
Generating Better Decision Trees

Steven W. Norton*
Siemens Corporate Research, Inc.

755 College Road East, Princeton, NJ 08540
swn@demon.siemens.com

Abstract

A new decision tree learning algorithm called IDX
is described. More general than existing
algorithms, IDX addresses issues of decision tree
quality largely overlooked in the artificial
intelligence and machine learning literature.
Decision tree size, error rate, and expected
classification cost are just a few of the quality
measures it can exploit. Furthermore, decision
trees of varying quality can be induced simply by
adjusting the complexity of the algorithm. Quality
should be addressed during decision tree
construction since retrospective pruning of the tree,
or of a derived rule set, may be unable to
compensate for inferior splitting decisions. The
complexity of the algorithm, the basis for the
heuristic it embodies, and the results of three
different sets of experiments are described.

1 Introduction

Incomplete knowledge is characteristic of interesting
classifier learning problems. Part of the reason for
developing connectionist models [Rumelhart et a/., 1986],
genetic classifier systems [Holland, 1986], and Bayesian
classifiers fTou and Gonzalez, 1974] is to contend with this
incompleteness. Analytical learners use strong background
knowledge to reason about training instances. Their
problem is often one of finding the right formulation of
existing knowledge. One analytical learning method can
even deduce classifiers from single training instances
[Mitchell et al, 1986]. Empirical learners, such as ID3
[Quinlan, 1983], CART [Breiman et a/., 1983], and IDX, do
without extensive background knowledge. Instead, they try
to recognize and exploit regularities in larger training sets.

Decision trees are a popular representation for
classifiers. The interior nodes of a decision tree are tests
applied to instances during classification. Branches from an
interior node correspond to the possible test outcomes.
Classification begins with the application of the root node
test, its outcome determining the branch to a succeeding

* And Rutgers University, Department of Computer
Science, New Brunswick, NJ 08903.

node. The process is recursively applied until a leaf node is
reached. Then the instance is labeled with the class of the
leaf node, and the process halts. During construction the
decision tree naturally directs training data downward to the
leaves. In a given leaf node, one of the classes can often be
identified as incorporating more of the training instances
than any other class. This typically becomes the class for
that leaf node. Another common strategy is to choose the
class that minimizes the average cost of misclassification.
In my experiments the majority classification of the training
data at each leaf has guided class selection.

Successful decision tree construction depends on the
choice of good tests for the interior nodes. (It also depends
on the decisions to stop splitting the training data and form
leaf nodes, but this issue is not addressed here.) Figure 1
illustrates the point. Four types of instances arc found in
the training population each having the given probability of
each occurrence. Three binary tests can be used. Each tree
classifies the data accurately. If the tests are pre-computed,
the expected depth of the decision tree is the expected
classification cost. Then trees 2 and 3 are better than tree 1.
In contrast, if tests correspond to pieces of special purpose
hardware, minimizing the number of tests in the classifier is
important, as in tree 2. Other preference schemes are
possible.

The next section describes several other research projects
in decision tree induction. Each overlooks important issues
and opportunities in reducing the cost of classification.
Section three describes two lookahead algorithms: GOTA
[Hartmann et al., 1982] and IDX. Lookahead and a different
heuristic function should help them outperform other
algorithms. The fourth section presents the results of three
sets of experiments comparing ID3 [Quinlan, 1983], IDX,
and GOTA. Section five discusses the complexity of IDX,
plus the positive and negative results of this research.
Section six summarizes and concludes the paper.

2 Background

Hunt, Marin, and Stone [1966) report a series of
experiments in the induction of decision trees. Their
incremental, failure driven learners induce small binary
decision trees (no more than 6 tests) from noiseless data.

800 Machine Learning

They varied several components of their algorithm, but did
not experiment with information theoretic heuristics, largely
because of computational limitations of the day.

Quinlan uses an information theoretic test selection
heuristic in ID3 [19831. A set of pre-classified training
instances guides test selection, or splitting. Shannon's
measure of information / [Gallager, 1968] measures the
uncertainty in the classification of a sample given that it
falls in a particular node. The entropy function H measures
the average uncertainty in the classification given that an
additional test is applied to split the node. At each step, ID3
chooses the test that maximizes the drop in classification
uncertainty. This heuristic is meant to produce efficient
decision trees as measured by average depth. ID3 generates
decision tree 1 in Figure 1.

Breiman, Friedman, Olshen, and Stone [19831 present
an extensive study on the induction of decision trees using
CART. Classification costs are entailed in determining a
classification; misclassification costs stem from incorrect
classifications. A major concern of the CART team is
reducing average misclassification cost. After generating
large decision trees, they suggest pruning to reach a right
sized tree. Quinlan's recent work on generating production
rules from decision trees [1987] also uses pruning.
Breiman et al. reach the tentative conclusion, "... that

within a wide range of splitting criteria the properties of the
final tree selected are surprisingly insensitive to the choice
of splitting rule. The criterion used to prune or recombine
upward is much more important." The degree to which this
is valid depends on the setting for the finished application
and on the nature of the costs involved.

3 Generating Better Decision Trees

Hartmann and his colleagues describe GOTA [1982], an
algorithm that uses lookahead to maximize an information
theoretic heuristic function. Control of splitting in GOTA
is governed by branch levels, or horizontal slices of the
decision tree. Within each branch level, GOTA does an
exhaustive search to find the best test sequence as measured
by the heuristic function. The key point for this discussion
is that branch levels cover the decision tree completely and
do not overlap. The depth of a test within a decision tree is
the number of tests between it and the root. Consider the
application of GOTA to a problem with four binary tests,
using branch levels two tests deep. This would first entail
an exhaustive search for the best combination of one depth-
zero test and two depth-one tests. These would be fixed
prior to processing in the next branch level. GOTA would
then search for the best combination of four depth-two tests
and eight depth-three tests.

Norton 801

GOTA's heuristic seeks to maximize the drop in
uncertainty across the branch levels, much like ID3. But in
addition, it seeks to minimize the cost of the decision tree.
GOTA maximizes the function F given below. It is a
function of the uncertainty H in the classification of the
various branch levels BL, and the cost g of extending the
decision tree from branch level i-1 to branch level i.
Hartmann and his colleagues show that no disadvantage
ensues from maximizing F over a single branch level rather
than combining the results of maximizing over component
branch levels. In fact better results are often obtained with
the former approach. Their result is valid for cost functions
satisfying g(a,c) < g(a,b) + g(b,c). Size, average cost, and
performance all satisfy the inequality.

The F heuristic is frequently helpful in practice. The
intuition behind the phenomenon involves the choice of
tests at the bottom of the branch levels. Consider using
GOTA in the four test case mentioned above. When using
two branch levels two tests deep, the choice of the depth-one
tests is based only on the choice of the depth-zero test.
What if all four tests are chosen by processing a single
branch level four tests deep? The choice of the depth-one
tests is now based, in part, on the candidates for depth-two
and depth-three tests. The information gained by the extra
search can only help, not hurt.

But consider the eight-test case. If the largest branch
level that can be processed is four tests deep, there will still
be a problem at the border between levels. Whereas GOTA
uses branch levels that cover the decision tree but do not
overlap, IDX uses levels that do overlap. This allows IDX
to be better informed at test selection time. There is a
second difference. Processing of an entire branch level with
GOTA results in the selection of tests throughout that
branch level. In contrast, processing of a level in IDX
results only in the selection of the shallowest tests in that
level. Of course, nearly as many levels are required as the
tree is deep. When using IDX and branch levels four tests
deep on the present case, the choice of depth-zero test is
made on the basis of an exhaustive search for the best
configuration of tests from depth zero to depth three. Then
the depth-one tests are chosen on the basis of an exhaustive
search for the best configuration of tests from depth one to
depth four. This continues until the lookahead reaches the
leaves. The results of that last search are optimal, and
therefore applied directly.

4 Experimental Results

This section describes decision tree building experiments
using Jeffrey Schlimmer's Congressional voting record data
(provided April 23, 1987) drawn from [Congressional

Quarterly, 1985]. The data set contains 435 samples, one
for each congressional representative. Each sample contains
a representative's party affiliation (Republican or Democrat)
and voting record on 16 key bills during 1984. For
simplicity the categories of votes have been reduced to Yes,
No, and ? (other). 17 tests were considered during
experimentation: party affiliation and votes. Each
experiment excluded the test for which the decision tree was
being built.

4 .1 Decision Tree Size

The first experiment deals with decision tree size, measured
as the expected value of the number of tests needed to
classify the instances in the entire data set. Let IDX(n) stand
for the use of IDX with n-test lookahead. ID3, IDX(l) ,
IDX(2), and IDX(3) were used to generate decision trees for
party affiliation, and for each tuple <vote, outcome>, using
the entire data set. The cost function used in IDX measured
the expected number of tests needed to extend the decision
tree. Because of the volume of data, only the regression
lines are plotted in Figure 2. Since each test was given unit
cost, ID3 and IDX(l) performed identically. The
performance of IDX(2) was slightly better on average,
particularly as larger trees were needed to correctly classify
the training data. IDX(3) did better still. Let GOTA(xi, x2,
...) stand for the use of a branch level including tests of
depths 0 to x1 - 1, a branch level including tests of depths
x1 to x2 - 1, and so on. GOTA(0,2,4, ...) and
GOTA(l,3,5, ...), evens and odds, were applied using the
same cost function as IDX. Figure 3 plots regression lines
for the results of GOTA(evens) and GOTA(odds) with the
results of IDX(2). The three algorithms were nearly
equivalent. Each performed best, worst, or in between about
as often as the others.

4.2 Robustness Tests

One effect of IDX is structural. It tends to balance decision
trees. The second experiment was meant to determine
whether generality and error rates of decision trees generated
with IDX(2) differed systematically from those generated
with ID3. For each vote, decision trees were generated for
the Yes outcome using different fractions of the data for
training: .01, .02, .04, .06, .08, .10, .15, .20, .30, .40,
.50, .70, and .90 . The remaining data were used to
compute false positive and false negative rates for the
decision trees. For each vote and each training fraction, ten
trials of this kind were performed and the results averaged.
Error rates obtained using IDX(2) decision trees did not
systematically vary from those obtained using ID3 decision
trees.

4.3 Cost of Classification

The third set of experiments highlights the importance of
recognizing cost measures other than size, and demonstrates
the proficiency of IDX in doing so. For each tuple <vote,
outcome> a decision tree was generated using ID3. For each
tree, five experimental runs were conducted. In each run

802 Machine Learning

Norton 803

random real valued costs between 1 and 10 were assigned
independently to each test For each set of costs, IDX(l) and
IDX(2) were executed. The g function measured expected
cost, not expected size. The expected classification costs for
ID3, IDX(l), and IDX(2) are plotted versus test cost variance
in Figure 4. Again because of the large volume of data,
only the regression lines are shown.

5 Discussion

There was some uncertainty about how much of an effect
lookahead would have on classification cost as measured by
average decision tree depth. It is widely known that the
heuristic used in ID3 is a good one for minimizing that
measure. The experiments did, however, show a consistent
improvement using lookahead. Regression suggests 1.44%
and 1.76% improvements in decision tree depth on small
(100 nodes) and large (300 nodes) decision trees when using
two-level lookahead. Three-level lookahead demonstrated
between 2.61% and 5.18% improvement. While these gains
may not seem impressive, consider a high volume task such
as optical character recognition for a postal application.
Small improvements applied countless times can yield real
benefits.

The results of the comparison of GOTA and IDX are
somewhat disappointing, but they highlight something
important about the heuristics in question. While enlarging
levels is guaranteed not to reduce the heuristic measure, it
does not imply the overall goal of minimizing classification
cost. The limiting case is the obvious exception, when
lookahead covers the entire tree. To its credit, IDX provides
a more flexible tool in the search for efficient decision trees.
Let IDX(xo, x1,...) mean that tests at depth zero are based
on xo level lookahead, that tests at depth one are based on
x1 level lookahead, and so on. GOTA(0, 3, 5) is certainly
equivalent to IDX(1, 2, 1, 2, 1). What IDX does not
provide is independent control of lookahead in disjoint
subtrees within the same level. There may be circumstances
where this will be important, and we will see that test cost
variance-based heuristics are strong candidates.

In the third set of experiments, ID3 was expected to
perform consistently despite test cost variance. After all, it
does not recognize test costs in its heuristic. IDX was
generally expected to outperform ID3 whenever test costs
varied. In addition, the disparity between ID3 and the IDX
algorithms was expected to increase as test cost variance
increased. Variation in test costs gives IDX an opportunity
to recognize when expensive tests can be delayed or avoided
altogether. Of course, test cost variance is not the only
factor influencing performance. Test relevance is at least as
important. If too much of the contribution to the variance
is from tests irrelevant to the classification, the variance
effect will tend to be diminished. Unfortunately, test
relevance is difficult to capture since the algorithm has some
freedom in selecting the tests it uses. To compensate for
this problem the experiment called for a larger number of

trials. These expectations are born out in the regression
lines of Figure 4.

The performance of IDX was also expected to improve
in the presence of test cost variance as the lookahead
parameter increased. This was bom out but with
diminishing returns as shown in Figure 4. If an expensive
test is essential for finding the correct classification, both
algorithms will tend to push it to the bottom of the decision
tree, trying to apply it less often. In the end, the necessary
tests will be applied. Since IDX tends to balance decision
trees, maximum depth does not change very much.
Therefore, expensive but essential tests will be delayed but
eventually applied at similar depth in either case. Non­
essential tests are never used. This accounts for the effect of
diminishing returns.

Computing optimal decision trees is known to be NP-
complete fHyafil and Rivest, 1976]. Calculation of a loose
upper bound on the number of times IDX partitions the
entire data set is given below. Parameters: branch levels L
tests deep; T available tests. The bound assumes that costs
can be computed independently for disjoint subtrees, a
favorable but typical case. The bound is linear in the size of
the data set. If the number of tests is large, the cost of
additional lookahead will be substantial. One area for future
research involves significant reduction in the number of tests
considered at a given stage during the exhaustive search.
The good news is that as test cost variance increases the need
for large L decreases.

The efficacy of lookahead with IDX has been
established, but the question remains whether a less complex
tree generation technique followed by some type of
retrospective pruning could accomplish the same ends. By
"retrospective pruning" I mean any technique in which a
constructive stage is followed only by pruning and by no
other tree modification. The answer depends on the
criticality of cost in the final application. Breaking tree 1 of
Figure 1 into rules in the obvious way yields the two
candidate rule sets in Figure 5. Pruning does not eliminate
the X tests in either case. Likewise, cost complexity
pruning of the same tree, as done in [Breiman et al., 1983],
does not eliminate test X unless the cost parameter swamps
the error rate term. Still, two-test lookahead suffices to
eliminate the X lest as shown in tree 2. If reduction of
classification costs has high priority in an application then
lookahead will be important in the splitting criterion for
decision tree construction. Such cases are easy to conceive.
In building a medical expert system for diagnosis, blood
work and imaging will generally be preferred to exploratory
surgery although the surgery greatly reduces uncertainty.
Invasive tests should be avoided as much as possible.
Techniques such as IDX can be useful in this regard.

804 Machine Learning

6 Conclusions

A new decision tree learning algorithm is described that is
more general than ID3 and GOTA. Using lookahead often
permits IDX to make more informed decisions about test
selection during decision tree construction. The complexity
of the algorithm is largely controllable by the user. In
practice, high quality decision trees are generated by using
lookahead and by considering costs of classification.
Depending on the demands of the classification problem,
accepting higher cost during decision tree construction can
yield better decision trees than schemes using simpler
splitting criteria and retrospective pruning. An important
negative result regarding variance of test costs describes
circumstances under which additional lookahead becomes
less and less warranted.

Acknowledgements

Thanks go to my colleagues Mike Hudak, Narendra Gupta,
and Kangsuk Lee for reviewing earlier versions of this paper.
Thanks also go to Kevin Kelly, and Neeraj Bhatnagar for
acting as sounding boards for some of these ideas.

References

[Breiman et al, 1983] Breiman, L., Friedman, J.H.,
Olshen, R., & Stone, C. (1983). Classification and
Regression Trees. Wadsworth & Brooks. Monterey,
CA.

[Hartmann et al, 1982] Hartmann, C, Varshney, P.,
Mehrotra, K., & Gerberich, C. (1982). Application of
information theory to the construction of efficient
decision trees. IEEE Transactions on Decision Theory,
IT-28,4: 565-577.

[Holland, 1986] Holland, J. (1986). Escaping Brittleness:
The possibilities of general-purpose learning
algorithms applied to parallel rule-based systems. In
Machine Learning: An Artificial Intelligence
Approach, Volume 2, edited by Michalski, Carbonell,
& Mitchell. Morgan-Kaufmann. Los Altos, CA.

[Hunt et al 1966] Hunt, E., Marin, J., & Stone P. (1966).
Experiments in Induction. Academic Press. New
York, NY.

[Hyafil and Rivest, 1976] Hyafil, L., & Rivest, R. (1976).
Constructing optimal binary decision trees is NP-
complete. Information Processing Letters, Vol. 5, No.
1: 15-17.

[Mitchell et al., 1986] Mitchell, T., Keller, R., & Kedar-
Cabelli, S. (1986). Explanation-based generalization:
A unifying view. Machine Learning, 1: 47-80.

[Quinlan, 1983] Quinlan, J.R. (1983). Learning efficient
classification procedures and their application to chess
end games. In Machine Learning: An Artificial
Intelligence Approach, edited by Michalski, Carbonell,
& Mitchell. Tioga Publishing. Palo Alto, CA.

IQuinlan, 1987] Quinlan, J.R. (1987). Generating
production rules from decision trees. Proceedings of
the Tenth International Joint Conference on Artificial
Intelligence. Morgan Kaufmann Publishers.

[Rumelhart et al., 1986] Rumelhart, D.E., McClelland,
J.L., & the PDP Research Group (1986). Parallel
Distributed Processing: Explorations in the
Microstructure of Cognition, Volume I. MIT Press.

[Tou and Gonzalez, 1974] Tou, J.T., & Gonzalez, R.C.
(1974). Pattern Recognition Principles. Addison-
Wesley Publishing Company. Reading, MA.

[Congressional Quarterly, 1985] Congressional Quarterly
Almanac, 98th Congress, 2nd Session 1984, Volume
XL. Congressional Quarterly Inc. Washington, D.C.,
1985.

[Gallager, 1968] Gallager, R. (1968). Information Theory
and Reliable Communication. John Wiley and Sons.
New York, NY.

Norton 805

