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A b s t r a c t 

Most work in visual recognition by computer 
has focused on recognizing objects by their ge­
ometric shape, or by the presence or absence of 
some prespecified collection of locally measur­
able attributes (e.g., spectral reflectance, tex-
ture, or distinguished markings). On the other 
hand, most entities in the natural world defy 
compact description of their shapes, and have 
no characteristic features with discriminatory 
power. As a result, image-understanding re­
search has achieved l itt le success toward recog­
nition in natural scenes. We offer a funda-
mentally new approach t.o visual recognition 
that avoids these limitations and has been used 
to recognize trees, bushes, grass, and trails in 
ground-level scenes of a natural environment. 

1 I n t r o d u c t i o n 

The key scientific question addressed by our research 
has been the design of a computer vision system that, 
can approach human level performance in the interpre­
tation of natural scenes such as that shown in Fig­
ure 1. We offer a. new paradigm for the design of 
computer vision systems that holds promise for achiev­
ing near-human competence, and report the experimen­
tal results of a system implementing that theory which 
demonstrates its recognition abilities in a natural do­
main of l imited geographic extent,. The purpose of this 
paper is t.o review the key ideas underlying our ap­
proach (discussed in detail in previous publications [12, 
13]) and to focus on the results of an ongoing experi­
mental evaluation of these ideas as embodied in an im­
plemented system called Condor. 

When examining the reasons why the tradit ional ap­
proaches to computer vision fail in the interpretation of 
ground-level scenes of the natural world, four fundamen­
tal problems become apparent: 

Un ive rsa l p a r t i t i o n i n g — Most scene-understanding 
systems begin with the segmentation of an image 
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Figure 1: A natural outdoor scene of the experimenta­
tion site. 

into homogeneous regions using a single partit ion 
ing algorithm applied to the entire image. If that 
part i t ioning is wrong, then the interpretation must 
also be wrong, no matter how a system assigns se­
mantic labels to those regions. Unfortunately, uni­
versal part i t ioning algorithms are notoriously poor 
delineators of natural objects in ground-level scenes. 

Shape — Many man-made artifacts can be recognized 
by matching a 3D geometric model with features 
extracted from an image [ l , 2, 4, 6, 7, 9, 15], but 
most natural objects cannot be so recognized. Nat 
ural objects are assigned names on the basis of their 
setting, appearance, and context, rather than their 
possession of any particular shape. 

C o m p u t a t i o n a l c o m p l e x i t y The object recogni­
tion problem is NP-hard [16]. As a result, computa­
tion time must increase exponentially as additional 
classes are added to the recognition vocabulary, un­
less a strategy to avoid the combinatoric behavior is 
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Figure 2: Conceptual architecture of Condor. 

incorporated. Such provisions are a necessary com-
ponent of any recognition system that can be scaled 
to embrace a real domain. 

C o n t e x t u a l knowledge — Despite general 
agreement that recognition is an intelligent process 
requiring the application of stored knowledge [3, 5, 
14], computer vision researchers typically use artifi­
cial intelligence techniques only at the highest levels 
of reasoning. The design of an approach that, allows 
stored knowledge to control the lower levels of image 
processing has proved elusive. 

Except for the continuing work at the University of 
Massachusetts [3], the understanding of natural scenes 
has received surprisingly l i t t le attention in the last 
decade. 

2 Approach 
A new paradigm for computer vision systems has been 
developed, which addresses all four of the problems de­
scribed above. The key provision of this novel approach 
is a mechanism for the application of stored knowledge 
at all levels of visual processing. A context set, wliich 
explicitly specifies the conditions and assumptions nec­
essary for successful invocation, is associated with every 
procedure employed by the recognition system. 

The architecture is organized into three modules as de­
picted in Figure 2 and described below (a more complete 
description is also available [13]): 

Cand ida te Gene ra t i on — 
Hypotheses concerning the presence in a scene of 
specific categories of objects are generated by de­
lineating regions in an image using special-purpose 
operators whose invocation is controlled by context 
sets, thereby avoiding the need for universal part i­
tioning algorithms. The employment of large num­
bers of operators ensures that quality hypotheses 
can be generated in nearly every context and pro-
vides redundancy that decreases the reliance on the 

success of any individual operator. 

Cand ida te C o m p a r i s o n — Hypotheses are accepted 
only if they are consistent with all other members of 
a clique (consistent subset). Candidate hypotheses 
for each label are ranked so that the best candidates 
for each label can be considered before the oth­
ers. Ranking the candidates ensures that, the largest 
cliques can be found early in the search, thereby 
l imit ing the computational complexity of the entire 
paradigm to a linear growth as the recognition vo­
cabulary is expanded. By constructing only a small 
number of cliques for each image, the approach loses 
any guarantee of finding the largest clique, but as­
sures the availability of a credible answer compatible 
with the computational resources of the system. 

C l ique F o r m a t i o n — Consistency is enforced by pro­
cedures (controlled by context sets) that detect 
and reject physically impossible combinations of hy­
potheses. The clique that most completely explains 
the available data is offered as the interpretation of 
an image. Thus, individual objects are labeled on 
the basis of their role in the context, of the complete 
clique, rather than solely on the basis of individual 
merit. 

The invocation of all processing elements throughout 
the system is governed by context. All processing ac-
tions are controlled by context sets, and are invoked 
only when their context sets are satisfied. Thus, the 
actual sequence of computations (and the labeling deci­
sions that are made) are influenced by contextual infor­
mation, which is represented by prior knowledge about 
the environment and by the computational state of the 
system. 

D e f i n i t i o n : A context set, C'Sk, is a collection of con­
text, elements that are sufficient for inferring some 
relation or carrying out some operation on an image. 

Syntactically, a context set is embedded in a context rule 
denoted by 

where L is the name of the class associated with the 
context set, A is an action to be performed, and the C\ 
comprise a set of conditions that define a context. 

Examp le : The context rule 

SKY : {SKY IS-CLEAR, CAMERA IS-HORIZONTAL 
RGB-IS-AVAILABLF } => BLUE-REGIONS 

defines a set of conditions under which it is appropri­
ate to use the operator BLUE-REG IONS to delineate 
candidate sky hypotheses. 

There is a collection of context rules for every class 
in the recognition vocabulary, and each collection con-
tains rules of three types: candidate generation, candi­
date comparison, and consistency determination. In the­
ory, Condor performs the actions A that are associated 
with every satisfied context, set. 
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Figure 3: Result, of analyzing Figure 1. 

3 The recogni t ion process 

For each label in the active recognition vocabulary, all 
candidate-generation context sets are evaluated. The 
operators associated with those that are satisfied are 
executed, producing candidates for each class. The 
candidate-comparison context sets that are satisfied are 
then used to evaluate each candidate for a class, and if 
all such evaluators prefer one candidate over another, a 
preference ordering is established between them. These 
preference relations are assembled to form part.ial or­
ders over the candidates, one partial order for each class. 
Next, a search for mutually coherent, sets of candidates is 
conducted by incrementally building cliques of consistent 
candidates, beginning with empty cliques. A candidate 
is nominated for inclusion into a clique by choosing one 
of the candidates at the top of one of the partial orders. 
Consistency-determination context sets that are satisfied 
are used to test the consistency of a nominee with can 
didat.es already in the clique. A consistent nominee is 
added to the clique; an inconsistent one is removed from 
further consideration with that clique. Further candi­
dates are added to the clique until none remain. Addi-
tional cliques are generated in a similar fashion as com­
putational resources permit. Ultimately, one clique is 
selected as the best semantic labeling of the image on 
the basis of the portion of the image that is explained 
and the reliability of the operators that contributed to 
the clique. 

The interaction among context sets is significant. 'The 
addition of a candidate to a clique may provide context 
that could trigger a previously unsatisfied context set 
to generate new candidates or establish new preference 
orderings. For example, once one bush has been recog-
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Figure 4: A perspective view of the 3D model produced 
from the analysis of the image shown in Figure 1. 

nized, it. is a good idea to look specifically for similar 
bushes in the image. This tactic is implemented by a 
candidate-generation context set that includes a context 
element that, is satisfied only when a bush is in a clique. 

4 Eva luat ion scenario 

The approach has been implemented in the form of a 
complete end-to-end vision system, known as Condor. 
Images that are monochromatic or color, monocular or 
stereo, provide the input to the system, along with a 
terrain database containing prior knowledge about the 
environment. Condor produces a 3D model of the envi­
ronment labeled with terms from its recognition vocab­
ulary which is stored in the Core Knowledge Structure 
(CKS) [10, 11] and can be superimposed on the input, im­
age (Figure 3) or viewed from another perspective (Fig­
ure 4). The model is used to update the terrain database 
for use by Condor during the analysis of subsequent im-
agery. 

To evaluate the Condor approach, we selected a two-
square-mile region of foothills immediately south of the 
Stanford University campus as our site for experimen-
tation. This area contains a mixture of oak forest and 
widely scattered oak trees distributed across an expanse 
of gently roll ing, grass-covered hills and is criss-crossed 
by a network of trails. 

We chose 14 classes for the recognition vocabulary on 
the basis of their prevalence in the experimentation site 
and their importance for navigation. These terms are: 

{sky, ground, geometric-horizon, foliage, bush, 
tree-trunk, tree-crown, t ra i l , skyline, raised-object, 

complete-sky, complete-ground, grass, tree} 
Procedures have been devised to extract, evaluate, and 

check the consistency of candidates for each of these 
classes. Context sets have been constructed to control 
the invocation of each of those procedures. Currently 
the knowledge base contains 88 procedures whose invo­
cation is governed by 156 context sets. Al l the results 
described in this paper have been generated using this 
knowledge base. 



Figure 8: The composite model resulting from the anal 
ysis of the image sequence in Figure 7. 

them. No trunk was detectable in the foliage to the 
left of the image, so Condor labeled it as bush. 

I m a g e 6 — The texture in the lower corners of the 
sixth image was found to more closely resemble 
foliage than grass, so these regions were erroneously 
identified as bushes. Beause they are very near the 
camera, they occupy a significant part, of the image, 
but the 3D model created for them reveals that they 
are less than 2 feet. tal l . 

Image 7 — Several more trees, grass areas, and part 
of the trai l are recognized in the seventh image. 

Image 8 The primary tree is recognized despite the 
strong shadows, but the lower portion of the trunk 
was missed by all the trunk operators. Most, of the 
tree crown operators were unable to provide a de­
cent candidate because of the overhanging branches 
in the upper-right, corner -■ the only operator that 
succeeded was the one that predicts the crown based 
on the size and location of the trunk. The combined 
effects of the incomplete trunk, the nearness of the 
tree, and the lack of range data account for poor 
extraction of the tree crown. 

This experiment, illustrates how Condor is able to use 
the results of analyzing one image to assist the analy 
sis of other images. Although some trees and parts of 
the trai l were missed in several images, the 3D model 
that results is nearly complete. Figure 8 shows an aerial 
view of the composite model contained in the CKS after 
processing all eight, images. For comparison, Figure 9 
portrays a model of the objects actually present on the 
ground, which was constructed by physically measuring 
the locations and sizes of the individual objects. Note 
that all of the trees that were visible in at least one image 
have been correctly labeled, although some of them were 
misplaced. Most of the trail has been detected, enough 
to allow a spatial reasoning process to link the portions 

Figure 9: The ground-truth database. 

into a single continuous trai l . Furthermore, everything 
that was labeled tree actually is a tree. 

5.3 Experiment 3 

Regardless of the architecture, know ledge-based vision 
systems are difficult, to build. If the programmer needed 
to specify in advance all the information necessary 
for successful recognition, his task would be hopeless. 
Therefore, it is essential that a vision system have the 
ability to improve its competence autonomously, thereby 
learning through experience how to recognize the objects 
in its environment.. 

Assertion 3 Using context allows Condor to learn how 
to recognize natural objects, 

To test the validity of this assertion, we return to the 
first image of the sequence used in Experiment 2 (Fig­
ure 7). When originally analyzed, Condor recognized the 
trail and part of the grass, but not the trees. 

Condor was tasked to reanalyze the first image, this 
time making use of the contents of the entire database 
constructed during the analysis of the sequence of eight 
images. The resulting interpretation is depicted in Fig­
ure 10. 

Two trees that could not be extracted on the first pass 
are now identified. Condor employed a tree-trunk opera­
tor whose context, set. requires knowledge of the approxi­
mate location of a tree in the field of view. The operator 
projects a deformable 3D model of the trunk onto the 
image, and optimizes its fit to extract, the trunk. This 
operator successfully identified two of the trees without 
contradicting any of the original recognition results. 

This experiment (along with others not. described 
here) illustrates that the ability to use prior recognition 
results as context while interpreting subsequent images 
enables Condor to improve its performance as its expo­
sure to its environment increases. 
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Figure 10: T h e results o f ana lyz ing the f i rs t image f r o m 
Figure 7 w i t h and w i t h o u t the i n f o r m a t i o n ext rac ted 
f r o m subsequent images. 

6 Conclusion 
In i ts present e m b o d i m e n t , Condor is s t i l l a demonst ra­
t i on system tha t should be evaluated p r i m a r i l y in terms 
of i ts a rch i tec tura l design and innovat ive mechanisms, 
rat t ier than i ts absolute per formance. W l i i l e Condor has 
demonst ra ted a recogn i t ion ab i l i t y approach ing human-
level per formance on some na tu ra l scenes, it is s t i l l per­
f o r m i n g at a level considerably short of its u l t i m a t e po­
ten t ia l (even for the S tan fo rd exper imen ta t i on s i te) . T h e 
knowledge acqu is i t ion mechanisms, wh ich are a key as­
pect of the arch i tec ture , should a l low cont inued improve­
ment in per formance w i t h exposure to add i t i ona l site 
imagery. 

A new pa rad igm for image unders tand ing has been 
proposed, and used to recognize na tu ra l features in 
ground- level scenes of a geographica l ly l im i t ed env i ron­
ment . T h i s context based approach is exc i t ing because 
i t deemphasizes the role of image p a r t i t i o n i n g and em-
phasizes the recogni t ion contex t in a way t h a t has not 
been a t t emp ted before. T h i s new focus could lead to 
the const ruc t ion of v is ion systems tha t are s ign i f icant ly 
more capable than those avai lable today. 
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Figure 0: T h e locat ion and or ien ta t ion of the camera 
when each image in Figure 7 was acquired. 

analysis are por t rayed in F igure 7. Here we highlight, 
a few of the more in terest ing chains of reasoning and 
exp la in the mis ident i f icat ions that, were made: 

I m a g e 1 C 'ondor has correct ly labeled the sky, the 
g r o u n d , the t r a i l , and part, of the grass, a l though 
the trees on the hor izon were too ind is t inc t to be 
re l iab ly ident i f ied. These results are t ransformed 
in to three-d imensional models and posi t ioned in 3-
space using depth da ta acquired f r om binocular 
stereo.1 T h e resu l t ing models were added to the 

KS database to be used as context for the analysis 
of subsequent images. 

I m a g e 2 — T h e mode l of the t ra i l f rom the first im­
age was projected in to the second image and used 
to help ident i fy a po r t i on of the t r a i l . Th is is ac­
compl ished by an operator that, superimposes a pair 
of para l le l 3D curves and deforms them to f ind the 
model w i t h m a x i m u m edge s t rength whi le m in im iz -
ing its curva ture (as in [8]). Stat is t ics f rom the in ­
tensi ty and text ure of the grass in the first image 
were used to help ident i fy the grass in this second 
image. Jn th is case, the t ra i l - f i nd ing operators fai led 
to f ind the upper ha l f of the t r a i l ; as a result, the 
grass hypotheses in that area were not contradicted. 

I m a g e 3 T h e tree is f ina l ly close enough to al low re-
l iable recogni t ion and a 3D model for i t is computed 
by ex t rac t i ng the envelope of its fol iage. The entire 
v is ib le po r t i on of the t ra i l was correct ly ident i f ied. 

I m a g e 4 — T w o add i t i ona l trees are recognized and 
s tored. 

I m a g e 5 T h e same trees are recognized by predict­
i ng thei r locat ion and ver i f y ing thei r existence a 
much more rel iable process than i n i t i a l l y ex t rac t ing 

1 When range data are not available, Condor estimates the 
depths by projecting each region onto the DEM. 

Figure 7: Results of Condor 's analysis of the sequence  
of eight images. 
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Init ial contextual information was extracted from a 
USGS map and an aerial photograph; this includes a 
30-meter-grid digital elevation model (DEM), the road 
network, and the location of forested regions as shown 
on the map. The aerial photo, being more recent, was 
used to update the map information. These data were 
extracted by hand and stored in the Core Knowledge 
Structure. 

5 Exper imen ta t i on 
The research results presented here are indicative of the 
performance of Condor when analyzing scenes from the 
Stanford experimentation site. By themselves, these re-
sults do l i t t le to endorse the Condor approach, but to 
gether wi th similar results that have been obtained with 
several dozens of other images, they attest to the validity 
of the ideas contained therein. 

5.1 E x p e r i m e n t 1 
One shortcoming of many machine vision systems is their 
brittleness when analyzing scenes that exhibit significant 
variance in the setting or appearance of their compo­
nents. Our design has focused on this problem because 
natural scenes possess great variability in their appear­
ance. How well we have achieved this goal can be par­
t ial ly assessed by testing the following claim: 

Asse r t i on 1 The Condor architecture is suitable for 
recognizing natural objects in many contexts. 

In this experiment, Condor analyzed images taken un­
der a variety of conditions at. the Stanford experimenta-
tion site. These images were selected to study how Con­
dor deals with changes in scale, view angle, time of day, 
season, cloud cover, and other ordinary changes that oc­
cur over the course of several years. Here we present a 
sample of those images that illustrates the breadth of 
competence exhibited by Condor. 

Figure 5 shows four images of the same tree obtained 
with the specified image acquisition parameters. In all 
four of these images, Condor successfully identified the 
tree without the benefit of any prior information. In 
three of the images, the trunk was identified by a spe­
cialized operator designed to detect thin, dark, vertical 
lines. In the fourth image, one of Condor's wide-trunk 
detection algorithms (a variant of a correlation-based 
road-tracking algorithm) wa.s responsible for generating 
the correct trunk. Given that context, Condor used sev­
eral of its texture measures to help identify the foliage 
and assembled the results into 3D models to confirm the 
existence of the tree. These results are indicative of Con-
dor's abilities to recognize a tree from any view angle, to 
accommodate a 7:1 range in scale, to be immune from 
changes that occurred over a period of 21 months, and 
to deal with seasonal variation. When Condor has prior 
knowledge of the existence of this tree, it can be rec­
ognized from a distance of at least 590 feet (as demon-
strated in Experiment 3), thereby extending its abilities 
to a 20:1 range in scale. 

Experiments applying Condor to other images (not re­
produced here) confirm the viability of the approach for 
recognizing natural objects in a wide variety of settings 

range: 1 94 feet 28 feet 
view angle: 160° 124° 

date: 12 Apri l 1990 28 July 1988 
range: 56 feet 87 feet 

view angle: 208° 258° 
date: 12 Apri l 1990 12 Apri l 1990 

Eigure 5: The models of the trees as they were recognized 
by Condor. 

that occur at the experimentation site. The modular­
ity of the context sets makes it possible to expand the 
breadth of competence sti l l further without degrading 
previously demonstrated capabilities. 

5.2 E x p e r i m e n t 2 

To support autonomy in an intelligent, ground-based ve­
hicle, it is necessary to synthesize a reasonably complete 
description of the entire surroundings, and not just rec­
ognize a few isolated objects. This description can be 
built incrementally because the world does not change 
very rapidly considering the spatial and temporal scales 
at which an autonomous ground vehicle would operate. 
The following assertion summarizes this notion: 

Asse r t i on 2 A geographic database of an extended re-
gion can be constructed by combining the recognition re-
sults from multiple images, taken over an extended period 
of time and under multiple viewing conditions. 

To validate this assertion, a sequence of imagery was 
collected which simulates the movement of a vehicle 
through a portion of the Stanford experimentation site. 
The vision system is to construct a labeled, 3D map of 
the primary features in the vicinity of the simulated ve­
hicle by analyzing each image in turn. 

Eigure 6 shows the location of the vehicle when each 
image in the sequence was acquired. Condor was tasked 
to locate the trees, bushes, trails, and grass in each of 
these images, beginning with only the information ex­
tracted from the USGS map. The results of Condor's 

1270 Vision 


