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Abs t rac t 

I describe a real-time implementation of Ull-
man's visual routine processor (VRP) theory 
of intermediate vision for visual search. The 
system performs serial self-terminating visual 
search and computes 2D spatial relations of ob­
jects from live color video using low cost hard­
ware. I present a formal model of a VRP with 
unbounded resources and quantify the amount 
of external control structure required to solve 
Horn clauses using the VRP. In discussing the 
effect of resource limitations I show that con­
temporary models of biological visual attention 
are unable to solve surprisingly simple queries. 
I also describe a novel logic programming sys­
tem that finds satisfying variable assignments 
for Horn clause queries using the VRP. The 
system contains no internal database: all logic 
variables are directly grounded in the world us­
ing VRP queries. Finally, I briefly discuss ex­
periments with natural language interpretation 
and motor control using the VRP. Experiments 
on real data are given.1 

1 In t roduc t i on 
Shimon Ullman proposed the visual routines theory of in­
termediate vision as a way of explaining how the human 
visual system might solve certain visual tasks (such as 
computing spatial relations) that seem to require serial 
processing [Ullman, 1984]. At a gross level, the theory 
proposes that the visual system contains a set of registers 
that can contain different types of visual data, a means 
of focusing visual attention on task-relevant portions of 
the image, and a set of primitive "instructions," such 
as coloring and line drawing, that can be combined like 
instructions in a computer program to compute useful 
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properties of an image. These resources are collectively 
referred to as the visual routine processor or VRP. 

The visual routines theory have received increasing at­
tention from the AI community in recent years ([Agre 
and Chapman, 1987] [Chapman, 1990][Reece and Shafer, 
199l][Romanycia, 1987][Whitehead and Ballard, 1990]). 
Much of this attention has come from the reactive rea­
soning and planning community, in part because Agre 
and Chapman's implementation of the visual routines 
model provides an alternative interface between reason­
ing and perception, which is both easier to implement 
and more biologically plausible than standard database-
like interfaces. 

Despite the level of interest, there has yet to be a 
VRP implementation that runs on real camera images. 
To date, VRP systems have run either off of hand-drawn 
bitmaps [Romanycia, 1987] or have been directly inter­
faced to the world model of a world simulator, thus 
bypassing low-level vision entirely [Agre and Chapman, 
1987][Chapman, 1990][R eece and Shafer, 1991]. 

In this paper, I describe Jeeves , a working visual rou­
tine processor that runs off of color video at approxi­
mately 10Hz using only relatively simple hardware. This 
is work in progress. As of this writing, Jeeves imple­
ments the visual search portion of the theory, the part 
which is presently best worked out. I will also present 
a formal analysis of the amount of control machinery 
required to solve arbitrary-length Horn clauses, discuss 
the effect of resource limitations on visual search, and 
give an example of a simple Horn clause for which most 
current biological theories of visual search cannot ac­
count. Finally, I will describe Bertrand, a novel logic 
programming system that answers Horn Clause queries 
about scenes without the use of an internal proposition 
database. 

2 Overv iew of the V R P mode l 
2.1 Early vision and attention 
Virtually all theories of vision presuppose a stage of early 
or low level processing that extracts local features from 
the image such as edges, color information, or depth. It 
is generally believed that early vision computes a set of 
low level maps each displaying the strength or value of a 
specific feature for all points in the image. These maps 
are believed to be computed bottom-up and in parallel. 
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In the last decade, covert visual attention, the prob­
lem of selecting image-plane regions for processing, has 
been widely studied in the psychophysical and neuro-
physiological communities. A wide range of neural mod­
els of covert attention have been proposed (see [Tsotsos 
et a/., 1994] for a detailed survey). These models assume 
image regions are selected based on their low level fea­
tures (see above). Most use a pyramid structure, and so 
are referred to as "attention-" or "addressing-pyramids". 
Models differ on what the attention mechanism reports 
to the next level about the region. Some models such 
as [Koch and Ullman, 1985] route aggregate feature val­
ues of the attended region to their outputs, while other 
models, such as [Olshausen et a/., 1992], route resam-
pled images to their outputs. Jeeves , is patterned after 
[Koch and Ullman, 1985J, although dynamic resampling 
would be easy to add. 

For the purposes of this paper, the most important 
data on covert attention are the experiments of Treisman 
et al. [Treisman and Gelade, 1980], which suggest the 
vision system can search all points in the image in par­
allel for many low level features (called "pop-up" proper­
ties) but must handle conjunctions of features by serially 
enumerating regions satisfying one of the conjuncts and 
then testing them for the other(s). Most neural models 
of attention have image-parallel hardware for matching 
pop-up properties to handle the simple cases, and pro-
vide some return-inhibition mechanism to support region 
enumeration for conjunctions. Return-inhibition stores 
the locations of previously attended regions and prevents 
them from being selected in the future. All regions sat­
isfying a given pop-up feature can then be enumerated 
by repeatedly selecting a region and inhibiting it. 

It is outside the scope of this paper to debate the va­
lidity of Treisman's experiments or the various neural 
models of covert attention. The interested reader is di­
rected to [Tsotsos et o/., 1994]. 

2.2 Visual routines 
The visual routine model [Ullman, 1984] claims that cer­
tain kinds of visual work are done by selecting relevant 
regions of the image and applying simple geometric op­
erations to them such as drawing lines to connect them, 
searching along the lines for other regions, or checking 
whether a point lies within a closed curve using flood-fill 
operations. The essential claims are that (1) there ex­
ists a visual routine processor (VRP) that consists of a 
set of discrete functional units, each capable of perform­
ing a specific operation such as line drawing or flood 
filling and (2) these operations can be combined in task-
specific manners to do useful visual work in the same way 
subroutines are built up from primitive machine instruc­
tions (hence the name "VRP"). The model presupposes 
a number of basic architectural features of the visual 
system: 

• An early vision system to compute primitive fea­
tures, 

• An attention system to select task-relevant regions 
based on those features and route them to the VRP, 

• A set of functional units for executing primitive in­
structions, and 

• A set of specialized state elements for holding inter­
mediate values (registers). 

The details of the registers and functional units are un­
known. Chapman's system [Chapman, 1990] contained 
four types of state elements: markers, which held image 
locations; lines and rays; activation planes, which were 
general registers that could hold arbitrary binary images; 
and a return inhibition map. All state elements except 
the return inhibition map could be directly named and 
manipulated. The return inhibition map had its own 
specialized operations. In Chapman's system, a blocks-
world visual routine for finding the first block under­
neath some blue block would consist of the following op­
erations: 

1. clear the return inhibition buffer 
2. select a blue block and inhibit it 
3. set marker 0 to the location of the selected region 
4. set ray 0 to project downward from marker 0 
5. set marker 1 to the first object along ray 0 
6. if the previous operation failed, go to step 2. 

If this routine succeeds, then marker 0 will designate the 
blue block and marker 1 the block underneath it. 

3 Jeeves implementa t ion 
Jeeves is the first system to implement the VRP model 
on real camera data using a real low level vision sys­
tem. It implements the necessary extensions to allow 
operation on scenes in which objects have non-trivial 
spatial extent and/or occlude one another. It imple­
ments marker and line operations, but presently does not 
implement activation plane operations (the current do­
main doesn't exercise them adequately). It implements 
queries on 2D spatial relations and simple feature values 
and has been tested on children's blocks (real ones, with 
differing shapes), books, and brightly colored kitchen 
utensils. The architecture of Jeeves is shown in figure 
1. I hope to apply it to other domains and to extend its 
repertoire of computations soon. 

Jeeves runs on 64 x 29 images at approximately 10Hz. 
It is written in C and presently runs on color vision hard­
ware designed at MIT by Chris Barnhart. The hardware 
consists of roughly $1000US worth of components, in­
cluding a Texas Instruments C31 floating-point DSP and 
an NTSC color digitizer. It is controlled from a Sparc-1 
running Scheme over a 38K-baud serial port. 
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The process of building a low-level vision system and 
VRP that can run at 10Hz required a great many com­
promises, most importantly, the use of low resolution im­
ages and the lack of a shape-matching system. In some 
cases, these compromises limited the tasks that could be 
solved by the system. I have tried to restrict my at­
tention to claims and tasks that are unaffected by these 
limitations. 

3.1 Low-level maps 
After grabbing the image and averaging it down to low 
resolution, the system computes a number of low level 
retinotopic maps. As of this writing, it computes various 
color maps (R, G, B, R/I, G/I, B/I), intensity, temporal 
and spatial derivatives, including Laplacian, V2G edges, 
and a grey-scale symmetry operator. An optic flow de­
tector has also been implemented but is not presently 
used. 

3.2 Preattentive segmentation 
Chapman's SIVS system ignored the issue of dividing the 
image into regions corresponding to distinct objects, ef­
fectively assuming that objects were single points. Chap­
man argued from psychophysical evidence that the vision 
system might perform a first-pass segmentation before 
the attention pyramid. The attention pyramid would 
then select among segments rather than points. Other 
models assume that the attention pyramid can select 
among different scales, but does not use segmented in­
put. As much for engineering reasons as for theoretical 
ones, I choose to use a preattentive color segmentation 
system as a preprocessing stage for the attention pyra­
mid. The system finds color boundaries in the image and 
uses a connected-components algorithm to label regions 
of homogeneous color. The segmentation system also al­
lows the higher level to specify minimum and maximum 
segment sizes. Minimum sizes allow the suppression of 
"noise" segments and maximum sizes act as a crude form 
of figure/ground separation. 

I do not propose the simple color segmentation system 
as any kind of theory of human preattentive segmenta­
tion. However, the use of segmentation is logically inde­
pendent of other design decisions; one could change or 
remove the segmentation system and still have a usable 
vision system. 

3.3 The saliency map and visual attention 
The VRP selects task-relevant image regions by comput­
ing a pixel-by-pixel weighted sum of the low level maps 
[Clark and Ferrier, 1988][Ahmad and Omohundro, 1991]. 
The weights are one of the input parameters of the sys­
tem and can be changed continuously by the higher lev­
els (see figure 2). Weighted sums may be more powerful 
than the human system. One can adjust the weights 
to select for conjunctions, for example. However, this 
would presuppose something like a perceptron learning 
algorithm running to learn the proper weights for the 
proper conjunctions. Since this would require consider­
able training, the human system might use the weighted 
combinations and still be unable to do parallel search for 
conjunctions. In point of fact, more recent psychophys­
ical results do indicate that at least some conjunctions 

Figure 2: Structure of the attention system 

can be learned with sufficient training (see [Weismeyer, 
1992] and [Tsotsos et a/., 1994] for surveys of recent re­
sults). 

The attention system computes the region with the 
maximum integral of salience. This differs from previ­
ous systems which have either found the image point 
with maximal salience or the image point with maximal 
smoothed salience, perhaps over several different scales. 
Finally, the attention system computes the bounding 
box, area, centroid, and average low level map values 
for the winning segment. 

3.4 Visual markers 
The only directly-addressable memory in Jeeves is a 
small collection (10) of registers called "markers" [Chap­
man, 1990] which can hold the centroid and bounding 
box of a segment. Markers can be loaded with the spec­
ifications of the currently attended region, compared to 
one another, or used to focus attention (see below). 

3.5 Ret urn- inhibi t ion and spatial 
constraint 

In many biological attention models and also in many 
computer implementations, return inhibition is imple­
mented as a function internal to the attention pyramid 
itself. Indeed, most biological models provide only very 
limited control over return inhibition, if any. Chapman's 
model provides control lines to enable and disable the ad­
dition of the current point to the set of inhibited points 
and to clear the set of inhibited points. It does not pro-
vide the capability to suppress return-inhibition without 
permanently clearing the set of inhibited points. 

Jeeves implements return inhibition through a sepa­
rate return-inhibition map (RIM) that is summed into 
the saliency map (see figure 2). Jeeves provides sepa­
rate control lines for adding the current region to the 
RIM, clearing the RIM, and including the RIM in the 
the saliency measure. The latter is controlled through 
the same weighting mechanism used for other maps. 

Both Chapman and Ullman propose that the VRP can 
search for objects along specified rays. In Chapman's 
system, this is implemented though a separate attention 
mechanism. As with return inhibition, spatial constraint 

68 ACTION AND PERCEPTION 



of search is implemented in Jeeves through the saliency 
mechanism. A separate low level map, with its own inde­
pendent weight, computes a "position salience" for each 
point in the image. Position salience is task dependent 
but image independent It is computed as a sum of terms 
that fall off quadratically with distance from a marker 
and from a ray emanating from the marker. If either 
term is zero, the position salience is zero. The marker, 
ray direction, and rates of decay are inputs to the atten­
tion mechanism. 

4 Automata- theore t i c analysis 
Most computational work on covert attention and visual 
search (e.g. [Chapman, 1990][Tsotsos et a/., 1994][Weis-
meyer, 1992]) has been designed specifically to fit psy­
chophysical timing data on very specific tasks, such as 
Triesman's. Relatively little attention has been given to 
the computational power of these models in the abstract. 
In effect, these models treat the visual search system as a 
very simple Prolog engine: they search for image regions 
satisfying a conjunction of primitive features. They se­
rially enumerate regions satisfying the first feature and 
test each for the other features. A failure of the test 
causes backtracking, which is implemented by the return 
inhibition mechanism. The essential differences between 
these systems and a Prolog engine are that: 

• The propositional database is replaced by the image. 
• Logic variables are replaced by markers or the at­

tention output. 
• Backtracking state is stored in the return inhibition 

mechanism, and 
• Only very simple queries are examined. 

The last two of these are particularly important for our 
purposes: the Treisman experiments amount to Horn 
clause queries containing exactly one variable. The vi­
sual attention mechanisms can only handle queries in­
volving one variable, because they only have one state 
element in which to record backtracking information: the 
return inhibition mechanism. Multiple-variable queries 
require either multiple return-inhibition maps or ad-hoc 
auerv restrictions to limit backtracking. 

HORSWILL 59 



variables, 

we create a shift register tape whose cells are oracle in­
puts that enumerate the respective literals of the con­
junction. Thus cell i, is the tuple giving the signature 
of the ith literal, the registers for the literal's argument 
variables, and a context register to use. We will use con­
text register Ci for literal i. The restart flag must be 
generated at run time, so it will not be included in the 
cell. The shift register tape is then: 

( 
and the tape for the clause in (1) would be (using X as 
variable 1 and Y as variable 2): 

) 

The only non-trivial part of this compilation process is 
computing the signature. It is easily done by keeping 
track of which variables have appeared so far in a left-
to-right reading of the clause. 

Given this tape, we can enumerate all satisfying vari­
able assignments of the clause by adjoining a simple au­
tomaton to the oracle. The tape is augmented with left-
and right- end-of-tape markers, and the shift register is 
started at the left end of tape. The automaton has a 
single flip-flop, called restart, which is initialized to 1. 
It follows the rules: 

• If restart, then shift to the next cell to the right, 
else to the left. 

• If not at end of tape, take current cell's tuple, ap­
pend restart to it, and feed it to the oracle, storing 
the result in restart. 

• If at the right end of tape, signal success and clear 
restart. 

• If at the left end of tape and restart is clear, termi­
nate. 

These rules are easily implemented in a few gates. 
In effect the tape acts as the backtracking stack, one 

cell per frame, and the context registers named on the 
tape hold the backtracking history of their respective 
frames. Each time the automaton reaches the right EOT 
and signals success, it has found a complete satisfying 
variable assignment for the clause. It can be shown that: 
Claim 1 The automaton above signals success once for 
each satisfying variable assignment of the clause. 
Sketch of proof: By induction, the number of right-
ward tape crossings out of the ith cell is equal to the 
number of satisfying variable assignments for the first i 
literals in the clause. Rightward crossings out of the last 
cell enter the right EOT and so signal success. 

This allows us to quantify the amount of control state 
needed to satisfy arbitrary length Horn clauses with an 
enumeration oracle. 

We have assumed the enumeration oracle handles 
arbitrary signatures of arbitrary literals. We can 
weaken these assumptions somewhat through compile-
time transformations by forcing variables to be enumer­
ated one at a time using weaker predicates or by evaluat­
ing the literals in a different order. Such transformations 
are outside the scope of this paper. 

4.3 Resource constraints 
Current biological theories of covert visual attention tac­
itly assume only a single "context register," the return-
inhibition state. The return-inhibition state can only 
track the enumeration of a single variable. Thus, it 
would seem that the VRP can only handle clauses con­
taining a single variable. In point of fact, this can be 
optimized somewhat. 

Backtracking with markers 
The predicate on(X, Y) be solved in the VRP by project­
ing a short ray downward from a known X and placing 
Y on the first object found along the ray (or by project­
ing upward from a known Y). The same procedure also 
works for the immediately-above (iabove) relation2 if we 
use an infinitely long ray. A solution to iabove(X,Y) 
is also a solution to above(X)Y). To find any other 
solutions to above(X, Y), we can inhibit return to the 
previous solution and resolve. This requires an extra 
return-inhibition map, however. If we adopt the ideal­
ization that an object can only immediately above one 
other object, then we can solve above(X,Y) without an 
extra return-inhibitionmap. The reasin is that aboveness 
is the transitive closure of immediately aboveness: 

which gives us the following procedure for enumerating 
values of Y given X: to restart an enumeration, project 
a ray down from X and bind Y to the first object found 
along the ray; to backtrack the enumeration, project a 
ray down from the current value of Y and rebind Y to 
the first object found along the ray. 

In effect, this technique causes the object registers to 
do double-duty as context registers. The technique is 
applicable to any right-unique relation:3 
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Figure 4: An image (above left), its subsampled version 
(above right), and an example query and execution trace 
(below). Semicolons mark annotations. Note that the 
system assumes any uniformly colored region is a block. 
It does not recognize the other objects, although it can 
tolerate their presence. 

5 A database-free logic p rogramming 
system 

Bertrand is logic programming system built to experi­
ment with the search capabilities of the VRP. It is essen­
tially a direct implementation of the Horn-clause satisfier 
discussed above. It has a compilation phase that trans­
lates clauses into shift-register tapes and an execution 
phase in which VRP markers are set to a satisfying vari­
able assignment for the clause using backtracking search. 
Marker positions are overlaid as colored X's on the live 
video image. An example execution trace is shown in 
figure 4. 

At present, Bertrand runs with only one return-
inhibition map, although this could be easily changed. 

6 Answer ing natura l language queries 
The above results suggest a natural extention to the pro­
cessing of simple natural language utterances: we add a 
simple parsing front end and a semantics system that 
defines the semantics of visual words in terms of VRP 
instructions that find their referrents. We can then an­
swer the sort of natural language queries whose logical 
forms are simple Horn clauses of the form that Bertrand 
can solve: 

• Is there a green block? 
• Is the green block on another block? 
• Show me the blue block on the red block, 
e Is it on a red block? 
• Is there a green block on a blue block on a red block 

on an orange block under a green block? 
Ludwig is a natural language system that can answer 

simple questions using the VRP. Although quite limited, 
it is novel in that it uses not only no world-model, but 
no tree-structured representations whatsoever! Ludwig 

is implemented entirely as a set of piplined parallel pro­
cesses, each finite state, with fixed connections between 
them. Connections are simple activation levels, binary 
values, or narrow busses.4 In this sense, it is compatible 
with connectionist ideas. To my knowledge, Ludwig is 
the most sophisticated system to date based on the no­
tion of using the world as its own best model. It is also 
the only such system that supports fully compositional 
representation and recursive structures. 

7 M o t o r cont ro l 
We have mounted the vision system on a mobile robot 
base and used it for simple visuo-motor experiments. Al­
though designed for visual search, the visual routine pro-
cessor already contains much of the machinery necessary 
for the visual system of the Polly robot [Horswill, 1993]. 
For example, the Polly system performs collision avoid­
ance by steering to avoid texture in the image. Since the 
floor of Polly's environment has no surface markings, the 
presence of an edge necessarily indicates the presence of 
an obstacle and so an edge detector is sufficient to act as 
an obstacle detector. Polly computes the depths of edges 
using image-plane height. In particular, Polly steers by 
computing three distances, d j, dc, and dr,, which are de­
fined as the image plane heights of the lowest edge pixels 
in the left, center and right thirds of the image, respec­
tively. Polly then turns at a rate proportional to di — dr 
and advances at a rate proportional to dc. 

Such a control regime is easily added to the VRP. The 
output of the saliency map is fed to a motor control unit 
that computes di, dc, and dr, defined to be the image 
plane heights of the lowest salient pixels in their respec­
tive image areas. The motor control unit also computes 
zmin, the x coordinate of the lowest salient pixel in the 
whole image. A motor control instruction then consists 
of a VRP instruction to determine the settings of the 
salience parameters and a matrix A and a vector b used 
to compute the motor velocities as: 

For example, using a VRP instruction to attend to 
spatial derivatives and specifying 

where dstop is the desired stopping distance for the robot, 
yeilds the standard Polly collision avoidance algorithm, 
while the values 

where dw, is the desired distance reading for the left wall, 
yeilds Polly's left-wall following algorithm. Finally, 

4In fact, Ludwig is implemented directly in a register-
transfer-level hardware language. 
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yields a primitive following algorithm that steers toward 
and approaches the nearest object. 

The motor control unit is also able to make ballistic 
turns to face in the direction of a given marker. After a 
ballistic turn of the robot's body, marker positions are 
automatically updated to compensate for the motion. 

Finally, the motor control unit has been integrated 
into Bertrand to allow motor control operations to be 
mixed with visual search operations. Thus the program: 

red(X), on(X, Y), blue(Y), face(X), approach(). 
will cause the robot to find a red block on a blue block 
and drive up to it. 

8 Conclusions 
This paper provides the first VRP implementation that 
runs on real camera data and one of the few implemen­
tations of biological theories of covert visual attention 
that runs on real data. It also provides a formal study 
of the VRP's visual search capabilities and the effects of 
the resource limitations in biological attention theories 
(for a study of visual search independent of the VRP 
architecture, see [Tsotsos, 1990]). 

One of the outcomes of the formal analysis is that some 
surprisingly simple queries cannot be solved without as­
suming more machinery than current biological theories 
provide. This is not fatal to the theories, it simply means 
that must either (1) we revise the theory, (2) assume that 
some other system is in charge of finding arches, or (3) 
assume the problematic queries aren't important in ev­
eryday life. (1) is simple: just assume there are multiple 
return-inhibition maps and that their effects on the at­
tention pyramid can be gated by higher level processes. 
This may not be true, but it suggests a whole range 
of interesting psychophysical experiments. (2) is more 
tricky. Many computer models of recognition tacitly as­
sume the ability to perform complicated backtracking 
searches. Explaining one system's inability to backtrack 
by assuming another's ability to backtrack simply begs 
the question. If psychophysical experiments should show 
that the human visual system really is limited in its abil­
ity to backtrack in visual search, this would lend support 
to view-based models of recognition. 

Bertrand and Ludwig are interesting because they 
have no internal world model: database operations on 
the model are translated directly into image-plane op-
erations, yielding a high performance interface that is 
plug-compatible with a database. An existing problem 
solver could be modified to do the same. The result 
would be a system that seamlessly alternated between 
image operations and world-model operations, depend­
ing on the type of query. 
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