
R e p r e s e n t a t i o n s f o r A c t i v e V i s i o n 

Cornel ia Fermi i l ler and Yiannis Alo imonos 
Computer Vision Laboratory 

("enter for Automation Research 
Department of Computer Science and Institute for Advanced Computer Studies 

University of Maryland 
College Park, MD 20742 

Abst rac t 

As the field of Computational Vision matures, 
more efforts are devoted to vision systems that 
are active and need to interact with their envi­
ronment in real time. A prerequisite for inte­
grating Vision and Action is the development 
of a set of representations of the visual system's 
space-time, where space includes the system it-
self. Thus we are faced with the problem of 
studying the nature of appropriate representa­
tions and also with the computational task of 
acquiring them in a robust manner and in real 
time. Both of these problems are addressed in 
this paper from a computational point of view. 
In particular, we study representations needed 
by active visual systems in order to understand 
their self-motion and the structure of their en­
vironment. 
The representations are of less metric informa­
tion content than the ones traditionally used, 
including depth, surface normals, curvature 
and 3-D metric values for the parameters of 
rigid motion, etc.; but they are rich enough 
to allow the system to perform a large number 
of actions. These representations, indexed in 
image coordinates, are the direction of transla­
tion and the direction of rotation for the case of 
motion and a monotonic function of the depth 
value in the case of shape description. Their 
advantage comes from the fact that they can 
be computed from minimal and well-defined in­
put (flow or disparity values along image gradi­
ents), as opposed to the traditional ones which 
require image correspondence or the utilization 
of assumptions about the environment. 

1 I n t roduc t i on : Act ive Vis ion Revis i ted 
If Computer Vision was once limited to the study of 
mappings of a given set of visual data into representa­
tions on a more abstract level, it now has become clear 
that Image Understanding should also include the pro­
cess of selective acquisition of data in space and time. 
This has led to a series of influential studies published 
under the headings of Active, Animate, Purposive, or 

Behavioral Vision. However, with a formal theory inte­
grating perception and action still lacking, most stud­
ies have treated Active Vision [Aloimonos et a/., 1988; 
Bajcsy, 1988; Ballard and Brown, 1992] as an extension 
of the classical reconstruction theory, employing activi­
ties only as a means to regularize the classical ill-posed 
inverse problems, in order to recover a metric represen­
tation of space-time which is general-purpose and can 
be used for accomplishing any task. In other words, the 
concept, of selective acquisition and processing of data 
in space-time was understood only through the manip­
ulation of the geometric and physical parameters of the 
sensory apparatus (focusing, fixation, self-motion, etc.). 

An important point was missed: that an intelligent 
vision system exists in space-time (where space-time in­
cludes the system itself) and in order for the system to 
function properly, i.e., to act appropriately in a variety 
of situations, it should be able to develop robust descrip­
tions of space-time. That is, it should be able to develop 
representations that would be adequate for accomplish­
ing a set of tasks. But, classical geometry modeling the 2 
1/2-D sketch has been inescapably with us all the time. 
Recovering the depth of surfaces in view or quantities 
that, are subject of Differential Geometry such as sur­
face normals and curvatures seems to have been about 
the only goal of 3-D Computer Vision in the past 35 
years. During the past few years, however, it has been 
repeatedly argued that this could be a misplaced goal, 
simply because it is too difficult to recover such com­
plete descriptions of shape and space [Faugeras, 1992; 
Koenderink and van Doom, 1991]. 

In this paper we propose novel representations of an 
active observer's space-time and we show how they can 
be obtained in real time using pattern matching tech­
niques in the spatiotemporal gradients of the image in­
tensity function. The essence of these representations is 
that they are derived from well-defined input (no corre­
spondence of features is required) and from global com­
putations not affected by local errors of various sorts. In 
particular, we present new solutions for two basic prob­
lems in Vision, the one of estimating an observer's mo­
tion and the one of recovering a shape description for 
an active binocular system whose exact extrinsic param­
eters are not known. The next section describes these 
representations. 
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2 Ret inotopic M o t i o n and Shape 
Representations 

Consider an observer moving in some environment. Al­
though the organism as a whole might move in a nonrigid 
manner head, arms, legs and wings undergo different 
motions—the eyes move rigidly, i.e., as a sum of instan­
taneous translation and rotation. The points where the 
translational and rotational velocity vectors intersect the 
retina, called the FOE (focus of expansion), and the 
AOR (axis of rotation), are respectively the represen­
tation of egomotion. That is, estimation of a system's 
egomotion amounts to recognizing two locations on the 
retina. 

Similarly, consider a binocular observer fixating on a 
point in space. The traditional representation used for 
the observer's extrapersonal space is the depth of fea­
tures in the scene in view, or its derivatives such as 
shape, curvature, etc. We argue that the shape rep­
resentations to be recovered for an active vision system 
are different, from the metric ones traditionally used in 
the sense that they cannot provide the 2 1/2-D sketch 
or functions of it. We call such representations "qualita­
tive structures"; they basically amount to recovering a 
function of the depth of the scene, where partial informa­
tion about this function is available. More specifically, 
if z(x, y) is the function providing the depth z at, points 
(x,y) in the image plane, and if /,, i — 1,2,..., n is 
a set, of functions not necessarily exactly known, then 
fi(z(x, y)), i = 1, . . ., n is a set of qualitative structures 
of the scene. For example, if / is a monotonic function in 
z with the property z(x,y) < z(x',y') <=> f(z(x,y)) < 
f(z(x',y')), then / constitutes a qualitative representa­
tion that we call "ordinal structure," since knowledge 
about, it only allows to order the values of the scene's 
depth. Functions with different properties amount to 
qualitative representations of a different nature. In par­
ticular, in this paper we will show that an active binoc­
ular observer not aware of its exact extrinsic parame­
ters capable of fixating at environmental points can re­
cover an ordinal structure of the scene, without relying 
on the computation of exact correspondence of features 
in the two images. The concept, of ordinal depth com­
putations has its origin in the relief transformations sug­
gested already by the turn of the century psychologist, 
Helmholtz and recently taken up in the work of various 
perceptual studies [Koenderink and van Doorn, 1991; 
Todd and Reichel, 1989; Carding et a/., 1993]. How­
ever, in these studies either correspondence is assumed 
or special assumptions are made about the structure of 
the scene in view. 

3 M o t i o n and Stereo Fields and 
Patterns of Gradients 

Most current motion estimation techniques require the 
computation of exact image motion (optic flow or cor­
respondence of features). This however amounts to an 
ill-posed problem. On the basis of local information only 
the component of the optical flow perpendicular to edges, 
the so-called normal flow, is well-defined, although in 
many cases, it is possible to obtain additional flow in­

formation for areas (patches) in the image. Similarly, 
the computational analysis of binocular shape percep­
tion has been based on the two-dimensional disparity 
field, which is a special case of a motion field. In a 
limited area of the image around the fixation point the 
disparity measurements are small and thus they can be 
treated in a differential manner, just as optical flow. As 
in the case of motion, on the basis of local information 
only the component of the disparity vector perpendicular 
to edges, the so-called normal disparity, is well defined. 
The basic thesis in this paper is the following: 
(a) For the case of the motion problem there exists a set 
of orientation fields on the retina which possess the prop­
erty that measurements of motion available along these 
orientations have a global structure, i.e., they form sim­
ple patterns whose location and form encode the 3-D mo­
tion parameters. (To obtain an intuition see Figures le 
and d; 3a, b and c; and 4a, b and c.) 
(b) For the case of the stereo problem, there exists a 
set of orientation fields with the property that measure­
ments of normal disparity that happen to be along these 
orientations have an ordinal structure regarding depth, 
i.e., their values are sufficient for ordering the depth 
of the corresponding scene points (Figure 7a). Mea­
surements in one orientation field allow the derivation 
of partial ordinal structure. Successive fixations allow 
the merging of these representations by filling in ordinal 
depth information from different fixations, thus building 
up a global ordinal depth map. 

4 The Case of M o t i o n : Prel iminar ies 
To begin with, let us review the geometry of visual mo­
tion. To obtain a better intuition we first use a spher­
ical retina. If the motion is a translation t, the motion 
field is along the great circles containing the vector t 
(Figure la), pointing away from the Focus of Expansion 
(FOE) and towards the Focus of Contraction (FOC). If 
the motion of the eye is a rotation of velocity w where 
the rotation axis cuts the sphere at points AOR (Axis of 
Rotation point) and -AOR, the motion field is along the 
circles resulting from the intersection of the sphere with 
planes perpendicular to the rotation axis (Figure lb). 
For general rigid motion the motion field on the sphere 
is the addition of a translational field and a rotational 
field. However, as input to the motion interpretation 
process we do not consider the motion field but the sign 
of the projection of motion vectors on appropriately cho­
sen orientations. 

4.1 Selection of Flow Orientations 
Two classes of orientations are introduced which are de­
fined with regard to an axis. Consider an axis s pass­
ing from the center of a spherical eye and cutting the 
sphere at points N and S. The unit vectors tangential 
to the great circles containing .s define a direction for ev­
ery point on the retina (Figure lc). These orientations 
are called s-longitudinal. Similarly, the s-latitudinal ori­
entations are defined as the unit vectors tangential to 
the circles resulting from the intersection of the sphere 
with planes perpendicular to the axis s (Figure Id). At 
each point the s-longitudinal and latitudinal vectors are 
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Figure 1: (a) Translational motion field, (b) Rotational 
motion field, (c) A longitudinal vector field defined by 
axis s. (d) A latitudinal vector field defined by axis s. 

perpendicular to each other. Some properties of these di­
rections will be of use later: Consider two axes s1 (N1 S1) 
and s2 (N2S2). Each axis defines at every point a lon­
gitudinal and a latitudinal direction. Figure 2 explains 
the locus of points where the s1 longitudinal or latitu­
dinal vectors are perpendicular to the .s2 longitudinal or 
latitudinal vectors. 

Figure 2: (a) On the sphere, the great circles containing 
S1 and s2 are perpendicular to each other on two closed 
second order curves, whose form depends on the angle 
between S1 and s2. These curves are defined as the set 
of points r on the sphere for which (s1 x r) ■ (s2 x r) — 0 
or (s1 r)(S2 -r) — s1 • S2- (b) The S1-longitudinal vectors 
are perpendicular to the s2-latitudinal vectors along the 
great circle defined by S1 and s2. 

Next, the structure of the projections of a rigid mo­
tion field on the S-longitudinal and latitudinal vectors is 
examined. More accurately, the sign of the projections 
of the motion field on the longitudinal and latitudinal 
vectors is investigated, since this is the information em­
ployed as input to the motion interpretation process. For 
this purpose it is necessary to agree upon a definition of 
the directions, s (NS) -longitudinal vectors are called 
positive (+), if they point away from N, negative (-) if 

they point away from 5, and zero (0) otherwise. Simi­
larly, S-latitudinal vectors are referred to as positive ( + ) 
if their direction is counterclockwise with respect to S, 
negative ( —) if their direction is clockwise, and zero (0) 
otherwise. 

4.2 The Geometry of Image Mot ion 
Patterns 

Since a rigid motion field is the addition of a translational 
and a rotational field, the cases of pure translation and 
pure rotation are first presented separately. 

If the observer moves with a pure translation of ve­
locity t, the motion field on the sphere is along the di­
rection of the /-longitudinal vectors (Figure la). Pro­
jecting the translational motion field of Figure la on the 
S-longitudinal vectors of Figure lc, the resulting vectors 
will be either zero, positive or negative. The vectors will 
be zero on two curves as shown in Figure 2a (symmetric 
around the center of the sphere) whose shape depends on 
the angle between the vectors t and s. The area inside 
the curves will contain negative vectors and the area out­
side the curves will contain positive vectors (Figure 3a). 

Figure 3: (a) Translational image motion along an s-
longitudinal vector field: On two curves (like the ones 
in Figure 2a) passing through the points where /, -t, 
s and — s intersect the sphere the value is zero. In­
side the curves the values are negative and outside they 
are positive, (b) Rotational image motion along an s-
longitudinal vector field: On the great circle defined by 
w and s the values are zero. In one hemisphere the val­
ues are positive and in the other they are negative, (c) A 
general rigid image motion defines a pattern along every 
.s-longitudinal vector field: an area of negative values, an 
area of positive values and an area of values whose signs 
are unknown. 

If the observer moves purely rotationally with veloc­
ity w;, the motion field on the sphere is along the direc­
tion of the w-latitudinal vectors (Figure lb). Projecting 
the rotational motion field of Figure lb on the s (NS')-
longitudinal vectors of Figure lc, the resulting vectors 
will be either zero, positive or negative. The projec­
tions will be zero on the great circle defined by s and 
w, positive in one hemisphere and negative in the other 
(Figure 3b). 

If the observer translates and rotates with velocities t 
and w the projection of the general motion field on any 
set of s-longitudinal vectors can be classified for parts of 
the image. If at a longitudinal vector the projection of 
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both the translational and the rotational vectors is pos­
itive, then the projection of the image motion (the sum 
of the translational and rotational vectors) will also be 
positive. Similarly, if the projections of both the transla­
tional and rotational vectors on a longitudinal vector at 
a point are negative, the projection of the motion vector 
at this point will also be negative. Otherwise the sign 
will be unknown because it depends on the value of the 
translational and rotational vector components. 

Thus, the distribution of the sign of image motion 
along the S-longitudinal set of directions defines a pat­
tern on the sphere. Considering a general rigid mo­
tion field due to translation t and rotation w on an s 
(NS')-longitudinal set of directions, a pattern like the 
one shown in Figure 3c is obtained, which consists of an 
area of strictly positive values, an area of strictly neg­
ative values, and an area in which the values can not 
be determined without more information. The pattern 
is characterized by one great circle containing w and s 
and by two quadratic curves containing the points FOE, 
FOC, N and S. 

It is worth stressing that the pattern of Figure 3c is 
independent of the scene in view and depends only on 
a subset of the 3-D motion parameters. In particular, 
the great circle is defined by one rotational parameter 
and the quadratic curve by two translational parameters. 
Thus the pattern is of dimension three. Also, the pattern 
is different for a different choice of the vector s. 

Similarly, considering the projection of a rigid motion 
field on the s latitudinal directions (defined by the vector 
S(NS)), another pattern is obtained which is dual to the 
one of Figure 3c. This time the translational latitudinal 
flow is separated into positive and negative by a great 
circle and the rotational flow by two closed quadratic 
curves. 

4.3 Egomotion Estimation Through 
Pattern Matching 

The geometric analysis described above allows us to for-
mulate the problem of egomotion estimation as a pat­
tern recognition problem. Assume that the system has 
the capability of estimating the sign of the retinal motion 
along a set of directions defined by various S-longitudinal 
or latitudinal fields that happen to be perpendicular to 
the local edges. (In a number of cases the sign may be 
estimated in other directions as well). If the system can 
locate the patterns of Figure 3c in each longitudinal vec­
tor field (and the dual pattern in the latitudinal field), 
then it has effectively recognized the directions t and w. 
If information (positive, negative or zero) is not avail­
able in many directions, there might be an uncertainty 
in the computations in the sense that more than one set 
of patterns may be fitted to the data and the FOE and 
AOR may be obtained only within bounds. 

For the case of a planar retina the latitudinal and lon­
gitudinal fields take a different form which is easily com-
puted by projecting them on a plane tangential to the 
sphere (Figure 4a,b). In this case areas with negative 
and positive normal motion measurements lie in areas 
separated by a conic section (circle, ellipse, hyperbola, 
or parabola) and a straight line. Figure 4c pictures an 

example of a longitudinal pattern. Figure 5 shows re­
sults from experiments on planar images from an out­
door scene. 

Figure 4: (a) In the plane the S-longitudinal vectors be­
come perpendicular to conic sections defined by a family 
of cones with an axis parallel to s. (b) The S-latitudinal 
vectors become perpendicular to straight lines passing 
through the intersection s0 of s with the plane, (c) In 
the plane the longitudinal vectors form patterns defined 
by a conic section and a straight line (dark negative, 
light positive, white "don't know"). Here, s0 is denoted 
as (fa/C,fB/C). 

Figure 5: A camera mounted on the Unmanned Ground 
Vehicle, developed by Martin Marietta under a contract 
for the U.S. Government, captured a sequence of images 
as the vehicle moved along rough terrain in the country-
side, thus undergoing continuously changing rigid mo­
tion, (a) shows one frame of the sequence with the nor­
mal flow field overlaid, (b), (d) and (f) show the positive 
(light color) and negative (dark color) vectors of the lon­
gitudinal patterns corresponding to the x-, y- and ;-axes. 
(c), (e) and (g) show the corresponding fitted patterns, 
(i) shows superimposed on the image the boundaries of 
the patterns whose intersections provide the FOE and 
the AOR. (j) Because measurements are not everywhere 
available (strong spatial gradients appear sparse) a set of 
patterns can possibly be fitted resulting in two bounded 
areas as solutions for the FOE and the AOR. 
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5 The Case of F i xa t ing Stereo: 
Pre l iminar ies 

Consider an active binocular observer capable of fixat­
ing on an environmental point. The geometry of the 
system can be described as a constrained rigid motion, 
between the left and right eye. If we fix a coordinate on 
the left eye with the 2-axis aligned with its optical axis 
the y-axis perpendicular to the fixation plane, then the 
transformation relating the right eye to the left is a rota­
tion around the y-axis and a translation in the xz plane 
(Figure 6). At the fixation point the disparity measure­
ments are zero and in a neighborhood around it relatively 
small. Thus, it is legitimate to approximate the disparity 
measurements through a continuous velocity field. This 
amounts to the small baseline approximation that has 
been used in the literature [Carding et a/., 1993]. 

ferent fixations. This way we merge values in different 
fixations and build a global ordinal shape representation. 

5.1 Ordinal Depth from One Fixation 
An active binocular stereo system capable of changing 
its geometric parameters in a controlled vay should be 
aware of the pose of its eyes with regard to some head 
frame centered coordinate system. Thus it should know 
the angle the optical axis encloses with the baseline, 
which amounts to knowing the parameter x0. If for a 
particular system this knowledge is not available, utiliz­
ing the constraints described in Section 4, the direction 
of the translation X0 can be derived from the patterns of 
the normal disparity field, utilizing only the sign of the 
disparity measurements. 

We do not know, however, the amount of rotation /3 
and we also don't have to know the distance between the 
two eyes. Using equation (1) it is possible to obtain an 
ordinal depth representation for the scene whose image 
points lie on families of curves: Dividing equation (1) by 
-nx we obtain 
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Our computational strategy utilized information 
about X0 (i.e., the angle formed between the x-axis of 
the left eye and the baseline). Although the theory de­
scribed in Section 4 can be used to derive this informa­
tion, the system could derive x0 from motor informa­
tion without involving the imagery; however, (3 can only 
be computed from image information. Its derivation re­
quires exact fixation (i.e., the exact intersection of the 
two cameras' optical axes on a surface point), which is 
practically impossible. Figure 8 describes experimental 
results with an active binocular head/eye system. 

Finally, it should be noted that instead of computing 
an ordinal representation in the depth Z, we could de­
rive an ordinal representation in the distance R from the 
nodal point [Fermuller and Aloimonos, 1995]. If we use 
spherical eyes and employ a spherical coordinate system 

we obtain similarly as in section 5.1 families of 
curves defined as functions in , and C, along 
which ordinal distance information can be derived. Such 
a representation provides an advantage in the phase of 
merging data from different fixations. Since the distance 
R remains the same in the different coordinate systems of 
different fixations (which are only rotated to each other), 
any two distance measurements on the same family of 
curves in any fixation and not only those on lines can 
be used to obtain additional distance information in the 
original frame. 

6 Conclusions 
In the past few years, it has become clear that Vision 
(and perception in general) should not be studied in iso­
lation but in conjunction with the physiology and the 
tasks that systems perform. In this paper we argued that 
the synthesis of vision and action must happen through 
spatiotemporal representations computed from well de­
fined input. We showed how an active observer by ap­
propriately selecting subsets of the input can estimate 
representations of motion and structure through pattern 
matching. 
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