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Abstract

One of the questions in understanding the rela-
tion between circumscription and consistency-
based nonmonotonic logic is - can default logic
be expressed in circumscription? While it
seems impossible to express default logic in ex-
isting forms of circumscription, is it neverthe-
less possible to express default logic in a cer-
tain extension of circumscription? This paper
presents a construction of "default logic" in the
spirit of circumscription. It has been shown
that the new formalism, circumscriptive exten-
sion, is indeed an extension of circumscription.
The equivalence of the new formalism and de-
fault logic is shown to hold under certain con-
ditions, which demonstrates that default logic
can be expressed by merely classical logic with
a fixed point operator.

1 Introduction

Various logics have been developed to formalize non-
monotonic reasoning [Fei87]. They mainly fall into
two camps: consistency-based logics, such as default
logic [Rei80] and autoepistemic logic [Moo85], and
minimal model-based logics, such as various forms of
circurnscriptions[McC80, Lif85). Understanding the re-
lation between the two is important. It will not only
enable us to compare the relative expressive powers of
these logics, but it may also suggest a logic with the
advantages of both approaches.

To compare the expressive powers of these logics, two
questions are asked: can circumscription be expressed in
default logic or autoepistemic logic, and vice versa.

The former question has been answered by Ethering-
ton [Eth87] and Konolige [Kon89]. Etherington showed
that circumscription can be translated to default logic
under the domain closure assumption. Konolige ex-
tended the autoepistemic logic so that it can handle
'‘quantifying-in\ and then showed that circumscription
can be translated to the extended autoepistemic logic.

The latter, expressing default logic in
circumscription®*[Gro84], seems to be more interesting.
One of the reasons is that circumscription is within the

* Since the equivalence between default logic and autoepis-
temic logic has been established[Kon87], the solution to the
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framework of classical logic, which has been well-studied
and has many known properties. In addition, circum-
scription avoids consistency checks; it seems more at-
tractive computationally.

While it is desirable to express default logic in the
existing forms of circumscription, it is, unfortunately,
Impossible to do so. Imielinski[lmi87] proved that de-
fault logic could not be modularly translated to circum-
scription in general. Informally, circumscription seems
to correspond to default logic with a special form of de-
fault - that is, normal default without prerequisites. It
has difficulty in expressing non-normal default, which is
very useful in dealing with certain problems in common
sense reasoning[Mor88, Gel88].

A natural question then, is whether it is possible to ex-
tend circumscription so that it has the expressive power
of default logic. That is, is it possible to construct a
"default logic" in the spirit of circumscription? Since
circumscription is nothing but an axiomatization of a
certain nonmonotonic reasoning in classical logic, the
above question then becomes - is it possible to axiom-
atize the type of nonmonotonic reasoning permitted by
consistency-based logics in terms of classical logic, with-
out referring to modal operators, non-language expres-
sions (such as defaults, which need consistency tests),
and fixed points?

Some of the extensions of circumscription, such as
autocircumscription[Per88] and Introspective
circumscription[Lif89], do extend the expressive power
of circumscription. In particular, they can express cer-
tain non-normal defaults. However, a closer examina-
tion shows that they are still not as expressive as default
logic or autoepistemic logic, in the sense that inconsis-
tency may arise in some cases where default logic and/or
autoepistemic logic are consistent.

The results in this paper demonstrate that certain lim-
itations of the expressive power of circumscription are
not due to the language (first-order in most cases, plus a
certain second-order formula) itself. Almost all the ex-
pressive power of default logic can be achieved by mere

problem of expressing default logic in circumscription will
automatically lead to the solution to a similar problem for
autoepistemic logic.

prpIication of antocircuinscription or introspective cir-
cumscription to the Yale Shooting Problem in [Gel88]'s for-
mulation is one of the examples.



classical logic with a fixed point operator. This further
clarifies the relation between circumscription and default
logic.

This paper is organized as follows. We begin with an
informal discussion which leads to the formal definition
and semantics of a circumscriptive extension for a default
theory. We then show that the new formalism is indeed
an extension of circumscription. We proceed to show
that the circumscriptive extension and the original ex-
tension of default logic, as defined by Reiter[Rei80], are
equivalent under the domain closure assumption and the
unique names assumption. Finally, we show the applica-
tions of the new formalism to some well-known problems
in default reasoning, problems that involve non-normal
defaults.

2 Consistency, Minimization and Fixed
Point

In this section, we discuss what is necessary and what
is not necessary for default reasoning. We also suggest-
how circumscription can be extended so that it will have
the expressive power of default logic.

Classical logic allows us to represent our knowledge
about the world by sentences of a logical language and to
derive more facts about the world through its deductive
system. However, our knowledge about the world is in
most cases incomplete. To fill in the gaps, assumptions
are often made in default reasoning. These assumptions
are often based on what is known, as well as what is
not known. In order to formalize this, nonmonotonic
logic augments the classical logic with certain mecha-
nisms which can permit assumptions to be made under
certain conditions.

In default logic, rules called "default" are used for this
purpose. A default correctly captures the patterns in
default reasoning: assume <% whenever a is known and
-3 is not known. Although a default looks simple, it
turns out to be quite expressive. For instance, Konolige
[Kon87] shows that every set of sentences in autoepis-
temic logic, which involve complicated constructions as
embedded L-operators, can be effectively rewritten as a
default theory. However, default logic departs from clas-
sical logic in that it expresses the defaults neither in the
language of classical logic, nor as inference rules. Also,
default logic requires an explicit consistency test, which
Is not even semidecidable.

On the other hand, circumscription is a second-order
formula, which means that it requires nothing more than
classical logic. In particular, ignorance of knowledge is
detected by formula or predicate minimization instead of
by an explicit consistency test. Circumscription seems,
however, incapable of expressing non-normal defaults.
The main reason is that it always forces the predicate
circumscribed to be minimal in itself. In fact, finding a
minimal extension of a formula (or a maximal extension
of the negation of the formula) is very closely related to
the consistency test of a formula. Consider a sentence T
and a _predicate Q, for an individual a in the universe.
T ¥ -Q(a) (Q({;)ris consistent with T) is equivalent to
the following; there exists a model M of T, such that

M J= Q(a). Assuming that models of T have the same
universe and denotation functions, a set of all a such that
T  -Q(a) is clearly the union of extensions of Q in all
those models . The union of all such extensions, similar
to a minimal extension of a predicate, can be expressed
by a second-order formula, which can be used as the
basis for sanctioning other formulas. This will allow us
to have a formalism with full expressive power of default
logic but still within the classical logic. In addition, we
will gain the ability to reason about open domain freely,
as we shall show later.

In both default logic and autoepistemic logic, the con-
sistency of a formula is tested globally (with respect to
the final set of beliefs, instead of the premises). This
is especially necessary when non-normal defaults are in-
volved, because otherwise, inconsistency may arise when
new assumptions are added. To test the consistency of a
formula globally, the concept of a fixed point seems to be
inevitable. The use of fixed point does not change the
language itself, but it complicates the logic. It seems
that this is the price we have to pay to gain the full
expressive power of the default logic.

In what follows, we show how defaults can be repre-
sented by second-order formulas, and how an extension
of a default theory can be defined as a fixed point.

3 Circumscriptive Extension

A default is an expression of the form a(x) : F(x)/v(x),
where o (x), 8 (x) and ¥ (x) are first-order formulas
whose free variables are among those of x = z4,...,z,.
In the rest of the paper, we will use z for x, if confusion
does not arise from the context. A default 15 closed 1ff o,
# and ¥ contain no free variables; otherwise, 1t 1s open.
A default theory is a pair (A, D) where A 15 a set of first-
order sentences and D 1s a set of defaults. A default
theory is open if at least one default in IJ is open.

Given a default theory (A,D), for each default
ai(z) : Bi(z)/vi(z) € D, we introduce new predicate
constants P; and @; and add an axiom Vz(w(z) ~
P;(x)) A Vz(Bi(z) ~ Q(z)) to A. The default
a;(z): Bi(x)/1i{x) can then be rewritten as Fi(z) :
Q:i(z)/vi(z). We assume that all default theories (A, D)
in this paper have been rewritten in this way.

Let S, T be sentences. Let P;,(; be some predi-
cate constants in 5, T and let Z be a tuple of all other
predicate constants in S,7T. We write S(pi, ¢, 2} and
T(ps, gi, z) for the sentences resulting from substituting
all occurrences of P;. ; and Z by corresponding predi-
cate variables p;, g; and corresponding tuple of predicate
variabler z, respectively.

Definition 3.1 Given a defaull theory (A, D) where
both A and D are finite, we define an operalor A on
two seniences S, T as follows:

A(S,T)=

S A A

Pi(z):Qiiz)/ri{x)ED
Ap;q;2(T(ps, gi, 2) A gi(x)) — 7:(2)]

Ve [Vpigiz(S(pi, ¢i, ) — pi(z))A

!This discussion is informal. The intuition is formalized
in lemmas 5.1 and 5.2 in section 5.
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Definition 3.2 Given ¢ default theory (A,D) where
both A and D are finite, let

By
B

A
A(B;, B).

Tl

A first-order senlence B is defined to be a circumscrip-

tive extension of (A,D) if Mod(B) = Mod(| }B;)
j=0

where Mod(T) = {MIM = T}.

informally, the sentence Vz[Vp;q:z(S(p:,¢i,.2) —
pi(2)) A 3pigi 2(T(pi, ¢i, 2} A qi(z)) — ~i(z)] says that if
a;(z) follows from S and —f;(z) does not follow from T,
then ¥;(z) 18 true. By iterating with the operator A and
defiring circumscriptive extension as a fixed point of the
iteration, we make sure that v;(z) 18 in the circumscrip-
tive extension whenever 1) a;(z) can be derived only
from the premises A and the assumptions which have
been made up to each point of an iterative step, and 2)
Bi{z) 1s consistent with the circumscriptive extension.

We have the following proposition, which follows from
defimition 3.2 directly.

Proposition 3.1 ¥ Jf B is a circumscriptive eziension
of ¢ default theory (A, D), then Cn(B) = Cn({ 2, Bi)
where Cn(T) = {p|p 15 a first-order sentence and T |=

P}

In what follows, we give some examples to illustrate
the usage of circumscriptive extensions.

Example 1 Let A= P(a) AP A(-P=Q) Y. and
D = {: ~P(z)/~P(z)}.

There 1s only one circumscriptive extension of (A, D),
namely, B = AAVz(z £ aAx £ b — —~P(z)). Note that
this 18 exactly equivalent to circumscription of P in A.

Example 2 Let A = (P(a} v P()) A {(—P = Q) and
D = {: ~P(2)/~P(2)}.

There are two circumscriptive extension of (A, D),
namely, B; = AAVe(z # a — -P(z)) and B, =
AANYz(z £ b — ~P(z)). Note that B,V B; is equivalent
to circumscription of P in A.

Example 3 Let A = T{(a) AT(b) A Bla) A a #
bA(mabl = Q) A(-ab2 = @,). Let D =
{T{z) : —abl(z)/-F(z), B(x) : —-ab2(z)/F(z), B(z) :
~ab2{z}/abl{2)}. This is a simplified version of the Bird
Problem under Morris’ formulation[Mor88]. Note that
T stands for ‘thing’, B stands for ‘bird’, and F stands
for ‘fly’. There is a unique circumscriptive extension for
this default theory (A,D), whichis B= AAVz(z =a —
F{(z)) AVz(z = b — =F{2)) AVz(z = a — abl(z)). It
follows that, B I ~F(b) and B F F(a). Note that this
problem involves non-normal defaults, which cannot be
handled by ordinary circumscription.

Semantically, circumscriptive extension can be char-
acterized as follows. Let A be a sentence, and P be a

— P

"Proofs of proposition, lemmas, and theorems are either

omitted or sketched in this paper due to space restriction.
Interested readers are referred to [Qia%1]

Y-P = Q stands for Vz(—~P{x) —~ Q(z)). This conjunct is
necessary for A, so that the wif =P(2) in the default can be
replaced by a new predicate constant ().
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predicate constant. Let Mod(A) be the class of all the
models of A. Let M be a structure. Using the notations
similar to that in [Lif89), let X be a set of tuples of ele-
ments in the universe of M such that the length of each
tuple in X equals the arity of P. We write M{X/P] for
the structure which differs from M in that it interprets
some or all predicate constants differently, in particular
it interprets P as X. In addition, we use M [P] to de-
note the interpretation of P in M (sometimes P could be
a wil); |M| denotes the universe (domain) of M. Let M
be a tlass of structures. We define a sequence of classes
of structures in the following way: let

Mo = Mod(A)
Nivt = QN;, M)
where
QN M) = {MIM € Nand

for all Pi(z): Qi(x}/vi(x) € D

N xn |J YcMiu
MIX,/PJeN MUY/ Qe M

Theorem 3.1 A class of siructures M is the class of all
the models of a circumscriptive exiension B of a default

theory (A, D) iff M = [ |A;.

j=0
Proof Note that for any structure M,

M E Vz[vpqz(S(p.q,z} — p(z)) A
Ipg2{T(p, 7, 2) A g{z)) — ¥{x)]

= (] xn |J rcMi
M[X/P)=S M[Y/Ql=T
(]

Note that, unlike the conventional semantics of clas-
sical Jogic, the satisfaction relation between a structure
and a circumascriptive extension cannot be defined with-
out referring to other structures. This 18 similar to modal
logic where the satiafaction reiation between a structure
and a modal sentence is defined in terms of a set of pos-
sible worids. However, in our case, the “possible worlds”
are the very structures which satisfy the circumscriptive
extension. Therefore, we define the class of all the mod-
els of a circumscriptive extension as a fixed point of a
sequence of applications of the operator . The opera-
tor (N, M) picks up the structures in A which satisfy
the relation

N xn U

MIX/PileN M[Y,/Q.]eM

Y; C My}

for each default in D. Consider the structures with the
same universe and interpretations for object and funec-
tion constants as M. Let {3, (M) be the intersection of
extensions of P; in all such structures in A and 25 (M)
be the union of extensions of Q; in all such structures in
M. N, M) then picks up those structures in N such
that the intersection of {2, (M) and Q5.(M) is a subset
of the interpretation of «; in M for all defaults in D.



4 Circumscriptive Extension and
Circumscription

In this section, we will show that circumscriptive exten-
sion 18 Indeed an extension of ¢ircumseription.

Circumscription exists in many different versions.
lHere, we compare circumscriptive extension with a
model-theoretic definition of circumscription. lLet A be
a first-order sentence and P be a tuple of predicate con-
stants to be circumscribed. Semantically, circumscrip-
tion is defined as sentences that are true in all P-minimal
models of A. Given two models M and N of A with the
same domain and the same interpretations of object and
function constants, M <p N if the extension of P, in M
15 a subset of the extenston of P, in NV for all P; in P. A
P-minimal model of A i1s then a model M of A minimal
with respect to the relation <p.

As we mentioned earlier, circumscription itself seems
to correspond to a special case of default reason-
ing, namely, the default reasoning with defaults
~P(z)/~P(z).” Let B, be a circumscriptive extension
of (A, D) where D = {: =Pi(z)/-F.(x)|F € P}. Obvi-
ously, B,, satisfies the following equation:

Cn(B,)=

Cn{AA /\P,EPVIEP:'E(BI:(P:‘: :) A pi(x)) - —Fi(z)])

Lemma 4.1 Models of B,, are P-mintmal models of A,

Lemmna 4.2 If M 1s ¢ P-munimal moedel of A, then M
salisfics some B,,.

Theorem 4.1 A first-order formula @ 15 true mn all P-
mimmal models of A Al 1t follows from all By

Proof The theorem follows directly from lemnmas 4.]
and 4.2, O

Since the first-order sentences that follow from circum-
scription are true in all P-minimal models of A, circum-
scription corresponds to the sentences that follow from
all circumscriptive extensions of (A, {: -PXx)f-P(x)}).
This reflects the different attitude between default logic
and circumscription towards nonmonotonic reasoning,
as pointed out by [Eth87]. Default logic is a "brave"
reasoner while circumscription is "cautious". In defin-
Ing circumscriptive extension, we follow the "brave" ap-
proach of default logic. To be "cautious™", one can always
just believe the sentences that follow from all circum-
scriptive extensions.

In addition, in a more general definition of circum-
scription, some of the predicates are considered as vari-
ables and the others are fixed. While in translating de-
fault theory to circumscriptive extension, however, all
the predicates are considered as variables. As has been
proven in [DeK89], fixed predicates are not essential in
circumscription. In other words, fixed predicates can be
eliminated by circumscribing a slightly different set of
axioms A, while allowing all predicates to vary. Because
of this, the above results can be extended to circumscrip-
tion with fixed variables,

5 Circumscriptive Extension and
Default Logic Extension

In this section, we establish a relation between circum-
scriptive extension with default logic extension. First,

we review the definition of an extension of a default the-
ory.

Given a closed default theory (A, /7), Reiter[ReiB0] de-
fines an extension of (A, D) as a fixed point of an oper-
ator I'. For any set of wifls S, I'(S) 1s the smallest set
such that: 1) it contains 4, 2) it is closed under logical
consequence, and 3) it contains v whenever a : B/y € D
and o € T(5) and =3 ¢ S. An extension of an open
default theory is defined as an extension of a closed de-
fault theory (A, CLOSED(I}), where CLOSED(D) is
a set of closed defaults resulting from instantiating each
open default in 7 by ground terms constructible from all
the object constants, function constants and the Skolem
functions of the Skolemized form of the default theory.

It 1s obvious that, in default logic, the domain clo-
sure assumption (DC A} s implicitly made. The domain
closure assumption essentially assumes that the domain
contains only those individuals which are explicitly re-
ferred to 1n the theory. In circumscriptive extension,
however, we do not make this assumption, and therefore,
we can make conjectures about individuals in “open do-
main.” For mstance, the extension of the default theory
for the example 118 C'n(A). No conjecture is made about
individuals without names; whereas in circumscriptive
extension, we have Vx(z # a Ax # b — -P(z)). How-
ever, comparison between circumscriptive extension and
default theory extension can be made under DCA.

The other difference concerns equality. In default
logic, one can make conjectures about equalities, For ex-
ample, an extension of a default theory (¢, {: o £ bfa #
b}) contains a # b. Biherington [Eth88] pointed out that
circumseription has difficulty in deriving such a conjec
ture. The same 1s true for circumseriptive extension. In
the above example, one needs to maximize inequality.
However, {25(M) gives us the union of extensions of 3
in different structures with the same umverse and deno-
tation functions., This will not enable us to pick up the
structures which interpret @ and & differently. Therefore,
we add the unique-names assumption (I/ N A) explicitly,
in order to compare default. logic extension and circumr
scriptive extension. /N .4 says that each individual 1
the universe has a unique name.

One can express D4 and UN A i first-order logic f
the language of default theory has a fimte number of ob-
ject constants and 1s function-free. In fact, 1)C°A can be
expressed by the first-order sentence Vr{r = ¢, V..Vzr =
¢ ), where ¢;'s are the set ol all object constants i the
language, and /N A can be expressed by the conjunc-
tion of ¢; # ¢; for each panr of distinct object constants
in the language.

As dis:ussed in the previcus section, I circumnscrip-
tive extension, a second-order formmnla is used to replace
the consistency test in the definition of extension in de-
fault logic. The first published result directly relating
consistency test to first-order schema is in [Per88]. The
following lemmas make this relation more general. They
also establish the major link hetween circumscriptive ex-
tenston and default logic extension.

Lemma 5.1 Let T be a sentence. Lel (Q be a predicale
consiant in T, and let Z be a luple of all olher predicaie
constants tn T. If gz{T(q,z) Ag¢la)) 18 satisfiable, then
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T i ~Q(a).
Lemma 5.2 Lei T be a sentence such that T = DCAA

UNA. Let Q,Z be the same as in lemme 5.1. If T
=Q{a) then DCAAUNA | 3q2(T{q, 2) A q(a)).

Proof Suppose T £ -Q{a), then there exists a model
M of T such that M = Q(a). For if this i1s not true,
then for all model M of T, M E ~Q(a). This means
that T b= =@} a) which contradicts the hypothesis.

To show that DCAAUNA | 3q,2(T(q,2) A q(a)),
it suffices to show that for all the models M of DCA A
UNA, M E J¢,2(T(q,z) A g(a}). Let M be an arbi-
trary model of DCAAUNA. From above, there exists
a structure M' such that M’ | T A Q(a). In the fol-
lowing, we show that M’ 18 isomorphic to M* which 1s
a structure the same as M except for the interpretation
of all predicate constants in 7.

Let f and ¢ be functions which map all the ground
terms in T to |M| and [M’| respectively. Since T |=
DCAANUNA and since both M and M’ satisfy DCA A
UUNA, both J and g are bijections. Obviously f~} exisis
and is a bijection too. Let A = go f~!. Since both ¢
and f~! are bijections, k is a bijection from M to M".
Let M* be a structure, the same as M, except that it
interprets the predicate symbols in the following way.
For n-place predicate symbol @Q, and for each n-tuple
< ay, ...,y > of elements of [M*|,

< ay,y...,an >€ MIQEIf < h(ay),..., hle,} > M'[Q]
Similarly, for each n-place predicate symbol P in Z,
< ay,..an >EMIPYIf < hiay),..., kia,) > M'[F]

Smce M* has the same domain and mterpretation of
all the constant symbols as M, for all z, h(M"*[¢l) =
M'lc;]. Clearly, h is an isomorphism from M* onto
M’ Hence, M’ and M" are 1somorphic. Therefore, they
are elementarily equivalent and since M’ | T A Q{a),
M*"ETAQ(a). Let X = M*[Qland Y = M*LZ],
then M[X/Q,Y/Z)=M*= M. Smce M[X/Q,Y/Z]
T(Q,ZYANQ(a), M | 3¢2(T(q,2) A g(a)). Since M is
an arbitrary model of DUAANUNA, DUAAUNA E
3¢2(T(q,z) Ag{a)). O

To establish the relation between circumscriptive ex-
tension and extension as defined in default logic, we also
need the following lemmas.

Lemma 5.3 Let T be a senlence. Let P be a predicate
constani m T, and let 7 be a tuple of all other predicate
constants in T. If T |= P(a) then Vpz(T(p, z) — p{a)).

Lemma 5.4 Let T be a sentence such thatT |= DCAA
UNA. Let P,Z be the same as in lemma 5.3. if there
1 a struclure M such that M = DCAAUNA, and

M = Vpz(T(p, 2) - p(a}), thern T | P(a).

Proof Similar to the proof of lemma 5.2. O

Now, we are able to present the theorem which shows
that circumscriptive extension and default theory exten-
sion are equivalent under DC' A and I/ N A.

Theorem 5.1 Giwen a default theory (A, D) where A =
DCANUNA. A fintlely aziomatizable theory E is an
extension of (A, CLOSED(D)) ff E = Cn(B) and B is
a circumscnplive exlension of (A, D).
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The theorem demonstrates that circumscriptive exten-
sion essentially has the same expressive power as exten-
sion except for UNA. Specifically, circumscriptive ex-
tension can handle non-normal defaults. Moreover, it
can also make conjectures about individuals in open do-
main.

6 Applications

Example 4 (Yale Shooting Problem)
This is a well known problem suggested by Hanks and

McDermott [HaM87] to demonstrate that nonmonotonic
logics have difficulty in reasoning about a class of prob-
lems including the frame problem. It essentially shows
that for this problem, two extensions could be derived
using either default jogic or circumscription. While one
extension corresponds to intuition, the other is counter-

intuitive. Morris [Mor88]presented a simple solution to
the problem. He used standard default logic. The only
difference between his and Hanks and McDermotl’s for-
mulations is that Morris used non-normal default to rep-

resent frame axiom. Gelfond [Gel88] also showed that
the Yale shooting problem could be solved by autoepis-
temic logic using a formulation sirmular to that of Morris.
Below, we show a solution to this problem by finding
Lhe circumscriptive extension for a default theory under
Morris’ formulation. Axioms A 18 a conjunction of YN A
and the followings:

t{(ALIVE, So) (1
Vs(t{LOADED result{LOAD, 3))) (2
Vs(t(LOADED, s) — ab(ALIV E, SHOOT, s)) (3
Va(t{LOADED, s) = {DEAD result(SHOOT,s))) (4

Also, there 15 a set of actions:

LY

)
)
)
)

S5, = result(LOAD,Sy) (5)
S5: = result(WAIT, 5,) (6)
S = TESH“(SHOOT, S32) (7)

We have one default for the frame axiom:

t(f,s) : —ab{f,e, a}/t{f, result(e, s}) (8)
For this default theory (A, 7}, there 1s a unique ¢ircum-
scriptive extension.
AAV e sl (f=ALIVEA(s=S Va=SVa=5))V
(f = LOADED A s £ So)v
(f: DEADA(S ?’-‘So AJ#SJ ha#S:))h
“(f=ALIVEAe=SHOOT A s # 5)j
— i f, result(s)))

Obviously, {DEAD, 53) is in the circumscriptive ex-
tension. Notice that inconsistency will arise for both this
and the next examples, when introspective circumscrip-
tion and autocircumscription are applied.

Example 5 (Nixon Diamond)

This is another well known example originally sug-
gested by Reiter to demonstrate the situation of mul-
tiple extensions. Using non-normal defaults, 1t can be
formulated as follows:

Quaker(nizon) A Republican(nizon) (9)
quaker # republican (10)
Quaker(z) : ~ab(z, quaker, paci fist)/
Pacifisi(z) (11)
Republican{r) : ~ab(z, republican,pacsfist)/
~Pacifist(z) (12)

Quaker(z) : ~ab{z,quaker, pactfist)/

ab(z, republican, paci fist) (13}
Republican(z) : ~ab(z, republican, paci fist)/
ab(z, quaker, pacs f1sl) (14)



where A is a conjunction of (9) and (10), and D contains
(11) to (14).

There are two circumscriptive extensions for this de-
fault theory.

B, = AAVz(z =nzon — (Pacifist(z) A
ab(z, republican, pacifist)))
B, = AAVz(z =nizon — (~Pacifist{z)A

ab(z, guaker, pacifist)))

/ Conclusion

In this paper, we constructed a "default logic" in the
spirit of circumscription. We showed that it is indeed an
extension of circumscription and it has the expressive
power of default logic. These lead us to conclude that:
\. Default logic can be expressed by classical logic with
a fixed point operator. Certain syntactic structures in
consistency-hased logics such as modal operator, non-
language expressions like defaults, and consistency test
are not essential. Fixed point construction, however, is
necessary. 2. The method of circumscription provides
some flexibility in reasoning about "open domain". 3.
Our extension of circumscription still cannot conjecture
the unique-names assumption”.
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