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Abst rac t 
Many representations in early vision can be 
constructed by performing orientation analy­
sis along several sampling dimensions. Texture 
is often oriented in space, motion is oriented 
in space-time, and stereo is oriented in space-
disparity. In these modalities, we can construct 
distributed representations with oriented en­
ergy measures used in models of biological vi­
sion. Surface models of orientation, velocity, 
and disparity can easily be fit to distributed 
representations of texture, motion, and stereo 
by combining tools of orientation analysis and 
regularization. We describe base representa­
tion construction and model fitting processes 
in these domains. 

1 D i s t r i bu ted Representations 
Conventional approaches to early vision have focussed 
on recovering explicit models of local structure and sub­
sequently fitting models to local structure. When the 
assumptions made in modeling local structure hold, the 
local structure is successfully recovered. When model 
assumptions are violated, however, local structure is in­
correctly recovered in unstructured ways. For example, 
conventional motion estimation algorithms assume that 
there is a single motion, that the intensity is constant 
in space time, and that the flow field is smooth. These 
assumptions are violated, for example, at motion bound­
aries. At motion boundaries, two motions are present, 
intensity is not conserved, and the flow field is discontin­
uous. Consequently, conventional approaches of recover­
ing flow fields fail at occlusion boundaries. Various tech­
niques have been proposed to counter these assumptions: 
regularizing with line processes [Poggio et a/., 1985], gen­
eralizing local models [Shizawa and Mase, 1991], using 
global parametric models [Bergen et al., 1992], and using 
robust estimation [Black and Anandan, 1993]. 

Alternatively, we can use distributed representations 
of vision, where a population of responses implicitly 
represents local structure. This strategy is used in vi­
sual cortex, where neurons do not represent parame­
ters explicitly, but instead are tuned to stimulus pa­
rameters of spatiotemporal frequency, horizontal dis­
parity, velocity, global motion patterns, and so forth. 

Several have produced models of tuning properties of 
cells in the visual cortex, in parallel to conventional ap­
proaches of modeling and recovering local structure in 
computer vision: spatially oriented filters model orienta­
tion selectivity of simple cells [Bergen and Landy, 1991]; 
spatiotemporally oriented filters model directional se­
lectivity [Adelson and Bergen, 1985]; stereo spatial fil­
ters out of phase model disparity tuning [Qian, 1994; 
Sanger, 1988]; and combining the outputs spatiotempo­
rally oriented filters models velocity tuning [Grzywacz 
and Yuille, 1990; Heeger, 1987; Simoncelli, 1993]. 

The construction of distributed representations in dif­
ferent modalities becomes remarkably similar once ob­
serving that most local structure in visual stimuli is ori­
ented along several sampling dimensions [Adelson and 
Bergen, 1991]: 

• Space. Spatial textures and edges are oriented in 
space, where x = (x,y). 

• Space-time. Motion is orientation in space-time, 
where x = (x:,t) or x = (x,y,t) in one and two di­
mensional motion (see [Adelson and Bergen, 1985]). 

• Space-disparity. Stereo is orientation in space-
disparity, where x = (x,Vx) or x = (z,y, Vx) for 
one and two-dimensional stereo analysis. Typically, 
two samples of Vx form a stereo pair. 

Figure 1 illustrates oriented structures in each of these 
dimensions. In the above modalities, constructing dis­
tributed representations of orientation is possible by 
filtering a stimulus /(x) with multiple oriented filters 
tuned to different orientations in space, space-time, or 
space-disparity. Each spatiotemporally oriented filter 
signals the presence of a given orientation; by having 
banks of oriented filters tuned to different orientations, 
a population of responses can be obtained to represent 
local structure. Figure 2(a,b) shows an {x,t) stimulus 
with occluding and transparent motions, and a slice of 
the base representation Ea(x,t, 6) we can construct from 
the stimulus using oriented filters. Where there is trans­
parency, a bimodal distribution of energy is present at 
each point x, and where there is occlusion, a bimodal dis­
tribution of energy is present to both sides of x. While it 
is unclear how properties such as color and shading could 
be encoded in distributed representations, we can take a 
unified approach for the domains of texture, motion and 
stereo. 
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Rather than fitting models to explicit representations 
of orientation, such as range data or optical flow, we 
fit models to implicit, distributed representations of vi­
sion. Distributed representations are advantageous be­
cause they: (1) represent complex naturally occurring 
stimuli, such as transparency and occlusion; (2) repre­
sent uncertainty implicitly; (3) degrade gracefully with 
noise; (4) do not commit to an (often wrong) answer, 
unlike explicit representations; (5) are also used in bio­
logical visual systems. 

The problem remains, however, of how to utilize 
distributed representations of vision to recover infor­
mation about global surfaces. Most of the past ap­
proaches used distributed representations to estimate 
local structure, in the domains of texture [Kass and 
Witkin, 1987], stereo [Sanger, 1988; Qian, 1994] and mo­
tion [Fleet and Jepson, 1990; Grzywacz and Yuille, 1990; 
Heeger, 1987]. In regions containing little or no texture, 
filter responses are negligible, so approaches which at­
tempt to use distributed representations to estimate lo­
cal structure will fail. Thus the surface interpolation 
problem remains. 

The surface interpolation problem in explicit repre­
sentations is typically solved by taking sparse represen­
tations of explicit local measurements, and smoothly in­
terpolating between them. Canonical approaches to sur­
face interpolation (e.g. [Terzopoulos, 1988]) use both 
a fidelity criteria, describing the fit of the surface to 
sparse measurements, and a smoothness criteria so as 
to constrain regions without measurements. Typically, 
weighted combinations of the square of the first and 
second derivatives of surfaces are used as a measure of 
smoothness. By combining tools of orientation analysis 
with simple modifications of standard regularization pro­
cesses, we show that it is straightforward to fit models 
to distributed representations. 

Rather than recovering explicit local structure, and 
then fitting surface models to local structure, we fit mod­
els to distributed representations of vision directly. The 
generic approach is contrasted with our approach in Fig­
ure 3(a,b). We describe base representation construction 
and our adaptation of regularization in the domains of 
space, space-time, and space-disparity, and demonstrate 
preliminary success on simple imagery. 

Figure 3: Architectures, (a) Standard computer vision 
approaches to fit models to explicit representations of 
local structure, which is prone to failure where explicit 
representations of local structure cannot be accurately 
recovered, (b) We advocate fitting models to distributed 
representations of local structure. 
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cal spatial orientation; for one-dimensional and two-
dimensional stereo, the orientation x is horizontal 
disparity; for one-dimensional motion, the orientation 

is horizontal motion; for two-dimensional mo­
tion, the orientation is a two dimensional 
vector. 

The model u(u,t) indexes into the base representa­
tion , so that a total "energy" of a surface can 
be obtained. We seek to fit a model where the popula­
tion response in the base representation across 
the surface is maximized, and where the magnitudes of 
the derivatives in the orientation surface are minimal, 
as in standard regularization processes (c.f. [Terzopou-
los, 1988]). Since multiple surfaces can be fit, no answer 
is correct; the only satisfactory answer will require the 
observer to shift attention between portions of the base 
representation. 

Models are fit over multiple scales by constructing 
a scale-space: 

where I represents a Gaussian convolution ker­
nel of width Scale-space is approximated with a 
Gaussian pyramid at discrete scales of An N-
dimensional interpolatable base distributed representa­
tion ,. is constructed from l0(x) through orien­
tation analysis. Steerable [Freeman and Adelson, 1991; 
Koenderink, 1992; Perona, 1992] filters allow for continu­
ous interpolation to any . The stimulus at a given scale 
is used to compute n steerable "basis images'1 via 
convolution with a set of basis filters gi,(x): 

where represents spatial orientation, spatiotemporal 
orientation, velocity, or disparity, depending on the sam-
pling dimensions being considered. We will describe the 
details of base representation construction in subsequent 
sections. 

Models can be fit these base representations by modi­
fying standard regularization procedures (c.f. [Terzopou-
los, 1988]) to use this base representation to dynamically 
estimate the state of a model u(u, t): 

where assumptions of smoothness in the nth order spa­
tial derivatives of orientation are embedded within the 
stiffness matrix K, and base representations 
are used to apply observation "forces" f(u,t) to the sur­
face by integrating forces through discrete summation 
over several scales: 

Here, H indexes the orientation surface component 
of the model ii(u,t). We can easily modify the 

above to introduce additional "forces" to shift attention 
from certain portions of base representation to others, 
as in the deformable contours [Kass et a/., 1987]. 

Thus we employ the following procedure to fit models 
u to stimuli J(x): 

1. Approximate scale-space through construc­
tion of a Gaussian pyramid of /(x). 

2. Over all scales sigma, construct base representation 
by convolving with n basis filtersg 

i(x) to compute , where i = 1 , . . . , n. 
3. Initialize model u. 
4. Continually subject model u to data forces f(u,t) 

derived from base representation 
Below we describe base representation construction, 

and methods to apply observation forces derived from 
base representations in the domains of texture, motion, 
and stereo. We illustrate model fitting processes on 
canonical examples in our preliminary experiments here. 

2.1 Two-dimensional space 
For two-dimensional spatial texture, x = (x, y), and 6 = 

where represents the local orientation of the texture. 
A single 2-d sheet model is superimposed on the data: 

Oriented energy [Bergen and Landy, 1991] measures are 

where the spatial stimulus at multiple scales 
is used to compute a set of steerable "basis" images 

Filters gi(x, y) form the steerable separable basis for the 
quadrature pair of filters i and , which 
are interpolated to any orientation with interpolation 
functions ; refer to [Freeman and Adelson, 199l] 
for filter taps and interpolation functions for all of our 
experiments; we use a second derivative of Gaussian as a 
basis in our examples except where noted. An example 
stimulus, basis images, and the base representation are 
shown in Figure 5. 

Forces are applied to the model via the gradient of 
integrated over all scales: 
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here H = [0I0II] indexes into the surface 6(x,y) compo­
nent of n(u,/). To avoid singularities due to the discon­
tinuous nature of angles, a vector n — [cos(0),sin(0)]T 

is used to represent the state of the model, and is contin­
uously normalized to one (n0\ — 1). We illustrate the 
analysis of oriented texture patterns containing simple 
deformations in texture orientation. Figure 6(a) shows 
one of several sample oriented patterns we have experi­
mented with. Figure 6(b) shows an orientation map re­
covered using our approach. With multiple orientations 
in the stimulus, either multiple models must be fit, or 
an attentional mechanism to shift the surface is neces­
sary. With detected orientation stopping (c.f. [Heitger, 
1992]), smoothing processes should be halted. 

2.2 One-dimensional space-time 
For one-dimensional space-time, x = (x,t) and 6 = vx, 
where vx represents local 1-d motion. A time-varying 
1-d sheet model is imposed on the data: 

For spatiotemporal stimuli /(x,t), motion is orientation 
in space-time [Adelson and Bergen, 1985]; the motion vx 
is related to the spatiotemporal orientation 6 via vx = 

Just as in (x, y), oriented energy measures are used for 
base representation construction in (x,t): 

Figure 8: One-dimensional motion, (a) Stimulus l(x,t) 
- a one-dimensional surface is moving to the right in front 
of a background moving to the left; (b) Spatiotemporal 
orientation recovered for the stimulus for a given instant 
in time. Leftward vs. rightward motion is successfully 
extracted. 

where are steerable basis images: 

An example stimulus, basis images, and its base repre­
sentation are shown in Figure 7. 

Forces f (u, t) are applied to the model via the gradient 
of i integrated over all scales: 

Here, H = [0|I] indexes into the surface vx(x,t) compo­
nent of the model u(u,/). Figure 8(a) shows a simple 
stimulus where one surface is moving rightward occlud­
ing a background moving leftward. Figure 8(b,c) shows 
the sheet model fit via our approach for the stimulus for 
a given instant in time. 

2.3 Two-dimensional space-time 

Now simple orientation analysis is inadequate; a two-
stage calculation is necessary [Heeger, 1987]. The first 
stage involves filtering an image sequence with spa-
tiotemporally oriented filters. The second stage pools 
the squared responses of these filters to construct units 
tuned to velocity. Stimuli translating with velocity 

, when viewed in the frequency domain, 
contain energy along the plane 
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We illustrate this approach on a simple example. Fig­
ure 11(a) shows an (x, y,t) cube representation of a sim­
ple stimulus where two moving surfaces occlude one an­
other over a static background. Figure 11(b) shows re­
covered velocity flow field for the stimulus; the motion is 
extracted for the rightward and leftward moving bar cor­
rectly, although oversmoothing is present at the bound­
aries as in conventional approaches. We have designed 
methods to detect motion boundaries defined by kinetic 
occlusion (c.f. [Niyogi, 1995a]) using distributed repre­
sentations of motion; detected motion boundaries should 
constrain smoothing processes. 

Figure 11: Two-dimensional motion. (a) Stimulus 
I(x, y,t) - two bars moving across the field of view move 
in front of a static background; (b) Recovered model 
(velocity flow field) for a particular instant in time. 

NIYOGI 7 



Figure 14: Two-dimensional stereo, (a) A stereo pair 
Ii(x,y) and Ir(x,y)\ observer is fixated on a plane with 
two bars in front of and behind this plane; (b) Recovered 
disparity between the left and right views. 

Now, gi(x,y, Vx) — 6(y) * gi(x,Vx) forms an approxi­
mation to G0(x) and H0(x), but only the center slice 
(Vx =. 0) of the basis is used to represent the space-
disparity orientation (x, Vx) at each point in space (x, y). 
An example stimulus, basis signals used to simulate the 
base representation, and a constructed base representa­
tion are shown in Figure 12. A slice at a given height y 
of the above signals is shown in Figure 13; fitting models 

to distributed representations of one-dimensional space-
disparity signals would operate on these signals. 

Forces f(u,v,t) are applied to the model via the gra­
dient of Ea(x,y,0) integrated over all scales a: 

Figure 14(a) shows a simple stimulus where the observer 
is fixated on a plane, with a bar on the left and right 
closer and further away from the observer than the plane. 
Figure 14(b) shows the sheet model fit for stimulus. 

3 Discussion 
In addition to sheet models, which are directly attached 
to image data, other models can be fit. Surface models, 
attached only to a portion of the visual field, would be 
required to recover the parameters of an object. We 
have not dealt with the problem of model initialization. 
To do so, we require a model of attention; extensions 
to surface models are straightforward once a model of 
attention is adopted (see, for example, [Olshausen ot a/., 
1993]). Models of controlling attention shifts between 
surfaces in these distributed spatial representations must 
be designed. 

Seeking enhanced base representations improves re­
sults greatly. For example, some degree of normalization 
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[Heeger, 1992] in the base representation may reduce 
the dependence on local contrast, although the conve­
nience of steerability is lost. Some operations, such as 
occlusion detection [Heitger, 1992; Niyogi, 1995a], may 
be based on the distributed representations and/or the 
surfaces fit to them; using these representations to con­
strain model-fitting processes is desired. Linking our 
model-fitting processes to solutions to surface segmenta­
tion mechanisms using distributed representations [Heit­
ger and von der Heydt, 1993; Finkel and Sajda, 1992] is 
clearly desirable. 

The majority of computer vision efforts in early vi­
sion have been directed towards estimating explicit rep­
resentations of local structure, and subsequently fitting 
models to these representations. These explicit repre­
sentations are prone to failure where model assumptions 
break down. Implicit representations do not have these 
problems. Problems in modeling local structure, object 
model recovery, handling occlusion, surface segregation, 
attention, etc. can and should be attempted using dis­
tributed representations of vision. A parallel effort using 
distributed representations of vision is likely to be more 
fruitful than relentlessly improving methods of recover­
ing explicit local structure. We have presented a first 
step at fitting models to distributed representations of 
vision here. 
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