal theorem proving then
amounts to classical theorem proving in some equa-
tional theories. Different methods can be investi-
gated and in this paper, we consider Resolution.We
may use Resolution with Paramodulation like in
[Walther 87], or a combination of Resolution and
Rewriting techniques like in [Plotkin 72] and [Fa-
ges 83]. Both these theories provide "free of char-
ge" a framework immediately applicable to Path Logic
with completeness theorems (proposition 3). Conside-
ring efficiency, Plotkin-Fages method seems better
and we present here in details its application to
Path Logic.

In particular, we must face the following problem.
The equational theories considered for some modal
system (Q4,S4)possess an associative operator, and
associative unification in general is known as a
difficult question [Fages, Huet 86] [Pecuchet 84].
The difficulty is overcome here by defining a spe-
cial skolemisation ("strong skolemisation"in the pa-
per) . A unification algorithm based on these results
has been defined and proved correct (proposition 5).

Similar approaches are proposed by L. Farinas and
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A. Herzig [Farinas Herzig 88), and H.J. Ohlbach
[Ohlbach 88] from who we have borrowed the state-
ment of the Unique Prefix Property, Compared to
these papers, ours is characterized by the syste-
matic developpement of an algebraic-equational
point of view. This to cur sense gives a cleaner
mathematical framework and has the invaluable ad-
vantage of discharging of a great deal of mathé-
matical work.

I PATH LOGIC AND THE TRANSLATION OF FIRST ORDER
MODAL LOGIC

1.1 Syntax

We consider the language of modal logic built
on a signature I consisting of :
~ a set G of function symbols of any arity
- a set P of predicate symbols of any arity
with the classical and modal connectives A,v,77,
¥, 3,¢ ,8, and a set V (x, v, 2...). Terms and
modal formulas are defined in the usual way.

Given some modal system S among Q, T, Q4, S4, S5
L(S) will denote the Path Logic associated with S,
As earlier mentionned, L(S) possesses three types
A, W, D. Its language is the classical typed
first order language built on one of the followlng
s1gnaturea I., according to the modal system S in
view, For any term t and type T, we note "t:T" for
"t of tyoe T".

I : £ @ W, constant
Q, , W x A —»W, function symbol - for which we
use infix notation
The seL Gof -~ a function symbol g in C has
type D —3D in I if g had arity n in I,
The set P of I-a Sredlcate symbol p in P has
type W x D —>»{0,1} in I, if p had arity n

Q
in X,
ZT : ZQ Ui :al
ZQ& : IQ U i{* : AxA —~»A}- apain, we use infix
notation
Tgq P Ige Y Ig .
ESS:ZSQU{() : A —>Al

Let 2( = {a, B,Y,...,}ga set of vartables of type
A. V is the set of variables of type D. We have the
usual notions of well typed terms and formulas. Re-
mark that there is no variables of type W, so that
the only terms possessing this type are ¢ and

ela !,,.1a , with a, : A. The reader can fruitfully
interpret such obje&ts as paths in a Kripke struc-
ture, where ''transitions” from one world to another
would be named by some a..

1.2. Semantics

The semantice of modal logic considered in this
paper ig a semantics with constant domains and ri-
gid function symbols. The restriction to rigid
function symbole is inessential and only for sake
of simplicity : all results in this paper easily
extend to flexible symbols. We shall say that a
modal formuls is S-satisfiable if it admits a mo-
del which fulfils the requirements on interpreta-
tions for the modal system S.

An interpretation K for L(S) is a classical in~
terpretation, defined by giving a domain for each

type A, W and D, and, for any symbol in IS a func~—
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tion or predicate with the correct type. Moreover

we suppose that K satisfies the following equatio~

nal theory E(S), according to the modal system S in

view :

E(QQ) = ¢

E(T) ={w! {(axa')y =w ! a! a'
as» (al * all)}

E(S4) = E(QA) VE(M U{a®x 1 =a, 1 xa:al

E(S5) = E(54) U {a = a~! = 1}

We say that K is an E(S)-interpretation. The no~-
tions of truth, validity, satiefiability are defi-
ned in the usual way. We shall say that a formula
is L(5)-satisfiable if it admits an E(S)-interpre-
tation,

The idea is the following. Let X be some inter-
pretation and A and W be the domains for type A and
W respectively, W can be considered as a set o
worlde and A as a set of operators om W. The sen-
tence "the world w' is accessible from w" ie inter-
preted in Path Logic as ''there is an operation a
in A such that w' = w! 8 is true in K". The get of
equations E(S) is what corresponds in the Path Lo-
gic L(S) to the properties of the accessibility re—
lation for S, For instance reflexivity is expressed
by the existence of a neutral element 1 ; tramsiti-
vity by the existence of an associative operation
* on A, such that (A,*) is a semi-group operating
on W, or a monoid or a group according to whether
we are in L{Q4), L(S4) or L(S5).

If the above equations are oriented from left to
right, each set E{5) becomes a rewriting system
which can be completed into a canonical one, let's
call it R(8) (for the notion of canonical rewriting
system, see f.i. [Huet, Oppen 80]). If follows that
any term t admits a normal form for R(S).

Civen any modal system S (among those under con—
sideration) the Path Logic L(S) consists of the
above defined first order language on the signature
ZS' together with the equational theory E(S)

{.3. Translation from modal logic to path logic

(8*3') * " =

For any term © : W and modal formula B, the for-
mula t(n,B) is defined by induction on the structu
re of B :

t{m, p(tI,...,tn)) =p (m, ti,...,tn)

if p 1s a predicate symbol

t(», -B) = ~t(n, B)

ti{m, Bya Bz)“ ﬂﬂ,ﬂt)b Kﬂ,Bz)
t(x, ¥x B) = ¥x t{(, B)

t{x, 3Ix B) = 3Ix t(x, B)

t{n, O08) = Yu t(n! o, B)

t(x, ¢8) = 3 t{n! a, B)

(ae{a,Vv})

t(n,B) can be read as "the translatlon of B with
starting leﬂt the world denoted by n' The transla
tion of B is T(B) = t{c,B)

Proposition 1 :

A modal formula B is S—-satisfiable iff T{(B) is L(S)
satisfiable.

Example 1
Let G = o 3 x 0@ p{x)

T(G) = 3«2 x¥BIAy ple 'a '8! vy, %)



2* RESOLUTION FOR PATH LOGIC

A Path Logic L(S) is a typed first order equatio-
nal theory. We can apply Resolution with Paramodu-
lation for instance, the techniques presented in
[Walther 87] immediately apply. Or we can use a
combination of Resolution and Rewriting techni-
ques,j and this is what we present now.

2.1 Pesolution in equational theories

We first recall that the equational theories E{5)
above are defined by canonical rewriting systems.
[Plotking 72],[Fages B3] extend Robinson Resolution
Principle to this framework in the following way.
Let E be some equational theory and {tl,....tk}a
set of terms ; a E-unifier of {tl,...,tk] is a
subatitution ot, = ESt, = ... = EOf. If E is

défined by a canonical rewriting system then
= g is decidable and t = Et' iff the normal form
of t according to P.E is identical to that of t'.

E-resolvant :
V...V A

Let C = Ai K
and C' = A' v...v A' ,v 9 B'

i n 1
be two clauses and 5 an E-unifier of [Al,..., Ak’
B'l,...,B'k.}

] 1

g (Ak-rl VeuaV Anv A lv...vA ' vaB
2B’

V.uoWA YV TBov...v MB
n m

1
Ve.ov B'k,v...\nn‘m.

) v...v-lev

Vaue v‘lB'm,) is an E-resolvant of C and C,

k'+1

Let us call E-resolution the deductive system
consisting of one inference rule which, given two
clauses C; and C, allows to infer any E-resolvant
of C4. and C,. As usual a refutation is a proof of

the empty clause.

Theorem 2 (Plotkin, Fages)
A clausal formula is E-unsatisfiable iff there
exists a refutation of this formula by E-resolu-
tion,

Let us apply this result to Path Logic, We can
introduce in the signature S skolem functions of

the convenient arities and types and associate, in
the standard way, with every formula H of L(S) a
clausal formula H' equivalent to H with respect to
L(S)-satisfiability. Combining this process with
the traduction T thanks to proposition 1, we can
associate with every modal formula B of S a formu-
la B' of L(S) in clausal form such that B' is L(S)-
unsatisfiable iff B is S-unsatisfiable. Then we
have

Proposition 3

Let B any modal formula, S any system among Q, T,
Q4, S4, S5, and B' the skolemized of T(B). B is
S-unsatisfiable iff we can refute B' by E(S)-reso-
lution.

Example 2 : 85-validity of op -+ OCp:
We prove the S$5-unsatisfiability of F =op AQODNp
Translation : T(F)= Ju plz ! &) ATBVy—plc !B !y

Skolemization :

plc 1 gg) A Vg —ple Loy ! ¥

Cleusal form :

Cy = ple f 9g)

Co=-plcig! ¥

Resgolvant of C., and C,:

let o be defined by : ¢ ¥ = 91-1 * 90~

¢ is an E(S5)-unifer of p(c | gg) and plel ¢y !
yr:oletpg) =ctpgandolely ! y)=clyg!

-1
("PI ""PO)-E(55>°!¢O

and C

Thus, the empty clause is & resolvant of Cl 2

2.2 Strong skolemisation

We recall some definitions. Given some set T of

terms, a Complete Set of Unifiers (CSU) for T is a

set S of unifiers of T such that for any unifier
a of T, there is some Tin S such thatTis more ge-
neral than a there is some u such that 0=T U.

In order to automatise the search for refuta-
tions of sets of clauses, it is quite desirable
(but not strictly necessary) to be sure that any
unifiable family {t , ...,tk, } of terms admits a fi-
nite CSU. In the empty theory, f.i. E(Q), we know
that such sets exist and are in fact reduced to
singletons (most general unifiers), and we know
algorithms to produce them. It is easy to check
that there also exist finite CSU's in the case of
E(T), and to exhibit a unification procedure. But

in E(Q4), E(S4) or E(S5) we have an associativity
axiom for *, and complete sets of unifiers are in
general infinite.

Counter example 3 :
Let E = E(Q4) = {w ! (x *a') = w I !a', {(a *a') »
a”" = o x (@ w«")}}, The E-unifiers of {e¢ ! a ! a,

e ! alal are

al:ﬂ"")a
Bn PO —=) BkBk. .. kA

there is no finite complete set of E-unifiers.

It is possible to enumerate the members of a
complete set of unifiers, f.i. using the "narrowing"
procedure [Fages 83] [Fay 79]. But there is a bet-
ter way on. We can take advantage of the particular
structure of the formulas obtained in L(S) by trans
lation from S, and perform a skolemisation finer
than the standard one, which will ensure the desi-
rable finiteness property. This is what we call
strong skolemisation. At the present time it is de-
fined for the modal systems Q, T, Q4, S4, so that
they are the only systems under consideration in
this section.

Since the process of strong skolemisation is a
bit complex, we rather present here the result
T"(B) of applying it to the translation T(B) of a
modal formula B.
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Let B a modal formula in negative normal form (ne-
gation operating on & atomic formulas).

T'(B) = t'(c, @, B) where, if n is of type W and X
is a set of D-typed variables, t'(w,X,B) is recursi
vely defined by :

t'{m,X, p(t‘!l"'!‘n)) - D(‘N.tp"'.tn)
if p is a predicate symbol

t'(m,X, -p(th...,tn)) - "D(""H-'"-tn)
if p 1s a predicate symbol

t(m,X, B1a By) = t'(m,X, By) & t'(n,X, By)
(Ae (A, V))
t'(m,X, ¥x B) = ¥x t"(n, X U{x}, B)

t'(m,X, Ix B) = t'(w, X w{x}, B) [ f(x,X) / x]
£:9xp" > D
t{mX, 0B) = Va t'{nia, X, B)

t(x,X, 0B) = t{nlp(), X, B)
oD > A

Example 4 :

Let G =0 n 3 xgp(x). We have :

T(G) = ¥ avB I xIyple! o !B !vy,x),and the strongly
skolemized form is :

Y avB ple ta 1R 1 (a(e o '), gle 'a 1B))

As one can see on this example, the general idea
is to replace skolem terms depending on A-variables
(such as f(a,B)), by skolem terms depending on path
expressions {(like in g(e!a!B)).

Proposition 4 :

Let B be some modal formula and T'(B) the strong
skolemisation of T(B). B is satisfiable in 5 iff
T'(B) is satisfiable in L(S).

Skolemised formulas can then be put into clausal
form, The clausal formulas obtained that way, pos-
sess a property which guarantees that terms to be
unified admit a finite complete set of unifiers,
namely :

Let C be a clause and o : A a variable. For eve~
ry sub—term nwla: W in C, n does not depend on the
particular occurence of a, but uniquely on a. We
call this property the Unique Prefix Property (U.P.
P.). In particular it follows that if n!u!all...!aﬁ

¥ is a sub-term of C, o does not occur in n and
aJ. # o for all j = ...k

For example one can easily check that the formu-
la T'(G) in example 3 satisfies this condition,
while the set in the counter-example 3 does not.

Proposition 5 : Any set of expressions that satis-
fies the U.P.P. admits a complete set of E(§)~uni-
fiers. There is a procedure that computes such a
set of E{S8)-unifiers. The substitutions which are
computed preserve the U.P,P, on the given expres—
gions.,

It follows from propoeition 5 and Plotkin-Fages'
results that the classical semi-decision procedure
for checking unsatisfiability of a set of clauses
can be adapted to Path Logics in a straightforward
way. By means of the translation T', we obtain a
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semi-decision procedure for the modal systems un-
der consideration. The algorithm is given in [Auf-
fray, Enjalbert 88] and proved correct in [Auffray
89].

3. EXTENSIONS - DISCUSSION
Extensions

Our method can be extended to deal with logics with
several different modalities (or multimodal logics)
such as epistemic logic with many agents. If no
relation is specified between the modal operators,
we just need to consider subtypes of type A corres
ponding to the different modal operators, and the
characteristic set of equations for each one. We
can also deal with relations between modalities
specified by axiom schemas like A —D A, by

setting some order on the subtypes. Again Walther's
techniques immediately apply, and we are studying
the extension of Plotkin-Fages ones.

Discussion

1 - The Unique Prefix Property constitutes a cha-
racterisation of a subset of the set of formulas
of Path Logic in which Modal Logic can be embed-
ded. This feature distinguishes our translation
from the "trivial" one envolving a binary relation
symbol to denote the accessibility relation. We
consider that it indicates that translation from
modal logic to path logic is a good compromise
keeping part ot the structure of modal formulas
while adding what is necessary of extra mathema-
tical structure.

Also in the "trivial" translation, properties
of the accessibility relation would be expressed
by clauses at the same level than the other ones
characterizing the problem to be solved. This si-
tuation would be very similar to the treatment of
equality which consists in adding a predicate
symbol "=" with clauses to express its properties ;
this is known to be the wrong way to do Further
on, the use of Rewriting techniques seems likely
to give better efficiency than Paramodulation : see
[Plotkin 72] for this discussion.

2 - In this paper we considered Resolution, but
other classical theorem proving techniques could
be used for Path Logic. Fo instance techniques
based on rewriting [Hsiang, Dershowitz 83] could
be of interest.

3 - A nice feature of our theory is that the treat-
ment of modalities is finally reduced to unifica-
in an equational theory. Unfortunatelyit is likely
that not all modal systems can be delt with that
way : consider a system like G where the property
of the accessibility relation is of topological
nature, or some Temporal Logics with the same
characteristic. But nothing prohibits to mix the
techniques of this paper with other ones, induc-
tion for example. This remains to be investigated.
Also the question of Ss must be considered.

On the other hand we can ask which semantical
properties can be nicely expressed in the language
of Path Logic.
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