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Abstract

Most past research work on problem subgoal
ordering are of a heuristic nature and very lit-
tle attempt has been made to reveal the inher-
ent relationship between subgoal ordering con-
straints and problem operator schemata. As a
result, subgoal ordering strategies which have
been developed tend to be either overly com-
mitted, imposing ordering on subgoals subjec-
tively or randomly, or overly restricted, order-
Ing subgoals only after a violation of ordering
constraints becomes explicit during the devel-
opment of a problem solution or plan. This
paper proposes a new approach characterized
by a formal representation of subgoal ordering
constraints which makes explicit the relation-
ship between the constraints and the problem
operator schemata. Following this approach, it
becomes straightforward to categorize various
types of subgoal ordering constraints, to manip-
ulate or extend the relational representation of
the constraints, to systematically detect impor-
tant subgoal ordering constraints from problem
specifications, and to apply the detected con-
straints to multiple problem instances.

1 Introduction

Subgoal ordering plays such an important role in plan-
ning and problem solving that a great amount of re-
search has been dedicated to detecting subgoal order-
iIng constraints and applying the constraints to problem
space search control [Chapman, 1987, Dawson and Sik-
lossy, 1977, Ernst and Goldstein, 1982, Sacerdoti, 1974,
Sacerdoti, 1975, Sacerdoti, 1977, Tate, 1975, Waldinger,
1981, Warren, 1974]. However, most of the reported
approaches are heuristic and the subgoal ordering con-
straints are not well-defined. Further, very little attempt
has been made to reveal the inherent relationship be-
tween subgoal ordering constraints and problem opera-
tor schemata. Chapman [1987] was the first who gave
a formal account to the subgoal ordering problem, but
he has not addressed the relationship between ordering
constraints and problem operator schemata. Ernst and
Goldstein [1982] tried to elucidate the relationship be-
tween ordering constraints and problem operators, but

their approach requires the use of instances of problem
operator schemata and cannot guarantee the correct-
ness of the generated ordering of subgoals in general
(see [lrani and Cheng, 1987]). Consequently, subgoal
ordering strategies previously developed tend to be ei-
ther overly committed, imposing ordering on subgoals
subjectively or randomly, or overly restricted, ordering
subgoals only after a violation of ordering constraints
becomes explicit during the development of a problem
solution or plan.

In our research, an approach is developed to explicitly
represent subgoal ordering constraints. Based on this
representation, procedures are then constructed to sys-
tematically detect the constraints. This approach makes
it possible to detect ordering constraints without getting
involved in planning or problem solving.

Our approach proves to be advantageous in that once
a representation for a class of constraints is constructed,
Its properties can be studied and the representation can
be manipulated to extend its generality or to produce
formulations for new types of constraints. Another ad-
vantage of our approach over the old ones is that much
time formerly devoted to detecting violations of con-
straints and ordering/reordering partial problem solu-
tions or plans can now be saved. The constraints can be
derived from problem specifications via reasoning and
henceforth, problem subgoals can be properly ordered
even before problem solving or planning. Finally, con-
straints among a group of problem subgoals, once de-
rived, can be stored and applied to multiple problems
as long as they share the same problem operators and
involve at least these subgoals. The complexity of the
approach is measured to be polynomial with respect to
the number of subgoals involved, with the assumption
that in any rule schema, all that is implied by the pre-
conditions or the postconditions is explicitly represented.

In [Irani and Cheng, 1987], our initial results in sub-
goal ordering have been reported. In this paper, we
present an extension to our previous work. The paper
IS organized as follows. First, an extended representa-
tion schema for subgoal ordering constraints is defined.
The features of the represented constraints are then dis-
cussed. A method to reduce the complexity of constraint
detection is described and then several procedures for
detecting such constraints are presented. Finally, an ex-
ample is used to further illustrate this approach.
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2 Representing Subgoal Ordering
Constraints

In this section, basic notations used in the paper are
introduced, the initial results of our research reported in
[lIrani and Cheng, 1987] are briefly reviewed, and then
an extended schema for representing subgoal ordering
constraints is presented.

2.1 Notations

To represent subgoal ordering constraints, three compo-
nents of a problem model are needed, namely, a state
space, a set of problem operators and a goal specifica-
tion. It is assumed that each state is represented by a
conjunction of propositions. G is a conjunction of lit-
erals each of which is a subgoal. With this restriction,
the goal G can be equivalently represented as a set of
subgoal literals.

In this paper, s is a symbol representing a state. T
(with a suitable subscript) denotes a problem operator
which transforms one state into another, preck and postk
are the precondition formula and postcondition formula
respectively of operator T«. S; stands for a subset of
states in which predicate formula / holds true. g (with
a suitable subscript) denotes a subgoal. A problem so-
lution is a sequence of states, (S; S,, S,), where s
Is an initial state and s, is the first state that satisfies
the goal condition. We say "a subgoal g is achieved at
the m-th step of a solution (s\\S2, ..,s;) if s, € S, for
"<i<"andifm>1then s, _i € S, g is said to be
trivially achieved in a solution it m = 1. We say "a sub-
goal gi precedes a subgoal g/ in a solution (si, S2, *-, Sn)"
it gi(gj) 1s achieved at the rni(rri2)-th step of the solution
and mi < "2-

2.2 Review

In our previous paper [lrani and Cheng, 1987] , a bi-
nary relation <* over a set of subgoals G was defined.
This relation was then proved to be a formal character-
ization of a type of strong ordering constraints among
the subgoals, namely, the constraint that a subgoal gi
must precede another subgoal gj in all problem solutions
in which both art non-trivially achieved. In later discus-
sion, this type of constraints will be referred to as the
constraints of type <*.

As demonstrated in our earlier work, the relational
representation of problem subgoal ordering constraints
facilitated the development of procedures for systemati-
cally detecting the constraints. Furthermore, the repre-
sentation reveals that there exists a generic relationship
between subgoal ordering constraints and a problem op-
erator schema. Therefore, it is possible to detect a class
of ordering constraints among subgoals without getting
involved in problem solving or planning processes.

The relation <*, however, has two weaknesses. First,
the relation is binary, so only pairs of subgoals are ex-
amined for the detection of ordering constraints. In
this way, the relation cannot be used to identify a con-
straint among two subgoals if that constraint is depen-
dent on the coexistence of other subgoals. For exam-
ple, let three subgoals be defined for a robot planning
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problem. The first subgoal is for the robot to place
a block, b1, next to another block, b2. The second
subgoal is for b1 to be in roorni and the third is for
the robot to be in another room, say, roorri2. It is
obvious that the robot has to achieve Nextto(1,62)
before it achieves Inroom(robot,r001712). However, <
Nextto(b\, 62), Inroom(robot, roorri2) > is not in the re-
lation <*, because in this case, the ordering constraints
can be identified only when all the three subgoals are
taken into consideration.

Another weakness of the relation <* is that in order
to detect ordering constraints ahead of planning or prob-
lem solving, every pair of subgoals has to be screened.
This is not very economical because constraints often
exist among only a few problem subgoals. These weak-
nesses of the previous approach motivated us to extend
the representation of subgoal ordering constraints to cir-
cumvent the limitations while preserving the declarative
feature and the simplicity of relation <~*.

2.3 Extension

The extension to the constraint representation is basi-
cally to let more subgoals be considered simultaneously
for the detection of constraints. This extension should
not only make it possible to detect constraints among
pairs of subgoals that are dependent on the coexistence
of other subgoals, but also pave the way for an efficient
top-down approach in detecting subgoal ordering con-
straints. In the following, we define a relation -<*. Here,
{gk,} and {gh } represent sets of arbitrary subgoals and
Atpjb, represents the conjunction ofthe elements of { G K} .

Definition 1 (Ertension 1) <% is a binary relation
over G', where G' = 2¢. For any {g;,} € G' and any

{on,} € G', {9k, } < {gn,} iff

VNQ(T}(S) € SA..J‘gk,-,ghj — S € SA:QI:.-)
AVg € {gn,}3(3s(Ti(s) € Sa, gy, .90, NS & Sy)

This relation can be verbally stated as follows:
{gx.} <7 {gn.} if and only if, for every rule, say Tj, if
the rule can transform a state s into a state 7(s) satis-
fying all subgoals of {gk, } U {gn;}, then A;gr, must have
already been satisfied in s, whereas for each subgoal g 1n
{gn,}, there exists at least one rule and one state s such
that g 1s not satisfied in the state s. For example, if we
take the problem goal to be the conjunction of the three
subgoals we mentioned before, and we use the same set
of problem operators as used by Sacerdoti [1974], then
we can derive relation <% to be like:

<% = {< Inroom(b,, room,), Nextto(b;, by) >
< Inroom(b,,room,), Inroom(Robot,roomy,) >,
< Inroom(by,room;) A Nextto(by,bs),
Inroom(Robot, roomy) >}

Obviously, the constraint that was missed by <* is now
identified by <%, namely, g; must be achieved before
g3, given the coexistence of go. The type of constraints
characterized by <t is given by theorem 1 and will be
referred to as the constraints of type <¥.



Theorem 1 * {gx,}<*{gn;} tff (1) each g € {g.}
precedes the complete accomplishment of Ajgn; for any
problem solution im which A;gx, and Ajgn, are non-
trivially achieved,

(2) for each g € {gn,}, there exists at least one problem
solution in which all subgoals of {gx,} U {gn,} are non-
irvially achieved and in which g does notl precede the
complete accomplishment of the subgoals in {g5 } — {g}.

The relation <1 has three desirable properties as de-
scribed 1n the following:

Property 1 If {gx,} <" {gn,}, then the relation <% re-
stricted to 219%5) is empty.

The implication of this property 1s that, once we de-
rive a constraint of type <+ among two sets of subgoals,
namely, {gi,}<*{gn,}, we do not need to go further to

search for the constraints of type <% among the subgoals
n {gn,} .

Property 2 If {gx,}<*{gs,} and {g; }<*{9) }, and
{9e,} U{gn,} = {9i,} U {9}, } then {gs,} = {g},} and
{gh_y} - {g;z,}‘

Property 2 1s the uniqueness property of the relation
<t . It is equivalent to saying that there is at most one
partition of a set of subgoals into two blocks such that

there is a constraint of type <% between the two blocks
of the subgoals.

Property 3 If for any partilion {G,,G2} of a set G of
subgoals, Gy 41YG2 and G2 £ G, then <™ restricted to
G 1s emply.

The three properties of <% can be used to greatly
expedite the process of detecting subgoal ordering con-
straints. Specifically, a top-down approach can be used
which starts by detecting constraints among a set of sub-
goals and then, only 1if a constraint is found, proceeds to
detect constraints among the subsets of subgoals. The
rest of the extension work makes the constraint detection
even more efficient.

It i1s clear from the above discussion that <% i1s much
more useful than relation <*. However, <1t still has
one disadvantage. As can be seen from theorem 1, <7V
1dentifies much more than we actually need. What we
need 1s the precedence relation between pairs of subgoals
that are nontrivially achieved. Therefore, it will be a
waste to detect the constraints we need via the derivation
of relation <*. This problem Jeads to the introduction
of a new relation as follows:

Definition 2 (Ezxtension 2:) < 1s a binary relation
from 2% to G. For any {gx,} € 2¢ and any g € G,
{gk.'}"<xg iff

VNS(TI(S) € S/\s'.qk,/\y — s € SAigkl-)
A313S(Ti(s) € Snign,ng A5 & S;)

Actually, <% is a sub-relation of <1, because <* =
<t N2¢ x G. The link between the relation <* and the
constraint 1t 1dentifies 1s as follows:

'Proofs of theorems have not been given here due to space
restriction. Interested readers are referred to [Cheng, 1989].

Let {gx,}U{g9} C G. {g&, }<%g if and only if for
each ¢’ € {gk.}, ¢’ precedes ¢ in any problem
solution where all subgoals of {gi.} U {¢g]} are
non-trivially achieved.

The improvement of <% over <% is that <* can di-
rectly identify ordering constraints among pairs of sub-
goals that are dependent on the existence of other sub-
goals. However, as indicated by its three properties, <%
has the potential of speeding up the the process of con-
straint detection. Therefore, both relations are employed
1in our development of constraint detecting procedures.

3 Detecting Subgoal Ordering
Constraints

Now that a type of subgoal ordering constraints is explic-
itly represented, we can proceed to build procedures to
systematically detect the constraints from problem spec-
ifications. In this section, we first present procedures for
detecting constraints of type <* among a set of sub-
goals, and then, a procedure for detecting constraints
of type <*. To reduce the complexity of detecting the
constraints, we first introduce a notion called “the most
effective subrelation of <*” which 1s a special subset of
<T.

3.1 <*,in: A Special Subrelation of <~

The constraints that concern us are of the following type:
a subgoal g; must precede another subgoal g; 1n any so-
lution in which a set of subgoals including g; and g; are
nontrivially achieved. The relation <7 1s used to detect
this type of constraints. For example, if {gy, g2}<"g3,
then ¢, will precede ¢35 and g, will precede g5 1n any so-
lution 1n which ¢, g2 and g3 are nontrivially achieved.
Note that {g,, g2} <% g3 will be true for any problem with
goal GG such that {gy,9¢2,93} C G, as long as all other
parts of the problem specification are the same. The in-
teresting point is that, as will be shown, there always
exists a minimal subset of <* which can 1dentify all the
constraints that are identified by <. Such a subset
1s called the most effective subrelation of <. In
this section, this subset 1s defined and 1ts properties de-
scribed. First, we define a set (' which contains the
constraints that we are interested in.

Definition 3 C¢g s a binary relation over G. For
g; € G and g; € G, < gi,9; >€ Cg ff there erist
Gk, 9kyr - Gk, , Such that g; € {9k}, 9; & {9} and
{gki}*xgj-

Next, we define a mapping F which relates the Cg
with the relation <*.

Definition 4 F :_Q*I —— 2¢6 4s an injective function.
F({< Aigk,,g9 >}) = Ui{< gk,,9 >} and for any S C
<*, F(S5) = Uees F({e}).

With these definitions, it 1s now possible to compare
the relative effectiveness of any two subsets of <* in their
identification of subgoal ordering constraints.

Definition 5 Let <%,up1 and <T,up2 be subsetls of
<7 <%,ub1 1s more effective than <%,,;;, de-

noted by -<x3u51 C "<zsub2: if l"<x.mb1| < |‘<xsub2|
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and F(<",up1) 2 F(<sub2). A subset of <%
is the most effective subrelation of <*, denoted by
<% min, tf for any <%, C <7, <F min T <% 5us-

We state without proof the following theorem:
Theorem 2 The

relation <% min exists and is unique.

We are only interested in the relation Cg as defined
in definition 3. The following theorem shows that the
relation CG can be obtained from <*min.

Theorem 3 F(<*min) = Cg.

Taking as an example the simple robot planning prob-
lem we used in section 2.2, we can derive the following:

Ce = {< Inroom(by,room,), Nextto(by,bs) >,
< Inroom(by, room,), Inroom( Robot, roomsy) >,
< Nextto(by, by), Inroom(Robot, roomy) >}

and

<Fmin ={ < Inroom(by,room;) A Nextto(by, by),
Inroom(Robot, rooms,) >,
< Inroom(by,room;), Nextto(by, bs) >}

3.2 GENCON and GENCONZ2
In this section, two recursive procedures called
GENCON and GENCON2 are described. GENCON

is the main procedure which generates <%,,;, for a
given goal G. GENCONZ2 is called by GENCON.
Another procedure, ONECON, which is a called by
both  GENCON and GENCON2, detects a <t relation
among a set of subgoals, if any. ON ECON is described
in the next section. The parameters GS and .KH,,;, for
GENCON are initially set to G and ¢ respectively.

Procedure: GENCON{(GS, Rmin)
Input: GS — a set of subgoals;

Output: Rpin = <% min-
VAR: C — holds ON ECON'’s return value which 1s ei-
ther a member of <% or ¢.

1. If |GS| =1, then RETURN;

2. Call ONFECON(GS, C);

3. If C = ¢, namely, there exists no <7 relationshif
among the subgoals of GS, then RETURN;

4. If C = {gk;—<+{g} (equivalently, {gk, } <% ¢g), where
{ge,} € 265 g € GS and {9k, } U {9} = G5, ther,
Rmin = Rmin U {< {gk.-},g >};

5. If C = {gi,} < {gn,}, where {gi,} € 29°, {gn,} €
265 {gr.} U {gn,} = GS, and [{gn.}| > 1, then for
all g € {gn,} call GENCON2({ge.}. 9, Rmin )

6. call GENCON ({gk,}, Rmin);

7. RETURN

GENCONZ2 is a procedure called by GENCON. It is
used to generate all the <* constraints among subgoals
of GSU {g} with the knowledge that g cannot precede
any of the subgoals in GS.
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Procedure: GENCON2(GS, g, Rmin)
Input: GS — a set of subgoals; ¢ — a single subgoal,

OUtPUt: Rmin g "<xmin-
VAR: C — holds ON ECON’s return value which is el
ther a member of <% or ¢.

1. Call ONECON(GS U {g},0C);

2. If C = ¢, namely, there exists no <% type con-
straints among the subgoals of GS U {g}, then RE-
TURN;

3. If C = {gx.} <1 {g} (equivalently, {gx, }<*g), where
{gx.} = GS, then Rmin = Rmin U{< {41, },9 >};

4. 1f C = {gr.}<*{gn,}, where {gi,} € 26°, {gn,} €
265Ul 1g, Y} U {gn,} = GS U {g}, then call
GENCONQ(:{gk.}sg:Ranin);

5. RETURN

The two procedures listed above are developed follow-
ing the guidelines provided by the properties of the re-
lation <T. For example, in GENCON, step 3 follows
from property 3; step 4 follows from property 2; step
and step 6 follow from property 1. It has been proved
that, as desired, the set of elements generated by the
procedure GENCON 1s exactly <%,,.;,. -

3.3 ONECON

A basic component of the procedures GENCON and
GENCON?2 1s a procedure, named ON ECON, which
identifies a member of <%, or a constraint of type <%,
for a set of subgoals. This section describes the develop-
ment of ON ECON . A new membership criterion for the
relation <% is constructed. The reason is that, although
the original definition of <% provides a simple character-
1zation of constraints, it cannot be directly implemented
in detecting the constraints because that would necessi-
tate exhaustive search of the whole problem space. The
new mermbership criterion provides an operational def-
inition for <1 which is almost directly translated into
the procedure ONECON.

We use Strips-like problem representation for the fol-
lowing discussion, although our procedure can be applied
to other representations as well. post; will henceforth be
used to denote the formulas in the Add-list of rule 75.

Defimition 6 A binding m of posty with a goal G 1s de-
noted by post] and 1s the resull of assigning constants
in ' to corresponding variables of matching formulas in
posly and assigning arbitrary constants to the rest of the
variables. A binding m of precy with a goal G 1s denoted
by prec;, and s the result of passing the binding from
posty to precy and assigning arbilrary constants to the
remaining vartables.

Definmition 7 A goal G 1s consistent with a post-
condition posty under binding m, or stmply, con(posty,
G), of (1) for all g € GG, it is not true that ~g is a logical
consequence of posty and the preserved precy formulas®;

’Preserved precf formulas are the predicates in precy that
are not deleted by the rule 7%.



(2) None of the problem constraints’® is violated by the
conjunction of posty, G, and the preserved prec} formu-
las.

It 18 clear from the above definition that logical rea-
soning 1s necessary for the detection of subgoal ordering
constraints. Such a requirement may make computation
infeasible 1n a complicated problem domain. Therefore,
to make this approach feasible, it 18 necessary to impose
the following assumption: In problem operator specifica-
tions, everything implied by posty (precy) is also explic-
itly represented tn posty (precy).

Theorem 4

VvV~ [(con(post;,/\;gki/\jghj) — (Precy — /\igk-)] A
Vg € {gn, }{3k3 [(con(posty, Aigx, N g) A —~(Precy — g)]}

if and only 1f

VEVs(Tk(8) € S, ,gn,.0n, — 5 € Saign.) A
Vg € {gn,}3k3s(Tk(s) € Saigu, .9 N5 € Sg)

where Prec} 1s the conjunction of precy and those sub-
goals of G which do not match anything in post;.

This theorem provides an equivalent membership cri-
terion for the relation <*. The new criterion leads di-

rectly to the procedure, ON ECON, for detecting sub-
goal ordering constraints.

Procedure: ONECON{GS,C)

Input: GS a set of subgoals;

Output: C a member of <t over 2°.
fail — ¢:

For each problem operator schema ry do:
Begin {For ry}
For each binding 7 of posty with GS do
If con(post;,GS) then
Begin {If}
75" = GS — fail
For each ¢ € GS’ do
if Precy, — ¢
then passi » = passe » U{g};
else fail = faiiU {g};
End{If};
passg = (xpasSg x;
End{For 7},
pass = (1 passy;
if pass = ¢
then Return ¢
else Return(< pass, GS — pass >).

Based on the assumption made on problem operator
representation, the complexity of ONEGON is linear in

nn. The upper bound for the worst case complexity of
GEN CON is then 0(n?).

An example of a problem constraint is: no problem object
can ever reside in two rooms simultaneously .

room?2 rooml

dl2

d2

roomS

roomb6

ds6

L 1

room4

d45 I

Figure 1: A Problem Goal State

Aﬂ@ O
O ® ©

Figure 2: Subgoal Ordering Constraints
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4 An Example

In this section, we use a simple robot planning exam-
ple to illustrate our approach. The problem involves one
robot, four blocks, six rooms and five doors. The prob-
lem operators are chosen from those used by Sacerdoti
[1974]. The names of these operators are.  GOTOB(bz),

GOTO(dz),  PUSHB (bz,by), PUSHD(bz, dr)
OPEN(dz), CLOSE(dx), GOTHRUDR(dzx,rz) and
PUSHTHRUDR (bx,dx,rx). The specifications for

these operators are not listed here because of space re-
striction. A possible goal state is shown in Figure 1 and
the problem subgoals comprising the problem goal are
given as follows:

(g2) : Inroom(bl, r3)
(94) : Inroom(b3,r6);
(96) : Nextto(b2,53),

(g1) : Inroom(robot,r3);
(ga) : Inroom(b2,16);
(g5) : Inroom(b4,rd);
(g7) : Nextto(robot,bl); (gs) : closed(d23);
(99) : closed(d56); (910) : closed(d45);

After applying the procedure GENCON, we get

Rymin =

{<91Ag2Ag3AgaNgs Age AgsAgs Agro, g7 >,
< gGIANG2ANG3zANGaANgs Age Ngagiro,98 >,

< gasNgaANgs Age Ago A gio, 1 >,

< gaNgaNge >, < gaNga, go >,< ¢gs, o >}

From Rpyin, the constraint graph can be generated as
shown in figure 2. In the figure, a directed arc repre-
sents the constraint that the subgoal in the source node
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must precede the subgoal in the destination node for this
problem.

5 Conclusion

The main issue brought up by this research is that an
explicit representation of subgoal ordering constraints
can greatly facilitate the development of subgoal order-
Ing strategies. The representation makes it clear what
type of constraints one is dealing with and how the con-
straints can be detected by analyzing problem specifica-
tion. Based on that representation, many generic prop-
erties of the constraints can be easily inferred. Further-
more, the representation helps one to understand the
capabilities of the subgoal ordering approaches.
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