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Abstract

Thanks to two stronger versions of predi-
cate circumscription (one of the best known
non-monotonic reasoning methods), we give a
definitive answer to two old open problems.
The first one is the problem of expressing do-
main circumscription in terms of predicate cir-
cumscription. The second one is the problem
of definability of the circumscribed predicates,
asked by Doyle in 1985, and never answered
since. These two results, and the way used to
obtain them, could help an "automatic circum-
scriptor”.

1 Introduction

Firstly, McCarthy defined domain circumscription which
reduces the set of individuals ($2). Later, he defined
predicate circumscription, which reduces the extensions
of some relations (§3). McCarthy has stated [I1980]| that
domain circumscription is a particular case of predicate
circumscription. [Etherington and Mercer, 1987] reaf-
firmed the importance of domain circumscription and
contested McCarthy's statement. We show (58) why this
contestation is not fully justified and we provide two im-
provements of McCarthy's translation. To obtain our
results, we define (§4) a variant of the strong pointwise
circumscription of [Lifschitz, 1988a]. Cases of equiva-
lence with standard circumscrition (§5) allow us to an-
swer the central question in [Doyle, 1985]: when does
circumscription define the predicates (§6)? A stronger
circumscription, "definabilization" (§7), simplifies the
expression, and hopefully the computation, of domain
circumscription. We make precise the expression of do-
main circumscription in terms of predicate circumscrip-
tion. Throughout the text we provide the semantics for
each kind of "circumscription” defined, thus all of them,
including the first order versions, may be considered as
preferential entailment notions.

2 Domain circumscription

In many situations only the objects named are supposed
to exist. Domain circumscription ([McCarthy, 1980],
amended by [Morreau, 1985, Etherington and Mercer,
1987]) formalizes this idea. A theory T is a set of formu-
las in a first order language C, $ or *[xo0), is a formula
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in £, ®[r) denotes the formula obtained by substituting
the free variable z for every free occurrence of zp in ¢
(z not bound in ®fz)).

Definitions 2.1 a) Aziom(®) denotes {3zo ®[zo]},
together with the set of formulas

{vx (5[;] = ®[f(x)])/f is a function symbol in £}. x
is a tuple (zy, ..., zx) of free variables, k is the arity of f,

el

and P[x] is ;] A ... A ®[z:] (TRUE if k=0).

b) T*, the relativization of T to ®, is T in prenex
form, where for each variable symbol y, we replace
Vy (---) by Yy (®{y] = (--)) and
3y (---) by 3y (®[y] A (- ) (thus P(a) by ®[a] A P(a)).

¢) Circd(7), the domain circumscription of T, adds
the following axiom schema to T

(SDC) {Aziom g (®)ATY) = Yz fzy),
for each formula ® in L.

Notations Our models are normal {equality interpreted
as identity). If u is an interpretation over £, D, is its
domain. For each predicate P (resp. function f) of arity
k in £, the subset |P|, of D} (resp. the application f,

of D in D,) denotes its extension in u.
L,, the language of y, adds to £ a name for each
element in D,,.

Definition 2.2 (see e.g. [Enderton, 1972) p.90-91) u
and v are interpretations over £. We denote v < u, if
and only if: 1) D, C D, (strict inclusion),

2) for each function fin £, e € D, then f.(e) = f.{e),
3) for each predicate P in L, |P|, " Df = |P|,.
Definition 2.3 R is a binary relation between interpre-

tations over £. A model uy of 7 18 mintmal for R when
no model ¢ of T is such that ¥R pu.

Theorem 2.1 (Davis [1980]) Any model of 7 minimal
for < is a model of Cired(T).

The converse needs a more sophisticated relation:

Definition 2.4 (see e.g.[Enderton, 1972] p.88-89 and
ex. 24 p.97): A subset S of D% is definable with param-
eters in u when there exists a formula ¢ in £, of arity

k, such that § = |®{,.

Definition 2.5 If v < p and if D, is definable with
parameters in i, we note v <% u,

Theorem 2.2 ([Morreau, 1985), or §8) The models of
Circd(T) are the models of T minimal for <d,



Here s an example showing how domain circumserip-
tion reduces the domain to the minimum allowed by the
axioms of the given theory (note that here, it does not
matter whether we use < or <*).

Example 2.1 7 is P(a) A 3z-P(z).

Aziom p(®) is ®[a), T? is ®[a) A P(a)ATz{®[z]A-P(z))
(SDC) is: T* = Vz ®[z] (for every & in £). Choosing
(z =aVz=y) as [z] in (SDC) gives: Cired(T) =
P(a) A3y(-P(y) AVz (z=aVz=y)). The models of
Circd(7) are the models of T with only two elements.

3 Predicate circumscription

Definition 3.1 ([McCarthy, 1986]) a) Let 7 be a finite
set of first order formulas in which the lists of predicates

P=(P, - - ,P)and Q = (@1, +-,Qm) occur. The
first order circumscription of P in T with Q varying,
noted Cire;(7: P; Q) (Cire,(7T: P) if Q 1s empty),
adds the following axiom schema to T, (SAC):
(TP, a A Vx (plx] = P(x))} = ¥x (P(x) = p[x)),

for every p = (P1,**,Pn), 9 = (g1, -, qm) lists of first
order formulas in L.

T[p,q] 18 T where each occurrence of F; (resp. Q;)
is replaced by p; (resp. ¢;). plx] = P{x) is (pi[x1] =
PLx1)) A - A (Pa[Xn] = Pa(Xn)

The square brackets mean that p;[z;] may have free
variables not included in x; = {z;1,---, & s, } (k; arity
of P;) (see [Besnard ef al., 1989] and ex. 8.1 below).

b} The second order circumscription Circe(7: P; Q)
adds the following axiom to 7, (AC):

vpq {[7[p,q) A (Vx (p(x) = P(x})] = Vx (P(x) =

P(x)}}, .
p and q are lists of predicate variables, each p; (resp. g¢;)

having the arity of P; (resp. @;).
Circ denotes either Cire; or Cires.

Definition 3.2 Let 4 and v be two interpretations over
L. Wewrite u = PQVY when u and v are identical except

that there 18 no condition on the extensions of the P;’s
(1 €7 < n)and @;’s (1 € j < m). Furthermore, if
each |P;], and |Q;l, is definable with parameters in v,
we write u =EP;Q v. If @ is empty, we write =p or ="P.

=p,Q is an equivalence relation, =p is reflexive and
transitive but it is not symmetrical (ex. 5.3).

Definition 3.3 z <p.q v (respectively <§P-Q V)
means u =p.q ¥ (respectively p =i’-Q v}, and |F;, €
|P;lv (1 <1< n) with some [Pi]; C |Filv-

HQ =@, we note <p or {%,.
Definition 3.4 (Lifschitz [1986]) 7 is (P; Q)-well

founded when for every model p of 7, not minimal for
<p.Q: there exists a model v of 7 minimal for <p.q

with v <P*Q u.
Universal theories are (P; Q)-well founded [Bossu and
Siegel, 1985, Etherington ef al., 1985, Lifschitz, 1986].

Theorem 3.1 a) Soundness (see [McCa.r_thy, _1*.?_180, Lif-
schitz, 1986]): Every model of 7 which is minimal for

<p.Q 18 a model of Circ{7: P; Q).

b) (Lifschitz, 1986] The models of Circy(7: P; Q) are
the models of 7 minimal for <p.Q-

c) [Besnard, 1989] The models of Circ,(7: P; Q) are
the models of 7 minimal for (JP- Q

A model minimal for <p.¢ 1s minimal for <'i;,;qﬁ

As it 18 one of the purposes of this text, we give now
an example where a seemingly stronger axiom is in fact
equivalent to the circumscription axiom (first order or
second order version).

Example 3.1 T is P(0) AVz (P(z) = P(s(x))).
Circ, (7 : P), adds the following axiom schema to 7: for
each formula p in £: (SAC) {p[0]AVz (plz] = pls(z)]}A
Vz (p[z) = P(z))} = Vz (P(z) = p[z]). Let (SAR)
be the axiom schema of (Peano’s) recurrence: for each
pin L. {p[0] AVz (plz] = p[s(z)])} = Vz (P(z) =
p{z]). Clearly (SAR) entails (SAC), so T U (SAR) entails
Circy(7T : P). Here the converse is true (§5).

4 A strong predicate circumscription

We reinforce and simphfy (SAC) the crcumscription
schema, or the axiom (AC).

Definition 4.1 The first order strong circumscription
of P in 7, with Q varying, Circfi(7: P; Q), adds to
T the schema (SACE): T[p,q] = ¥x (P(x) = p[x]).
The 2"¢ order version Cirefy(7: P; Q), adds (ACf)
=Vpq {7[p,q] = Yx (P(x) = p(x))} to T_

Circf denotes either Circf; or Circf,.

Circf(7 : P; Q) & Circe(7 : P; Q).

Here 1s the semantics for this strong circumscription.

Definitions 4.2 We write » <p,Q # (respectively

v '{JRQ 4) when » =p.Q # (respectively » =6P;Q 1)

and |P;|y = |Filv # @ for at least one t (1 <7 < n).
“—” denotes the set difference.
If Q i1s empty, then we write <p or ""lfij.

Theorem 4.1 The models of Cirefa(7: P; Q) (respec-
tively Cirefy(7: P; Q)) are the models of 7 minimal

for ~<pP.Q (respectively *{i’;Q)'

Remarks 4.1 a) The proofs are as the proofs of theo-
rem 3.1.

b) If v <P;Q u , then v -{P;Q H.

c) <P.Q is neither transitive nor antisymmetrical.

d) (¥ <,. p, Q p) if and only if

{U "'<Pl ;PLQ #) or (V “‘:P: ;PJ.Q J.-l'.)
b), ¢) and d) also hold with °-relations.

Example 4.1 7 is (P(a) vV P(b)j Aa#b.

— Cire(T : P) is consistent, being equivalent to
azbA(¥z (P(z) & z=a)VVz (P(z) & z=0b)).

— From Circf(T : P), ~P(a) can be proved (choose

z =) as p[z] in (SACH)), as can ~P(b) (choose p[z] =

z=a). Thus Ciref(7 : P) is inconsistent.

— Here are 3 models of 7, with the same domain
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{a,b,e}: |P|, = {a,b,e}, |Plv = {a}, |P],r = {b}. v and
V', minimal for <p, are models of Cire{T : P): v <p Ui,
V<pu v<pu v<pu v=<pvand v <p v: there
15 no model minimal for <p. Here, the domain is finite
and so the °-relations coincide with these relations.

Here 1s a result about strong circumscription (proof:
remark 4.1-d, which is obvious):

Theorem 4.2 Circef(T : (Py,..., Fa); Q) 1s equivalent
to E’j_] Cil‘(‘.’f(T : R?, Fl, “rey }'—'5'._1, F:;..H, --*:Pm Q)
i

Now, this strong circumscription is not as new as it
may seem, although the presentation and the semantics
are NEew:

Definition 4.3 ([Lifschitz, 1988b]) The sirong point-
wise ctrcymscripltion adds to 7 the schema (SAPf):
Vx <(P(z) A=pl[z] AT[p, q]), for every tuple of formulas

(r,q) in L.

We have: (SAPf) = Vx (T[p,q] = (P(x) = p[x]})) =
(Tlp, a] = Vx (P(x) = p[x])) = (SACI).

Lifschitz defines only indivadual strong pointwise cir-
cumscription {for one P at a time), and uses unions. We
allow tuples P in parallel strong circumscription. The-
orem 4.2 shows that these two ways are equivalent. As
this circumscription is not pointwise at all, we prefer our
name “strong circumscription”.

Lifschitz gives an elegant second order formula

Circl2(7 : P; Q) T A ¥x {P(x) & (L)}, with
(L) Vpq (7 [p,ql = p(x)).

Also, the “modal strong circumscription” of |Perlis,

1988, differs from (SACK) only in the fact that P(x)

is replaced by KP(x)}, where K is a modal operator,
attenuating this otherwise too strong circumscription.

5 When strong and standard
circumscriptions coincide

Definitions 5.1 a) A theory T = T[P; Q] is stable for
ertended conjunction in (P; Q) (first order version) if,
for every tuple of formulas p, q, p’, ¢’ in £:

TP, quTip’. q'1F T[pAp’ Ap”, q”] for some tuples
p”, ¢’ of formulas in £.

P, P', p” have the same length as the tuple of predi-
cates P, and q, q', @” have the length of Q. pAP’' Ap”
denotes the tuple of the p; A pi A p{"’s involved.

b) T is siable for eztended conjunction in (P; Q)
(second order version) if Vpqp'q' 3p" q" {(T|p, q] A
TP, d) = Tlparp' Ap”,q"]} istrue in 7. p, q, P/,
q’, p”, q” are tuples of predicate variables of suitable
lengths and arities.

If there 1s no p”, T is stable for conjunction in P.

Theorem 5.1 If T 1s stable for extended conjunction
in (P; Q), then Circf(7 : P; Q) = Circ(7 : P; Q).

Proof: This theorem is true for the 1* and for the 274
order versions of definitions 3.1, 4.1 and 5.1. We give the
1** order version.

Cirefi(T: P; Q) entails Cire,(T: P; Q), we need
the converse. Circ((7: P; Q) is: 7 and (SAC). Sup-
pose we also have T[p,q]. 7 = T[P, Q), so we get (def-
mition 5.1) T[p A P A p”, q"}], for some p”, q”’. The
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instance of (SAC) associated with {(p AP Ap”, @) gives
vx (P(x) = (p[x] A P(x) A p”[x]})). Thus T[p,q] =
¥x (P(x) = p[x]), i.e. (SACH)

Horn theories are stable for conjunction in (P; Q)
(generalize a well-known result of [van Emden and
Kowalski, 1976]). Thus, for Horn theories (or for strati-
fied logic programs, see [Moinard, 1990]) we may sim-
plify the circumscription axiom. So in example 3.1,
Circfy (7T : P), whichis 7 U (SAR) in this case, is equiv-
alent to Circy(7 : P).

Definition 5.2 A theory 7 has the property of extended
miersection in (P; Q) if and only if, for every models g
and ¥ of T such that v =p.Q 4 there exists a mode]

of T such that y' =p q @, with [P[, CIP[, N [Pl,.

Theorem 5.2 a) A theory T is stable for extended con-
junction in (P; Q) (second order version), if and only if
T has the property of extended intersection in (P; Q).

b) If T is (P; Q)-well founded, then Circy(7: P; Q)
1s equivalent to Circfo(7: P; Q) if and only if 7 has
the property of extended intersection in (P; Q).

Proof: a) Details lengthy, but obvious (see [Moinard and
Rolland, 1991).

b) Theorem 5.1 gives one way. Circs(7: P, Q) =
Circfy(7: P; Q) if and only if: for every model u’ of 7
minimal for <p.Q: if £ 1s a model of T and u =P.Q u’
we have: |P|, C |P|, (see remark 4.1 b). Let u and »
be two models of 7 with v =p.Q H- As T is (P; Q)-
well founded, there exists u’ model of 7, mimmal for
<p.Q with (u' <p.Q MO u = p) =p.Q H 80
IP|,; C |P|.. Also, p/ =p.Q v thus P}, € |Pl, and
Plur € [Pl 0[Py

If T 1s (P; Q)-well founded, we may refine this result;

Definition 5.3 7 = T[P; Q] has the property of unique
minimal model in (P; Q) if and only if, for every models
p and » of 7 minimal for <p.Q and such that u =p.Q ¥

we have |P|, = P, (i.e u =Q v).

Theorem 5.3 a) If T has the property of extended in-
tersection in {P; Q), then 7 has the property of unique
minimal model in (£; Q).

b) If T is (P; Q}-well founded, ithen 7 has the prop-
erty of extended intersection in (P; Q) if and only if 7
has the property of unique minimal model in (P; Q).

Proof: a) Obvious.
b) Let u and v be models of 7 with u =p.Q ¥- There

exist models 4’ and v’/ of 7 minimal for <p.Q with

(¢ =P.Q Pl C [P|y) and (V' =P.Q ¥ Pl C
|P[,). Thus &’ =p.q v/, and |P|,r = [P|..

Example 5.1 7: P(e), P(b) = (P(c) v P(d)),

{a#b bfe,bfEd c#Fd,afte,afd} {(S1)].
— Ciref(T: P) = Cire(7T : P) =
(81} A(Vz (P(z) & z=a) (choose p(z} = r=a in AC).
— T is not stable for conjunction in P, but 7 is stable
for extended conjunction in P (p''(z) = z=a). T is



P-well founded, and has the property of unigue minimal
model 1n P. This example shows that we must use the
exiended conjunction 1n theorem 5.2.

Example 5.2 7 is:

PO}V 3z {P(z) AVy (P(y) = (P(s(s)) A z# 3(u)))).

V2Vy (s(z)=5(y) = 2=4),Vz (s(2)20)  (S2)

— ’I)’ 1s not P-well founded {right-hand side of disjunc-
tion).
— Cirey (7 : P) = (82) AVz (P(z) & z2=0)

(consistent).

Cirefy(7T : P) entails P(0) (choose z =0 as p(z) in
(SACYF)), and also ~P(0) (p(z) = z #0), thus it is in-
consistent.

— Thas the property of unique minimal model in P: for
every model i of T minimal for <p, |P|, = {0,}. T
does not have the property of extended intersection in
P: take D, = N ={0,1,2,3,.. }, s, successor function
in N, |P|, ={0},0,=0,v=ppu |P.=1123,..}
¢ and v are two models of 7, |P|, N |Pl|, = @, and as
T [FALSE] is not true, no model u’ of T verifies u’ =p u
and |P),s C |Pl,N|P|,. # is minimal for <p, v is not
(choose |P|,» = {2,3,4,...}). v <p u, p is not mini-
mal for <p (no model is minimal for <p). This example

shows that we need the well-foundedness condition in
theorem 5.3-b.

Other examples [Moinard and Rolland, 1991] show the

importance of the well foundedness condition also for
theorem 5.2 b or show that, since theorem 5.2, the main

results are false with the first order versions (even with
an adapted notion of well-foundedness). Thus, in the
end of this section and in the following section, we deal
only with the second order versions. Here we give only

a simple example of one problem encountered with first
order versions:

Example 5.3 7: P(0) AVz (P(z) = P(s(2))).

(cf example 3.1}. It is easy to find two models of
Circfy (T : P) with p =p v and |P|, # |P[,. Choose
N uZ for domain, [P|, = N, |P|, = NUZ. The prob-
lem is that g =% v is false (|P[, is not definable with
parameters in ») thus x4 <} v is false.

(Note that v =% u is true: |P|, = D, is definable in u).

6 Definability of the circumscribed
predicate

Here are two definitions reminded by [Doyle, 1985). This
definability in a theory must not be confused with the
definability in a model of definition 2.4.

Definition 6.1 A first order theory T implicilly defines
P if and only if whenever u and v are two models of T
such that ¥ =p u, then they are identical.

Definition 6.2 A first order theory 7 explicilly defines
P if and only if there exists a first order formula ® in L,
not involving P, such that: T+ Vz (P(z) & $).

The Beth’s definability theorem (see [Chang and Keisler,
1973, Doyle, 1985]), states that implicit definability is
equivalent to explicit definability. Now, we give a defini-
tion adapted to circumscription with variable predicates:

Definition 6.3 A 279 order circumscription of P in 7
with Q varying implicitly defines P if and only if 7 has
the property of unique minimal model in (P; Q).

This is a naiural extension of definition 6.1, when “vary-
ing predicates” are involved. As already mentioned, we
must use the second order circumscription, but 7 is a
first order theory, and we may consider only first or-
der models. If Q 158 empty, definition 6.3 coincides with
definition 6.1: Circo(7 : P} implicitly defines P (defini-
tion 6.3) if and only if whenever u and v are medels of
Circy(T : P)such that v =p u, then 4 = v (cf definition
6.1). So, the theorems 5.2 and 5.3 give:

Theorem 6.1 a) H T is such that Cireo(7: P; Q) is
equivalent to Cirefo(7: P; Q), then Circs(7: P, Q)
implicitly defines P.

b) If T has the property of extended conjunction in
(P; Q) (second order version),then Circs(7: P; Q) im-
plicitly defines P.

c) i T is (P; Q)-well founded, then Circo(T: P; Q)
tmphlicitly defines P if and only if Circe(7: P; Q) is
equivalent to Cirefo{(7: P; Q), that is if and only if
T 1is stable for extended conjunction in (P; Q) (second
order version).

This gives the answer to the central problem in [Doyle,
1985], asking when P is definable in the circumscribed
theory. Also it strengthens the importance of formula
(L), given at the end of §4, with standard circumscrip-
tion. (L) does not involve P nor Q, so for well-founded
theories, (L) gives the explicit second order definition of
P in Circy(7: P; Q) in all the cases where such a defi-
nition does exist. Note however that (L) being a second
order formula 18 not the ® of defimtion 6.2; such a &
does not necessarily exist because Circo(7: P; Q) is a
second order theory (cf example below).

Examples In examples 5.1, 5.2 and 5.3, Circx(7 : P)
implicitly defines P. We may even give an explicit
first order definition (for first or second order circum-
scription) tn examples 5.1 (P(z} = z = a) and 5.2
(P(z) = 2=0). In example 5.3, Circ;(T : P} does not
implicitly defines P. Also it is a case where no first order
explicit definition exists for P in Circy(7 : P).

7 Definabilization (a stronger
circumscription)

Definition 7.1 Defy(7T: P; Q), the first order defin-
abslization of P in 7 with Q varying, adds to 7T the
axiom schema (SADf): T[p,q] = Vx (P(x) & p[x]).
The 2™¢ order version Defo(7: P; Q) adds to 7 (ADf)
=p, q {T[p,q] = ¥x (P(x) & p(x)}}.

Def denotes Def; or Defs.

Def(T : P; Q) + Circf(7 : P; Q).

Doyle [1985] uses a similar notion without variable
predicate, and calls it “implicit definability” (cf defini-
tion 6.1). A specific name makes a clear difference be-
tween a theory having this property and the addition of
an axiom schema to any theory.

Example 7.1 T: P{a) (Horn theory).
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— Circef(7T : P) = Cire(T : P) =Vz (P(z) & z=a).
— Def(7 : P) = Pla) AVz (z=a)
{Choose p[z] = z=a, then p[z] = =2z, in (SADS)).
Example 7.2 T: P(a)}, 3z ~P(z) (cf example 2.1).
— Ciref(T : P) = Circ(T : P) = Vz (P(z) & z =
a) A 3z ~P(z). (T 18 stable for conjunction in P, and
|P|, = {64} in every model 4 minimal for <p).
— Def(T : P) =
Ve (P{(z)=z=a)A3y{yFaAVz (z=aVz=y))
(Choose plz) = 2 =@, getting Vz (P(z) = z=a), then
plz] = z #y which gives y#a = Vz (P(z) © z#vy)).
So definabilization minimizes the extensions of the
predicates and the domain, as precised now:

Theorem 7.1 a) If 7 = T{P, Q] entails T[TRUE q]
for some tuple of formulas q, then Def(7: P; Q) entails
¥x P(x). (TRUE is the tuple (x; =xi,...,X, =X,)).
b) Def(7 : P; Q) - Circ(7T : P; Q).
{¥x P(x)} U Cire(7 : P; Q) + Def(T : P; Q).
c) if TF T[TRUE, q|, then
Def(T : P; Q) = {Vx P(x)} U Circ(7 : P; Q).
Proof: a) Choose (TRUE, q) as (p,q) in (SADf) or

(ADf) (depending of the version).

b) — Obvious.

— {Vx P(x)} U Cire(7 : P;Q) is: T u{¥x P(x)}u
(SAC). ¥x P(x) gives ¥z (p[x] = P(x)), thus (SAC)
gives (SADf). Adaptation easy for the 2"® order version.

Definitions 7.2 We write v#p qu (resp. V#Ei";Q#)

when v =p.q  (resp. v =i”-Q p) and |Pil, # | Pl for
at least one £ (1 <1 < n).

Theorem 7.2 The models of Defy(7: P; Q) (respec-
tively Defy (T: P; Q)) are the models of 7 minimal for

#p,Q (respectively #i”;Q)'

Proofs obvious. As Doyle [1985] has noted, definabiliza-
tion 1s generally too strong, here is an example:

Example 7.3 7: P{a) = P(}), a#b (Horn theory).
— Ciref{(T : P) = Cire(T : Py =a#bAVr -P(z)
~— Def(T : P) is inconsistent:

choosing p[z] = z =& proves = P(a), then

choosing p[z} = (x=a V £=1) proves P(a).
— Here are 3 models of 7, with the same domain {a, b}:
1P|y = {6}, |P], = {a,b},|P|. = 0.
g <pp<pry g, minimal for <p and <p, is a model
of Cire(7 : P) and Circef(T : P). p'#pu, u#pp’, ete...
There 1s no model minimal for #p.

8 From domain to predicate
circumscription

We will use only the first order versions (cf §2). Here
is the way McCarthy [1980] uses to transform a domain
circumscription into a predicate circumscription:

Definition 8.1 U being a new unary predicate symbol,
we note: Ty = Aziom{U)ATY and
T<U> = Cire)(T(; : UYyu {vz U(z)}.

L(U) denotes £ augmented by U. Aziom g (U) is also
Aziomg, (U) , as £ and L(U) have the same function

symbols, and we will often note Aziom(U).
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Theorem 8.1 (McCarthy [1980]) 7<U > simulates the
domain circumnacription of 7: 7 <U> entails Circd(7).
The converse is true: every formula ¢ in £ entailed by
T<U>, is entailed by Circd(7). That 18, 7<U> is a
conservgtive extension of Cired(T).

In a contestation of this method, Etherington and Mer-
cer [1987) argue that consistency is not guaranteed when
adding Yz U{z). However, no example 18 given. We
prove that in fact, if an inconsistency has to appear,
then it is detected in the circumscription of U:

Theorem 8.2 If Circ(7, : U) is consistent,
then T <> 1s consistent.

Proof: Let u be a model of Circy)(7, : U), that is a

model of Ty, minimal for <}, We define puy (u re-
stricted Lo U): py < u; Dyy = [Ulpy = Uls. nv
is a model of Yz U(z). u is a model of Ty, and so
i8 py. Let us suppose that there exists v, model of
Tu, with v <}, pv. Let ¢ be a formula in £, with:
|¢lue = U}y (see defimtions 3.3, 2.4). We define u'.
W <y p, |Uly = |8|uy- Let ® be a prenex formula in

L, , we may prove by induction on the length of ¢ that:
|®|,,, = |®Y|, [Moinard and Rolland, 1991}. First, this

proves that x’ 18 a model of TY. Also, v is a model
of Aziom(U), and so is u', thus y' is a mode) of Ty .
From: U]y = |@|luy = |#Y |4, we get g’ <} u contra-
dicting the fact that u is a model of 7y minimal for <.
So there exists no v and uy 18 a model of Ty minimal
for <}, i.e. a model of Cirecy(7T, : U). If there exists a
model (u) of Cire1{T, : U), there exists a model {uy)
of T<U>. (Proof simpler for the 274 order version).

Thus, McCarthy’s way of expressing domain circums-
scription into predicate circumscription is justified. One
of the main problems in any circumscription is the possi-
bility of unexpected inconsistency. Here, if inconsistency
arises it i8 detected in the circumscribing process, not in
the addition of the last axiom Yz [/(z) which i1s harmless.

However, there is a little problem remaining. Any
known method of circumscription adds axioms to the
initial theory. Here, we leave the initial theory for a while
(neither Ty nor Cirey (7, : U) entails 7), and at the
end, we recover T. This does not simplify the matter if
we are to automatize the process: for this purpose, we do
not want to prove any axiom of 7, we need to know that
these formulas are true. One theoretical solution meeting
this requirement 18 to introduce 7 in the circumscription
mvolved. That is why we propose to circumscribe U 1n
T ATy, instead of Ty alone. As U does not occur in 7,
we get: Cire) (T, :UYAT = Circ)(Ty AT :U). As
T <U> entails 7, we have:

Theorem 8.3 7T<U>= Circ1(T, AT : U)u{Vz U(z)}.
Again, inconsistency cannot be provoqued by the
addition of ¥z U(z).
If T is universal, we get a simplification:
T<U>= Circy){Aziom(U)YAT :U)u {Ve U(z))}.
(Indeed, 7 entails 7).

With this simulation of domasin circumseription, we are

closer to the other known kinds of circumscription: we
add an axiom schema to 7. “More work i1s done by



the circumscription of U” (the final addition of Vz U(z)
eliminates fewer models). As with McCarthy’s method,
if we had an automatic demonstrator including a pred-
icate circumscriptor (we may tend towards this goal),
then we would also have a domain circumscriptor. We
cannot avoid adding Vz U(z) if we want to use a
predicate circumscription (see [Etherington et al., 1985,
Etherington and Mercer, 1987]). But now we show how,
using definabilization, we may greatly simplify the pro-
cess and avoid the need for Vz U(z).

Theorem 8.4 T<U>= Cirey(Ty AT :U)u{vz U(z)}

Proof: Ty[TRUE] is TY[TRUE] A Axiom(TRUE), i.e.
TA Axiom(TRUE), i.e. T, and T{TRUE] is T because
U does not occur in 7. Thus: Ty[U} A T{U] entails
Tu[TRUE] A T[TRUE]. Use theorems 7.1 and 8.1.

Example 8.1 7: P(a) A3z -P(z) (cfex. 7.1, 7.2).

Aziom(U) = Ula); TY = Ty = U(a) A 3z (U(z) A
—~P(z)). Cire) (T, : U) = Ty U {[ula) A3z (u[z] A
~P(z)) AVz (u[z] = U(z))] = Yz (U{z) = u[z]), for
any formula u in L(U)}. We choose ufz] = (z=avz=
y), which gives: (U(y) A-P(y)) = Vz (U(z) = (2=
aVz=y)). Adding ¥z U(z), we get ~P(y) = ¥z (z =
eV z=y), which together with P(a) A 3z = P(zx) gives:
P(a) A3y (-P(y) AVz (z=aV z=y), that is Cired(T)
(cf example 2.1).

Defy(T,, : U) = Ty U {[ule] A Iz (u[z] A -P(z))] =
Vz (U(z) & ulz]), for every formula u in £{U) }. We
choose ufz] = (2 =a Vv r = y), which gives: ~P(y) =
Yz (U(z) & (z=aVz=y)), then we choose u[z] = r =1z,
which gives: Vz (z=aVv z=y)).

Theorem 8.5 If T is universal, then we get a sim-
plification: T<U> = Defy(T A Aziom(U) : U) =
T A Defy(Axiom(U) : U) (U does not appear in 7).

The axiom schema of definabilization i1s simpler than the
axlom schema of domain circumseription, so this is an

application of definabilization.

9 Conclusion

We h ave precised the definitions, semantics, and possi-
ble uses, of two kinds of "super circumscriptions”. We
have given new cases where the circumscription schema
may be simplified, a result which is of theoretical and
practical importance, as it could be of some help in the
process of automatization of circumscription. These re-
sults have solved an old question: when does circum-
scription uniquely define the circumscribed predicates?
Our answer is complete for well founded theories. At
last, we have precised and justified the passage from do-
main circumscription to predicate circumscription. We
have shown that this passage is safe: it cannot bring in-
consistancy. Also we have given two new methods. The
first one enhances the role of predicate circumscription,
which is useful if we want to use an automatic predicate
circumscriptor for domain circumscription. The second
one greatly simplifies the schemas involved.
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