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A b s t r a c t 

A significant component of human observa­
t ional learning is the abi l i ty to focus attention 
toward important or relevant input features. 
Amechanism w i th this capabil i ty can serve as 
an inductive bias to facil itate learning in both 
humans and machines. Past attempts to model 
attent ional focus for human learning have pos­
tulated a single salience value for each feature, 
such that features w i th greater salience com­
mand more at tent ion. These models, however, 
assume that the feature's salience is not depen­
dent on context, whereas studies of human at­
tention show sensit ivity to context. This paper 
presents a mechanism for contextually focused 
attent ion in observational learning. 

1 I n t r o d u c t i o n 

Observational learning is a form of inductive knowledge 
acquisition in which there is no external guidance, such 
as explicit feedback. However, some guidance or learn­
ing bias is required to make general induction tractable 
(eg. Rendell et al., 1987). Since humans do engage in 
some observational learning (Bi l lman et al., 1987), there 
must be a method for internally guiding this learning. 
Discovering such methods wi l l prove useful both for un­
derstanding human learning and for designing computer 
programs that learn from observation (eg. Fisher, 1987). 
Zeaman and House (19C3) and Bi l lman and l i c i t (1988) 
have argued that attent ion directed by learnable feature 
saliences may provide some internal guidance for human 
learners. They each proposed a mechanism for doing 
this and were able to confirm the approach for simple 
learning. Neither method used context — what already 
is known about an example — to help focus attent ion. 
Other researchers, however, have found that human at­
tention and other cognitive processes vary wi th context 
(Loftus & Mackworth, 1978; Barsalou & Medin, 1986). 
As well, the use of context can allow learning of more 
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complex examples. The noncontext approach assumes 
that there is only one important subset of features that 
are always salient. When this assumption is violated, 
learning is not facil i tated. 

Given that at tent ion is useful for human and ma­
chine observational learning, it is important to ensure 
that proposed attent ional mechanisms support a use­
ful type of learning. Human observational learning 
most clearly is useful for natural language and concept 
based predictions. Addi t ional ly, many machine learn­
ing studies of observational learning have concentrated 
on concept based prediction (Schlimmer, 1986; Fisher, 
1987). These types of knowledge have frequently been 
described as capturing correlational feature structure 
(Rosch, 1978; Medin & Schaffer, 1983; Fisher, 1987). 
In other words, category structure and linguistic struc­
ture can be represented part ial ly by correlational rules 
or conditional probabilit ies of the form: P(feature} — 
valuel | feature ' 2 = value2). Thus, a "rule" such 
as, recovering = feathers \ locomotion = wings), 
records the frequency w i th which 'feathers1 occur given 
that 'wings' is true. Anderson (1988) has further ar­
gued that even if human category structure is not im­
plemented using condit ional probabilit ies, it and other 
phenomena are best described and explained by such 
probabilit ies. Similarly, recent machine learning models 
of concept acquisition have proposed that categories can 
be best learned by maintaining condit ional probabilities 
(Schlimmer, 1986; Fisher, 1987). These psychological 
and machine learning studies suggest that an adequate 
model of human and machine attent ional learning should 
demonstrate how the at tent ion mechanism can facilitate 
learning of condit ional probabilit ies or estimates thereof. 

This paper presents a new model of the use of at­
tention for observational learning. This model, called 
Contextual ly Focused Sampling, introduces a context 
controlled attent ion mechanism, and is proposed as 
a method for both human and machine observational 
learning. This use of context part ial ly was motivated 
by the need for dynamic learning biases (eg. Rendell 
et al., 1987) and machine learning studies of the use 
of probabilistic context for generalization (eg. Fisher, 
1987). CFS is compared to an important non-context 
alternative, Focused Sampling (Bi l lman & Heit, 1988), 
to demonstrate its similar behavior for simple learning 
and its superior behavior for more complex learning in 
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which there are mult ip le important subsets of features. 

2 Focused Samp l i ng 

Bi l lman and Heit 's (1988) C A R I implementation of the 
Focused Sampling (FS) method describes how attention 
can be used to facil itate observational learning. Put sim­
ply, FS allocates more attention to those features that 
part icipate in strong correlations or rules. The 'rules' 
and 'correlations' referred to by Bi l lman and Heit are 
simply the condit ional probabi l i ty relationships between 
features. 

1: Choose two features , Fl and F2. The 
p r o b a b i l i t y of choosing any given feature 
is tha t f e a t u r e d sal ience d iv ided by the sum 
of the a l l sal iences (Luce, 1959). 

2: Sample F l : Observe the value, v1, f o r F l . 

3: Given v l , p red ic t the value f o r F2. The 
p r o b a b i l i t y of p red ic t ing a value, v2, is equal 
to the p r o b a b i l i t y from vl to v2 d iv ided 
by the sum of a l l ru le strengths between vl and 
values of F2. 

4: Sample F2: Observe the value, v2, f o r F2. 

5: - If predic ted matches the true value, increment 
the ru le s t rength from vl to v2 and increment 
the sal ience of Fl and F2. 

- If they do not match, decrement ru le strength 
and sal iences. 

F igure 1 : Focused Sampl ing A l g o r i t h m 

In C A R I (Figure 1), two features, such as color and 
size, are sampled, and a prediction of the value of the 
second feature is made on the basis of the value for the 
first feature. A l l t ra in ing examples are assumed to be 
collections of feature/value pairs, and sampling a fea­
ture reveals that feature's value. For example, the color 
feature, when sampled, might be found to have the value 
'green'. If the prediction of the second value is correct, 
then the saliences of the features and the strength of the 
prediction are incremented. Otherwise, these values are 
decremented. The adjustment of the values is based on 
an estimator of condit ional probabilit ies called the delta 
rule. This estimator, in similar forms, has been used 
in many psychological learning models (Rescorla, 1972; 
Rumelhart, Hinton, & Wil l iams, 1986). C A R I updates 
the rule strength and feature saliences by, 

Sn = Sn-1 + a[T - Sn-1) 

Sn = Salience or Strength; α = learning rate 
T = 1, if prediction is correct; T = 0, otherwise. 

FS is an attent ional learning mechanism that supports 
learning of correlational structure (Bi l lman et al., 1987; 
Bi l lman & Heit, 1988); and there are two major learning 
behaviors of the model that any viable alternative must 
also demonstrate. 

• First, FS produces a faci l i tat ion in learning as com­
pared to random sampling of features (Bi l lman & 
Heit, 1988); 

• Second, particular rules are learned faster when they 
are part of a system of interrelated rules than when 
they occur in isolation. Bi l lman and her colleagues 
term this effect clustered feature facilitation. Hu­
man subjects have demonstrated this effect for ob­
servational learning of a novel language (Bi l lman et 
al., 1987). 

3 Con tex tua l l y Focused Sampl ing 

There are many reasons to suspect that context is impor­
tant for attention. First, humans are able to use informa­
tion that they already know about an example to direct 
their attention to unusual aspects of the same example 
(Loftus & Mack worth, 1978). Second, some multiple-
look attention models (Trabasso &; Bower, 1968) suggest 
an averaging method for using what is known about an 
example when generating a response. Finally, algorithms 
like FS would not allow a human or machine learner to 
focus on different cohesive subparts of an example. For 
instance, there are many subsets of animal features that 
internally cohere, like food-type and size or habitat and 
means-of-locomotion. FS, though, assumes that there is 
only one important subset. An alternative model wi l l 
be proposed that introduces a l imited form of context 
for feature sampling. The use of the word 'context ' in 
this work refers specifically to known feature values of 
a particular example. Using context for attention there­
fore refers to using those feature values that have already 
been observed to help choose other features to which to 
attend. 

The method proposed by this paper, Contextually Fo­
cused Sampling (CFS), samples attr ibutes based on their 
estimated predictability. It calculates those estimates 
using estimates of conditional probabil i ty between fea­
ture values. In CFS (Figure 2) then, choosing a feature 
depends upon that feature's predictabil i ty given what 
values are already known. This method allows the prob­
abi l i ty of sampling a particular feature to vary wi th the 
context. 

The CFS algorithm, like the FS, uses the delta rule 
to update the estimates of conditional probabilities and 
no-context feature saliences. The no-context feature 
saliences are used for sampling when nothing is yet 
known about an example. Feature saliences in context 
are based solely on the estimates of the conditional prob­
abilities. An important difference between CFS and FS 
is that CFS allows mult iple samples to be taken from 
each example in order to provide context. 

CFS requires an algorithm for estimating predictive-
ness in context, i.e., when several features have already 
been sampled. It is not reasonable to maintain all such 
higher order probabilities, because there are exponen­
tial ly many of them. The most straightforward alterna­
tive is to use a Bayesian estimate assuming independence 
(Mar t in , 1988). However, pilot studies have shown that 
an arithmetic average (Trabasso fc Bower, 1968) is better 
correlated to actual higher order conditional probabil i­
ties for the types of training example being used. Davis 
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(1985) gives an argument for the use of a geometric av­
erage in a similar machine learning system. 

1: Choose s t a r t i n g fea tu re , F l . P robab i l i t y of 
sampling is f e a t u r e d no-context sal ience 
d iv ided by sum of a l l no-context sal iences. 

2: Sample F l : Observe the value, v l , f o r F l . 

Loop f o r i = 1 to n 
3: Choose fea tu re , F i , based upon an estimate of 

p r o b a b i l i t y of F's values given known values. 

4: Using an estimate of j o i n t cond i t iona l 
p r o b a b i l i t y , p red ic t the value of F i . 

5: Sample F i : Observe the value, v i , f o r F i . 

6: - I f pred ic ted value matches v i , increment 
strengths between a l l previously sampled 
values and v i . I f i=2 , increment 
sal iences of Fl and F i . 

- If the pred ic ted value does not match, 
decrement ru le s t rengths. I f i=2 , 
decrement the sal iences. 

Figure 2: Con tex tua l l y Focused Sampl ing 

The input was provided as lists of digits in the form, (1 
2 3 2), to represent that the features 1 through 4 have 
the values 1, 2, 3, 2 respectively. These number vectors 
are used for simpl ici ty but are meant to represent vectors 
such as, (covering=fur, hab i ta t= land, size=big, locomo-
t ion=legs). In all three experiments, the inputs consisted 
of eight features (Figure 3). These inputs were presented 
one at a t ime as examples. Each t r ia l consisted of pre­
senting one example that was selected randomly f rom all 
available inputs. These trials were divided into blocks of 
50. As in Bi l lman and Heit (1988), the strengths be­
tween the values of the first two features were averaged 
to measure learning after each block of tr ials. In all sets 
of t ra in ing examples, the first two features were related 
strongly. The test strengths were, {f\ = 1 —> f2 = 
l , f 2 = 1 - f1 = 1 , f i = 2 - > f 2 = 2 , f 2 = 2 -> f1 = 2} . 
Statistical comparisons were made based on this average 
target strength after a criterion number of t r ia l blocks. 
The criterion was set for each experiment when the mean 
strength for IIS was equal to 0.50 ± 0.02, as in Bi l lman 
and l i c i t (1988). 

4 Exper imental Tests of CFS 
CFS was compared to FS in three experiments. The first 
two experiments were performed to demonstrate that 
CFS is a viable alternative to FS. Experiment I I I was 
conducted to determine whether CFS is superior to FS 
for more complex inputs. 

4 .1 A l g o r i t h m s 
The experiments performed comparisons between three 
algorithms, Random Sampling (RS), FS, and CFS. In 
general, it is diff icult to compare algorithms because 
they often differ by more than one characteristic. For 
instance, CFS and FS differ not only by how a feature 
is sampled but also by how many features are processed 
per example. FS samples exactly two features, while 
CFS can sample several. These extraneous differences 
can confound a comparison on the characteristic of in­
terest. It is therefore important to remove as many ex­
traneous differences as possible before comparisons are 
made. The FS algor i thm was modified to incorporate 
the loop from the CFS algori thm. The only difference 
between the FS and CFS algorithms was that the former 
always used salience to select features for sampling. The 
RS algor i thm was like the CFS algor i thm, except that it 
selected features independently of salience and estimates 
of condit ional probabilit ies. These versions of the RS, 
FS, and CFS algorithms were used in all experiments. 

4.2 G e n e r a l M e t h o d 

The general method used for al l three experiments was 
very similar to that used by Bi l lman and Heit (1988). 

F igure 3: I n p u t Vectors. 

The variable parameters were set to the values used 
by Bi l lman & Heit (1988) and were held constant for 
all experiments. The in i t ia l strength values were set to 
0.01, in i t ia l feature saliences were set to 0.125, and delta 
learning rates were set to 0.02. CFS and the modified FS 
and RS algorithms have one addit ional parameter, the 
number of features sampled per example. Pi lot studies 
demonstrated that as this parameter is increased, learn­
ing faci l i tat ion increases. This parameter was set at 3 
samples per example for all algorithms throughout the 
experiments to reflect the l imited capacity of attention 
and to achieve some benefit of context for CFS. 

Fifteen simulated subjects were run in each condit ion. 
These subjects varied due to probabilistic sampling and 
random example selection. 

5 Exper iment I & II 
CFS should be able to demonstrate the significant behav­
iors of Focused Sampling. The first of the two important 
FS behaviors is a faci l i tat ion of learning as compared to 
random sampling. In Experiment I, CFS was predicted 
to produce a learning faci l i tat ion because, like FS, CFS's 
focusing mechanism leads it away f rom irrelevant fea­
tures. 
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CFS should also show increasing facil i tation for a 
larger set of interrelated features. In Experiment I I , CFS 
is predicted to show clustered feature facil i tat ion because 
the CFS sampling is biased toward features that are in-
terpredictive. 

5.1 M e t h o d 

In experiment I, the subjects received the inputs pre­
sented in Figure 3a. These inputs were chosen to max­
imize FS benefit by interrelating half the features (B i l l -
man & Heit, 1988, experiment 3). The remaining four 
features were termed irrelevant because they each are 
related randomly to every other feature. Experiment I 
compared the different attent ion methods, random sam­
pling, FS, and CFS. 

The method for Experiment II was the same as for Ex­
periment I, except that both sets of inputs from Figure 
3a and Figure 3b were used. Fifteen simulated CFS sub­
jects received inputs wi th two clustered features and 15 
received inputs w i th four clustered features. The learn­
ing measure used for each set of inputs was the difference 
in learning between using the CFS and RS algorithms. 

5.2 Resu l t s 

The learning rates depicted in Figure 4 show clear effects 
of attent ion method. 

An A N O V A was performed using the strength values 
at the criterion number of trials as defined above. A t ­
tention method showed a significant effect, F(2,42) — 
33.66,p < 0.01. Tukey's USD was used to compare 
means for the attent ion method to determine significant 
differences: HSD(3, 42) = 0.079, p< 0.01. The compar­
isons revealed that both CFS and PS showed facil itation 
over the random method. Al though CFS produced a 

greater facil i tation than FS, this difference was not sig-
nificant. These data demonstrate that CFS produces the 
same type of learning facil i tation as FS. 

In Experiment I I , there was a greater facil i tation for 
clusters of four features rather than two. A t-test was 
performed at the learning criterion for the four clus­
tered feature condition, £(28) = 2.73,p < 0.01. The 
test showed that, as wi th FS and in accord wi th human 
data, CFS demonstrated clustered feature faci l i tat ion. 

6 Experiment I I I 
As predicted, CFS produces two findings which mot i ­
vated the FS model. It was assumed that because it was 
sensitive to context, CFS would predict greater learn­
ing facil i tation for more complex inputs than would FS. 
Both Experiment I and II and the experiments of B i l l -
man and Heit (1988) have used inputs in which there is 
only one important cluster of features. That is, there 
are some relevant features and some irrelevant features, 
and all relevant features are intercorrelated. However, 
more realistic inputs would allow for mult iple clusters 
of relevant features. For example, in humans, hair-color 
and eye-color are somewhat intercorrelated as are arm-
length and height. Al l four of these features are relevant 
to feature clusters, but are not all intercorrelated. 

Context is important for attentional learning in do­
mains wi th multiple clusters because it allows the human 
or machine learner to concentrate on a single subcluster 
at a time. The non-context approach used by FS would 
set the saliences of the features independently of the clus­
ter, permit t ing sampling across clusters. For example, if 
hair-color is the most salient and height the second most 
salient then the most frequent sampling pair would be 
across clusters. CFS can help alleviate this problem, be­
cause it allows the feature saliences to vary depending on 
what has already been sampled. In the above example, 
after hair-color is sampled, then the most salient feature 
becomes eye-color. The saliences in CFS are modified to 
have the learning focus on one cluster at a t ime. 

Because of these considerations, it was predicted that 
CFS would be found to be superior to FS when there 
were mult iple unrelated clusters of features in the input. 
As well, FS was expected to have a decreased learning 
facil i tation as compared to random sampling. 

6.1 Method 
The method was the same as for Experiment 1 and I I , 
except that the inputs had three clusters of three features 
each and three irrelevant features. The three clusters 
of features were independent of each other. A l l three 
algorithms were compared on these inputs. The learning 
measure, as in Experiment 1, was the average strength 
of the rules relating features one and two; and statistical 
comparisons were made at the criterion number of trials. 

G.2 Resu l ts 
Figure 5 shows the learning curves for each block of 100 
trials. There was an increased faci l i tat ion for CFS over 
FS and RS. 

An ANOVA was performed that indicated a significant 
difference between algorithms: F(2,42) = 31.21, p < 
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O.OL Tukey's HSD, HSD(3,42) = 0.082, p < 0.01, re-
vealed a significant difference between CFS and both 
other groups. FS was not found to be significantly dif­
ferent f rom random sampling. 

F igure 5: Learn ing for Examples 
w i t h M u l t i p l e Clusters. 

As predicted, CFS was superior to FS and RS for in­
puts w i th mult ip le clusters. As well, the mult iple clusters 
prevented a significant learning faci l i tat ion for FS over 
RS. 

7 Discussion 
Attent ion can serve as an important learning bias for 
learning by observation. The type of attent ion mecha­
nism used, however, should be sensitive to context if the 
training examples are complex, i.e., have mult ip le clus­
ters. Contextual ly Focused Sampling (CFS) was pro-
posed to be a better match to human attentional pro­
cesses than earlier models that were not sensitive to con­
text (Bi l lman & Heit , 1988). CFS is also an important 
candidate for one type of attent ional bias in machine 
learning systems. 

These computat ional experiments suggest several in­
teresting predictions about human learning. First, i f hu­
mans use either FS or CFS, then they must show faster 
learning than random sampling (RS) would permit. Sec­
ond, if humans use CFS and not FS, they should demon­
strate faster learning of mult ip le clusters than either FS 
or RS would permit . Finally, CFS would predict that 
humans show different probabil it ies of sampling partic­
ular features depending upon what they have already 
sampled. 

For machine learning, the results imply that CFS can 
be used to make induct ion more feasible. A learning bias 
is some restrict ion or ordering on what can be learned, 
and a good bias is one that allows faster learning. CFS 

represents one simple type of bias that gradually comes 
to ignore certain features that are irrelevant and thereby 
accelerates learning of informative condit ional probabil­
ities. One impor tant aspect of CFS is that if irrelevant 
features become relevant, then those features gradually 
wi l l come to be sampled more and more often. 

Also of interest for machine learning, the results of Ex­
periment I I I suggest how CFS might be used to divide 
a set of t raining examples into appropriate categories of 
interpredictive features. Because CFS is capable of find­
ing and learning about mul t ip le subclusters of interre-
lated features, it can provide a method for constructing 
a hierarchy of probabil istic concepts. The use of focused 
attent ion to easily isolate these concepts may result in an 
algor i thm that is more efficient and more powerful than 
current concept learning methods (Fisher, 1987). Such 
concept acquisition also would allow a CFS system to 
learn higher order condit ional probabilit ies to improve its 
inference capabilities (Chalnick & B i l lman, 1988; Davis, 
1985). 

An important extension of contextually focussed sam­
pling is to augment the at t r ibute value lists w i th struc­
ture, such as predicate-style relationships between val­
ues. A naive approach would be to maintain conditional 
probabilit ies between values and other values, values and 
relationships, and relationships and relationships. This, 
however, results in an unreasonable growth in the size 
of storage. Future research must determine how opti­
mal context dependent at tent ion can be approximated 
for structured knowledge wi thout resorting to complete 
interconnectivity. 
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