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Abstract 

A new decision tree learning algorithm called IDX 
is described. More general than existing 
algorithms, IDX addresses issues of decision tree 
quality largely overlooked in the artificial 
intelligence and machine learning literature. 
Decision tree size, error rate, and expected 
classification cost are just a few of the quality 
measures it can exploit. Furthermore, decision 
trees of varying quality can be induced simply by 
adjusting the complexity of the algorithm. Quality 
should be addressed during decision tree 
construction since retrospective pruning of the tree, 
or of a derived rule set, may be unable to 
compensate for inferior splitting decisions. The 
complexity of the algorithm, the basis for the 
heuristic it embodies, and the results of three 
different sets of experiments are described. 

1 Introduction 

Incomplete knowledge is characteristic of interesting 
classifier learning problems. Part of the reason for 
developing connectionist models [Rumelhart et a/., 1986], 
genetic classifier systems [Holland, 1986], and Bayesian 
classifiers fTou and Gonzalez, 1974] is to contend with this 
incompleteness. Analytical learners use strong background 
knowledge to reason about training instances. Their 
problem is often one of finding the right formulation of 
existing knowledge. One analytical learning method can 
even deduce classifiers from single training instances 
[Mitchell et al, 1986]. Empirical learners, such as ID3 
[Quinlan, 1983], CART [Breiman et a/., 1983], and IDX, do 
without extensive background knowledge. Instead, they try 
to recognize and exploit regularities in larger training sets. 

Decision trees are a popular representation for 
classifiers. The interior nodes of a decision tree are tests 
applied to instances during classification. Branches from an 
interior node correspond to the possible test outcomes. 
Classification begins with the application of the root node 
test, its outcome determining the branch to a succeeding 
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node. The process is recursively applied until a leaf node is 
reached. Then the instance is labeled with the class of the 
leaf node, and the process halts. During construction the 
decision tree naturally directs training data downward to the 
leaves. In a given leaf node, one of the classes can often be 
identified as incorporating more of the training instances 
than any other class. This typically becomes the class for 
that leaf node. Another common strategy is to choose the 
class that minimizes the average cost of misclassification. 
In my experiments the majority classification of the training 
data at each leaf has guided class selection. 

Successful decision tree construction depends on the 
choice of good tests for the interior nodes. (It also depends 
on the decisions to stop splitting the training data and form 
leaf nodes, but this issue is not addressed here.) Figure 1 
illustrates the point. Four types of instances arc found in 
the training population each having the given probability of 
each occurrence. Three binary tests can be used. Each tree 
classifies the data accurately. If the tests are pre-computed, 
the expected depth of the decision tree is the expected 
classification cost. Then trees 2 and 3 are better than tree 1. 
In contrast, if tests correspond to pieces of special purpose 
hardware, minimizing the number of tests in the classifier is 
important, as in tree 2. Other preference schemes are 
possible. 

The next section describes several other research projects 
in decision tree induction. Each overlooks important issues 
and opportunities in reducing the cost of classification. 
Section three describes two lookahead algorithms: GOTA 
[Hartmann et al., 1982] and IDX. Lookahead and a different 
heuristic function should help them outperform other 
algorithms. The fourth section presents the results of three 
sets of experiments comparing ID3 [Quinlan, 1983], IDX, 
and GOTA. Section five discusses the complexity of IDX, 
plus the positive and negative results of this research. 
Section six summarizes and concludes the paper. 

2 Background 

Hunt, Marin, and Stone [1966) report a series of 
experiments in the induction of decision trees. Their 
incremental, failure driven learners induce small binary 
decision trees (no more than 6 tests) from noiseless data. 
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They varied several components of their algorithm, but did 
not experiment with information theoretic heuristics, largely 
because of computational limitations of the day. 

Quinlan uses an information theoretic test selection 
heuristic in ID3 [19831. A set of pre-classified training 
instances guides test selection, or splitting. Shannon's 
measure of information / [Gallager, 1968] measures the 
uncertainty in the classification of a sample given that it 
falls in a particular node. The entropy function H measures 
the average uncertainty in the classification given that an 
additional test is applied to split the node. At each step, ID3 
chooses the test that maximizes the drop in classification 
uncertainty. This heuristic is meant to produce efficient 
decision trees as measured by average depth. ID3 generates 
decision tree 1 in Figure 1. 

Breiman, Friedman, Olshen, and Stone [19831 present 
an extensive study on the induction of decision trees using 
CART. Classification costs are entailed in determining a 
classification; misclassification costs stem from incorrect 
classifications. A major concern of the CART team is 
reducing average misclassification cost. After generating 
large decision trees, they suggest pruning to reach a right 
sized tree. Quinlan's recent work on generating production 
rules from decision trees [1987] also uses pruning. 
Breiman et al. reach the tentative conclusion, "... that 

within a wide range of splitting criteria the properties of the 
final tree selected are surprisingly insensitive to the choice 
of splitting rule. The criterion used to prune or recombine 
upward is much more important." The degree to which this 
is valid depends on the setting for the finished application 
and on the nature of the costs involved. 

3 Generating Better Decision Trees 

Hartmann and his colleagues describe GOTA [1982], an 
algorithm that uses lookahead to maximize an information 
theoretic heuristic function. Control of splitting in GOTA 
is governed by branch levels, or horizontal slices of the 
decision tree. Within each branch level, GOTA does an 
exhaustive search to find the best test sequence as measured 
by the heuristic function. The key point for this discussion 
is that branch levels cover the decision tree completely and 
do not overlap. The depth of a test within a decision tree is 
the number of tests between it and the root. Consider the 
application of GOTA to a problem with four binary tests, 
using branch levels two tests deep. This would first entail 
an exhaustive search for the best combination of one depth-
zero test and two depth-one tests. These would be fixed 
prior to processing in the next branch level. GOTA would 
then search for the best combination of four depth-two tests 
and eight depth-three tests. 
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GOTA's heuristic seeks to maximize the drop in 
uncertainty across the branch levels, much like ID3. But in 
addition, it seeks to minimize the cost of the decision tree. 
GOTA maximizes the function F given below. It is a 
function of the uncertainty H in the classification of the 
various branch levels BL, and the cost g of extending the 
decision tree from branch level i-1 to branch level i. 
Hartmann and his colleagues show that no disadvantage 
ensues from maximizing F over a single branch level rather 
than combining the results of maximizing over component 
branch levels. In fact better results are often obtained with 
the former approach. Their result is valid for cost functions 
satisfying g(a,c) < g(a,b) + g(b,c). Size, average cost, and 
performance all satisfy the inequality. 

The F heuristic is frequently helpful in practice. The 
intuition behind the phenomenon involves the choice of 
tests at the bottom of the branch levels. Consider using 
GOTA in the four test case mentioned above. When using 
two branch levels two tests deep, the choice of the depth-one 
tests is based only on the choice of the depth-zero test. 
What if all four tests are chosen by processing a single 
branch level four tests deep? The choice of the depth-one 
tests is now based, in part, on the candidates for depth-two 
and depth-three tests. The information gained by the extra 
search can only help, not hurt. 

But consider the eight-test case. If the largest branch 
level that can be processed is four tests deep, there will still 
be a problem at the border between levels. Whereas GOTA 
uses branch levels that cover the decision tree but do not 
overlap, IDX uses levels that do overlap. This allows IDX 
to be better informed at test selection time. There is a 
second difference. Processing of an entire branch level with 
GOTA results in the selection of tests throughout that 
branch level. In contrast, processing of a level in IDX 
results only in the selection of the shallowest tests in that 
level. Of course, nearly as many levels are required as the 
tree is deep. When using IDX and branch levels four tests 
deep on the present case, the choice of depth-zero test is 
made on the basis of an exhaustive search for the best 
configuration of tests from depth zero to depth three. Then 
the depth-one tests are chosen on the basis of an exhaustive 
search for the best configuration of tests from depth one to 
depth four. This continues until the lookahead reaches the 
leaves. The results of that last search are optimal, and 
therefore applied directly. 

4 Experimental Results 

This section describes decision tree building experiments 
using Jeffrey Schlimmer's Congressional voting record data 
(provided April 23, 1987) drawn from [Congressional 

Quarterly, 1985]. The data set contains 435 samples, one 
for each congressional representative. Each sample contains 
a representative's party affiliation (Republican or Democrat) 
and voting record on 16 key bills during 1984. For 
simplicity the categories of votes have been reduced to Yes, 
No, and ? (other). 17 tests were considered during 
experimentation: party affiliation and votes. Each 
experiment excluded the test for which the decision tree was 
being built. 

4 .1 Decision Tree Size 

The first experiment deals with decision tree size, measured 
as the expected value of the number of tests needed to 
classify the instances in the entire data set. Let IDX(n) stand 
for the use of IDX with n-test lookahead. ID3, IDX(l) , 
IDX(2), and IDX(3) were used to generate decision trees for 
party affiliation, and for each tuple <vote, outcome>, using 
the entire data set. The cost function used in IDX measured 
the expected number of tests needed to extend the decision 
tree. Because of the volume of data, only the regression 
lines are plotted in Figure 2. Since each test was given unit 
cost, ID3 and IDX( l ) performed identically. The 
performance of IDX(2) was slightly better on average, 
particularly as larger trees were needed to correctly classify 
the training data. IDX(3) did better still. Let GOTA(xi, x2, 
...) stand for the use of a branch level including tests of 
depths 0 to x1 - 1, a branch level including tests of depths 
x1 to x2 - 1, and so on. GOTA(0,2,4, ... ) and 
GOTA(l,3,5, ... ), evens and odds, were applied using the 
same cost function as IDX. Figure 3 plots regression lines 
for the results of GOTA(evens) and GOTA(odds) with the 
results of IDX(2). The three algorithms were nearly 
equivalent. Each performed best, worst, or in between about 
as often as the others. 

4.2 Robustness Tests 

One effect of IDX is structural. It tends to balance decision 
trees. The second experiment was meant to determine 
whether generality and error rates of decision trees generated 
with IDX(2) differed systematically from those generated 
with ID3. For each vote, decision trees were generated for 
the Yes outcome using different fractions of the data for 
training: .01, .02, .04, .06, .08, .10, .15, .20, .30, .40, 
.50, .70, and .90 . The remaining data were used to 
compute false positive and false negative rates for the 
decision trees. For each vote and each training fraction, ten 
trials of this kind were performed and the results averaged. 
Error rates obtained using IDX(2) decision trees did not 
systematically vary from those obtained using ID3 decision 
trees. 

4.3 Cost of Classification 

The third set of experiments highlights the importance of 
recognizing cost measures other than size, and demonstrates 
the proficiency of IDX in doing so. For each tuple <vote, 
outcome> a decision tree was generated using ID3. For each 
tree, five experimental runs were conducted. In each run 
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random real valued costs between 1 and 10 were assigned 
independently to each test For each set of costs, IDX(l) and 
IDX(2) were executed. The g function measured expected 
cost, not expected size. The expected classification costs for 
ID3, IDX(l), and IDX(2) are plotted versus test cost variance 
in Figure 4. Again because of the large volume of data, 
only the regression lines are shown. 

5 Discussion 

There was some uncertainty about how much of an effect 
lookahead would have on classification cost as measured by 
average decision tree depth. It is widely known that the 
heuristic used in ID3 is a good one for minimizing that 
measure. The experiments did, however, show a consistent 
improvement using lookahead. Regression suggests 1.44% 
and 1.76% improvements in decision tree depth on small 
(100 nodes) and large (300 nodes) decision trees when using 
two-level lookahead. Three-level lookahead demonstrated 
between 2.61% and 5.18% improvement. While these gains 
may not seem impressive, consider a high volume task such 
as optical character recognition for a postal application. 
Small improvements applied countless times can yield real 
benefits. 

The results of the comparison of GOTA and IDX are 
somewhat disappointing, but they highlight something 
important about the heuristics in question. While enlarging 
levels is guaranteed not to reduce the heuristic measure, it 
does not imply the overall goal of minimizing classification 
cost. The limiting case is the obvious exception, when 
lookahead covers the entire tree. To its credit, IDX provides 
a more flexible tool in the search for efficient decision trees. 
Let IDX(xo, x1,...) mean that tests at depth zero are based 
on xo level lookahead, that tests at depth one are based on 
x1 level lookahead, and so on. GOTA(0, 3, 5) is certainly 
equivalent to IDX(1, 2, 1, 2, 1). What IDX does not 
provide is independent control of lookahead in disjoint 
subtrees within the same level. There may be circumstances 
where this will be important, and we will see that test cost 
variance-based heuristics are strong candidates. 

In the third set of experiments, ID3 was expected to 
perform consistently despite test cost variance. After all, it 
does not recognize test costs in its heuristic. IDX was 
generally expected to outperform ID3 whenever test costs 
varied. In addition, the disparity between ID3 and the IDX 
algorithms was expected to increase as test cost variance 
increased. Variation in test costs gives IDX an opportunity 
to recognize when expensive tests can be delayed or avoided 
altogether. Of course, test cost variance is not the only 
factor influencing performance. Test relevance is at least as 
important. If too much of the contribution to the variance 
is from tests irrelevant to the classification, the variance 
effect will tend to be diminished. Unfortunately, test 
relevance is difficult to capture since the algorithm has some 
freedom in selecting the tests it uses. To compensate for 
this problem the experiment called for a larger number of 

trials. These expectations are born out in the regression 
lines of Figure 4. 

The performance of IDX was also expected to improve 
in the presence of test cost variance as the lookahead 
parameter increased. This was bom out but with 
diminishing returns as shown in Figure 4. If an expensive 
test is essential for finding the correct classification, both 
algorithms will tend to push it to the bottom of the decision 
tree, trying to apply it less often. In the end, the necessary 
tests will be applied. Since IDX tends to balance decision 
trees, maximum depth does not change very much. 
Therefore, expensive but essential tests will be delayed but 
eventually applied at similar depth in either case. Non­
essential tests are never used. This accounts for the effect of 
diminishing returns. 

Computing optimal decision trees is known to be NP-
complete fHyafil and Rivest, 1976]. Calculation of a loose 
upper bound on the number of times IDX partitions the 
entire data set is given below. Parameters: branch levels L 
tests deep; T available tests. The bound assumes that costs 
can be computed independently for disjoint subtrees, a 
favorable but typical case. The bound is linear in the size of 
the data set. If the number of tests is large, the cost of 
additional lookahead will be substantial. One area for future 
research involves significant reduction in the number of tests 
considered at a given stage during the exhaustive search. 
The good news is that as test cost variance increases the need 
for large L decreases. 

The efficacy of lookahead with IDX has been 
established, but the question remains whether a less complex 
tree generation technique followed by some type of 
retrospective pruning could accomplish the same ends. By 
"retrospective pruning" I mean any technique in which a 
constructive stage is followed only by pruning and by no 
other tree modification. The answer depends on the 
criticality of cost in the final application. Breaking tree 1 of 
Figure 1 into rules in the obvious way yields the two 
candidate rule sets in Figure 5. Pruning does not eliminate 
the X tests in either case. Likewise, cost complexity 
pruning of the same tree, as done in [Breiman et al., 1983], 
does not eliminate test X unless the cost parameter swamps 
the error rate term. Still, two-test lookahead suffices to 
eliminate the X lest as shown in tree 2. If reduction of 
classification costs has high priority in an application then 
lookahead will be important in the splitting criterion for 
decision tree construction. Such cases are easy to conceive. 
In building a medical expert system for diagnosis, blood 
work and imaging will generally be preferred to exploratory 
surgery although the surgery greatly reduces uncertainty. 
Invasive tests should be avoided as much as possible. 
Techniques such as IDX can be useful in this regard. 
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6 Conclusions 

A new decision tree learning algorithm is described that is 
more general than ID3 and GOTA. Using lookahead often 
permits IDX to make more informed decisions about test 
selection during decision tree construction. The complexity 
of the algorithm is largely controllable by the user. In 
practice, high quality decision trees are generated by using 
lookahead and by considering costs of classification. 
Depending on the demands of the classification problem, 
accepting higher cost during decision tree construction can 
yield better decision trees than schemes using simpler 
splitting criteria and retrospective pruning. An important 
negative result regarding variance of test costs describes 
circumstances under which additional lookahead becomes 
less and less warranted. 
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