
Using Knowledge to Isolate Search in Route F i nd ing 

Bing Liu 
Department of Information Systems and Computer Science 

National University of Singapore 
Lower Kent Ridge Road, Singapore 0511 

Republic of Singapore 

Abstract 
Traveling is a part of every person's day-to-day life. 
With the massive and complicated road network of a 
modern city (or country), finding a good route to 
travel from one place to another is not a simple task. 
In Network Theory, this is the shortest path problem. 
Shortest path algorithms are often used to solve the 
problem. However, these algorithms are wasteful in 
terms of computation when applied to the route 
finding task. They may also produce solutions that are 
not suitable for human drivers. In this paper, we 
present an approach that uses knowledge about the 
road network to substantially reduce the time and 
space required in computation, and to ensure human 
oriented solutions. Within this framework, three 
alternative methods are proposed, which may be used 
in different situations. A system has also been 
implemented for route finding in Singapore. 

1. Introduction 
One of the important computer applications in the 
transportation industry is route finding. Suppose we want to 
deliver some goods from our warehouse to a customer, we 
need to know the best route that will take us there. As 
another example, suppose a tourist rented a car and planned 
to drive around a city. He/she needs to know the way before 
going from one place to another. A computer route finding 
system will not only find the best route for the user, but also 
help to reduce the traffic in a road network. It is estimated 
that excess travel amounted 83.5 billion miles and 914,000 
person-years annually at a total estimated cost of more than 
45 billion dollars per year in United States [King and Mast, 
1987]. 
In Network Theory, route finding is a shortest path 

problem [Deo and Pang, 1984; Dial et a/., 1979]. 
Algorithms, such as Dijkstra algorithm [Deo and Pang, 
1984] and A* [Pearl, 1988], are often used for solving this 
problem. However, these algorithms are general algorithms. 
They are wasteful in terms of computation when applied to 
the route finding task. Most of the routes searched by the 
algorithms are actually irrelevant as they cannot possibly be 
part of the solution. Using only these algorithms may also 
produce solutions that are not suitable for human drivers. 
For example, human drivers would normally like to drive 
on major roads as far as possible, although using some 

minor roads may give the shortest path. In this paper, we 
propose a novel and yet simple approach of using 
knowledge about the road network to help a shortest path 
algorithm to perform the route finding task. It is termed as 
knowledge-based route finding. This approach dramatically 
reduces the time and space required in computation, and 
also produces human oriented solutions. 

Although shortest path problem has been studied for 
decades, limited work has been done on using knowledge-
based technique to help solving the route finding problem. 
We believe that one of the reasons is that Dijkstra 
algorithm, A* and others are already relatively efficient for 
the task. In the past, knowledge-based approach has been 
mostly applied for solving problems that do not have 
efficient algorithmic solutions [Hayes-Roth et a/., 1983; 
Winston, 1992]. However, from our experiences, we can 
say that although Dijkstra algorithm (or A*) is efficient, 
knowledge-based approach can be successfully incorporated 
to produce even more efficient solution methods. 

Our knowledge-based route finding can be described as 
using knowledge about the road network to isolate the 
search and/or to guide the problem solving. Two key types 
of knowledge used in the proposed approach are the 
knowledge of road types (e.g., minor roads, major roads, 
and expressways) and the knowledge that major roads and 
expressways naturally partition the whole network into 
many small areas or sub-networks. These two types of 
knowledge and some others are used to partition and to 
reorganize the whole network. An efficient search 
algorithm is employed to search for the best solution in the 
appropriate sub-networks rather than the whole network. 
Within this framework, we present three specific methods. 
Each of these methods has its advantages and 
disadvantages over the others, and is suitable for a different 
situation. A system, called KB-RFinder, has also been 
implemented for route finding in Singapore. 

2. Shortest Path Algorithms and Knowledge-
Based Method 

Shortest path problem is modeled as finding the shortest 
path between two nodes in a weighted and directed network 
G = (N, A) with a node set N and an arc set A. Each arc (/', 
j) E A also has a length (or weight) /ij,y > 0. In the route 
finding context, the network is the road network. Nodes are 
road junctions, and arcs are road segments (a road may 
have a number of segments, however, below we will use 

LIU 119 



roads and road segments interchangeably). The length of 
each arc could be the distance or the travel time between 
two adjacent junctions. The traveling direction allowed for 
a road segment corresponding to the direction of an arc. 

Over the past three decades, many algorithms have been 
devised for the problem (see e.g., [Dial et al., 1979; Gallo, 
and Pallottino, 1986; Helgason et al., 1993]). Dijkstra 
algorithm is the classical algorithm for the problem. Most 
of the others are variations of Dijkstra algorithm. This 
algorithm can solve the problem in steps 
by using a binary heap [Sedgewick, 1988] for sparse 
networks (road networks are sparse networks). In our 
research, we have implemented many well-known 
algorithms, including Dijkstra algorithm [Gallo, and 
Pallottino, 1986; Sedgewick, 1988], SI [Dial et al., 1979; 
Gallo, and Pallottino, 1986], S2 [Dial et a/., 1979; Gallo, 
and Pallottino, 1986], and A* [Pearl, 1988], S12 [Helgason 
et a/., 1993], S22 [Helgason et a/., 1993], bi-directional A* 
[Pohl, 1971]. For road networks, A* is the most efficient 
algorithm. Interested reader, please see their performance 
comparisons in [Liu and Tay, 1995]. 

Although these algorithms are relatively efficient, 
applying them directly to route finding is not appropriate. 
They are wasteful in terms of computation as in real 
situations it is not necessary to search through the whole 
network in order to find the solution. They may produce 
solutions unsuitable for human users as they may use too 
many minor roads, which is against the human preference 
of traveling on major roads. 

Knowledge-based problem solving [Hayes-Roth et ai, 
1983; Winston, 1992] emphasizes the use of human 
problem solving strategies on a computer. This technology 
has been used in many applications. 

However, for route finding, using knowledge-based 
approach alone will not be efficient. After applying human 
knowledge about the network, a search is still required to 
find the best solution. In most situations, knowledge is also 
unable to guarantee the best solution. It can only isolate the 
part of the network which could contain the solution, or 
prune off part of the network that is unlikely to contain the 
solution. After that, a search algorithm has to be used to 
find the best solution in the isolated area. In this case, A* 
or (Dijkstra algorithm) comes to help. 

From the above, it can be seen that each individual 
technique (algorithmic and knowledge-based method) does 
not provide a good solution method for route finding. Each 
of them, however, does have its advantages in solving the 
problem. Analysis of their advantages and disadvantages 
shows that they can easily help each other. Thus, 
integrating them is the natural solution. We call this 
integration knowledge-based route finding. We describe 
this approach in the next 4 sections 

3. Knowledge About the Road Network 
Before presenting our approach, we first describe the key 
types of knowledge we use. There are two main types: 
Road types: Typically, in a city road network, there are 

three types of roads, minor roads, major roads and 
expressways. Knowledge about road types is crucial in 
route finding for two reasons. Firstly, people prefer to 

drive on expressways and major roads. A practical system 
should meet this preference. Secondly, road type 
knowledge also help to prune the search space in problem 
solving as we will see later. 

Major roads partition the whole road network: When we 
look at the road map of a city, an important feature that 
can be observed is that major roads and expressways 
themselves also form a network (we call it the major road 
network or MRN for short). Expressways may not form a 
connected network in a city, but may form a network in a 
state or country. We group major roads and expressways 
into one class and call them major roads because 
expressways normally make up only a small part of the 
road network in a city, which is our primary concern. 
However, our ideas developed subsequently can be 
generalized to expressways for inter-city and inter-state 
route finding. Figure 1 (major roads are in thick lines and 
minor roads are in thin lines) shows a small part of the 
Singapore road network. 
We can further observe from the map that MRN naturally 
partitions the whole network into many smaller areas (or 
sub-networks) (see Figure 1). The shaded area is an 
example. This is the key idea of our approach, which uses 
this natural partition to isolate the search. 

4. Using Knowledge to Isolate Search 
The ideal situation in route finding, particularly for a long 
distance travel, is as follows: Assume that a driver plans to 
go from one location (the source S) on a minor road to 
another location (the destination D) on another minor road. 
Ideally, the route Finding system should search in a small 
area around S to reach some major roads (to reach the 
nearest major road may not be sufficient, we will elaborate 
on this in Section 8). Within this area, it will consider both 
major and minor roads. After this, it should consider only 
major roads. When it is approaching D, the system again 
should search in a small area in which both major and 
minor roads are considered in order to reach the 
destination. Figure 2 illustrates this scenario. Grids are 
used to show the isolated areas. This approach has two 
advantages: (1) it prunes off a great deal of search space; 
and (2) it produces routes that satisfy people's preference of 
traveling on major roads. 

120 ACTION AND PERCEPTION 



Obviously, this ideal case does not guarantee the best 
solution. But, the solution may be good enough as people do 
prefer to drive on major roads. In real life, we do not always 
ask for the best solution. A good solution will be sufficient. 
Now, the problem is how to form these grids. We discuss 
our approach to this below. 

Figure 2. An ideal grid combination to prune search 
In the new technique, we will not form the major grid as 

in Figure 2, i.e., all the major roads are considered. When 
A* is used instead of Dijkstra algorithm, it automatically 
searches in the direction of the destination. Thus, only the 
two major-minor grids need to be formed. 

In Section 3, it was noted that MRN naturally partitions 
the whole network into many small areas. All the minor 
roads in each area can be accessed from the major roads 
around them. Hence, we can statically assign each node (or 
junction) in the small area that area as its grid. Thus, in the 
proposed approach, a road network is represented as a 
major road network and many small sub-networks (each 
grid represents a sub-network). Within this framework, 
three specific network representations and their respective 
problem solving methods will be discussed. They are the 
topics of the next two sections. Here, we shall focus on the 
grid formation, which is a process of partitioning the road 
network into many small grid sub-networks. The important 
cases are as follows: 
1. Major roads surrounding a set of minor roads naturally 

form a grid sub-network for every node (or junction) in 
the minor roads. The shaded area in Figure 1 shows such 
a grid sub-network. The minor roads inside the grid are 
connected, i.e., they are connected without considering 
their traveling directions allowed. 

2. Although major roads naturally form many grid sub­
networks, the minor roads in a grid sub-network may not 
be connected among themselves. For example, Figure 
3(A) shows a natural grid sub-network that has three 
unconnected parts (only connected via major roads). It is 
obvious that traveling to or from any node in one part 
will not need to pass the minor roads in any other part 
unless the source or the destination is in that part. Hence, 
three smaller grids may be formed (see B, C and D in 
Figure 3). This separation further reduces the search. 
Notice that each smaller grid sub-network contains the 
major roads around it. This is to facilitate the linking up 
operation when we need to link a grid sub-network to 
MRN. Notice also that a grid may not need major roads 
to surround it (see C and D of Figure 3). 

The above grid formation could be done automatically. It 
appears that quite amount of processing is needed. This is 
not a problem. It is important to recognize that this only 
needs to be done once. Once constructed, it is used again 
and again to find the shortest route for any problem. 

5. Representing the Road Network 
From the last two sections, two key concepts have emerged, 
namely, MRN, and grid sub-networks. They together 
represent a complete network. Here, we presents three 
alternative methods for representing and storing a road 
network. Their respective problem solving methods are 
presented in the next section. 
Method 1. In this first method, the whole network is 

represented as many pieces, a major road network and 
many grid sub-networks. The required grid sub-networks 
are linked to the major road network when needed in 
route finding. The actual implementation can be in 
various forms. The important thing is that each grid sub­
network should be indexed so that it can be retrieved in 
constant time when needed. This method does not save 
space because everything is still in the system. 

Method 2. Like method 1, the whole network is also 
represented as many pieces. However, only MRN is 
permanently in the system memory, while all the grid 
sub-networks are stored in a hard disk or a CD ROM. 
Each of them could be in an indexed file such that it can 
be loaded quickly. When a query requires a node (either 
the source or the destination) in a grid sub-network, that 
sub-network will be read in. This method requires very 
little system memory because normally a large majority of 
roads are minor roads. 

Method 3. This method represents the whole network as 
one piece just like that for Dijkstra algorithm. However, 
each node in a gird is marked with its grid number. A 
node that is on a minor and also a major road is 
considered as a major road node. All the major road 
nodes are marked with 0. Like method 1. this method 
does not save space as everything is in the memory. 

6. Problem Solving Algorithms 
This section presents the problem solving algorithms for 
the above three network representations respectively. 
Method 1. The algorithm for this method is given below. 

Step 1. If the source is a node on MRN then 
go to Step 2 

else (1). retrieve the grid for the source 
(2). link the gird sub-network to MRN 

Step 2. If the destination is a node on MRN then 
go to Step 3 

else If the destination is in the same gird as the 
source then 

go to Step 3 
else (1). retrieve the grid sub-network 

for the destination 
(2). link the sub-network to MRN. 

Step 3. Run the shortest path algorithm (e.g., A* or 
Dijkstra algorithm) with the augmented MRN. 

Step 4. Remove the sub-networks added into MRN. 

LIU 121 



Let us analyze the complexity of this algorithm. (1) in 
Step 1 and 2 can both be done in constant time as each 
node can be associated with its grid sub-network. Linking 
each grid sub-network to MRN in (2) of Step 1 or Step 2 
is only linear to the number of major network nodes that 
surround the grid. The computation required is very small 
and negligible. Implementation details of this link-up 
operation can be found in [Liu and Tay, 1995]. Step 4 is 
also negligible. So, the main computation comes from the 
shortest path algorithm (e.g., A*). Because the number of 
nodes and arcs have been substantially reduced, it will run 
much faster than with the complete network. 

Method 2. The algorithm for this method is almost the 
same as that for method 1 above. The main difference is 
that in Step 1(1) and Step 2(1), the appropriate sub­
networks are loaded in from a hard disk or a CD ROM. 
The link-up operation is also done differently from 
method 1 because the sub-networks need to be formed 
first before they are linked to MRN. 

Method 3. This method is simple. A* (or Dijkstra 
algorithm) can be modified so that before visiting a node 
it checks to see whether the node is in the source grid, or 
the destination grid, or on a major road. If it is, it will be 
considered. Otherwise, it will be dropped. It is clear, the 
complexity of this method is the same as A* (or Dijkstra 
algorithm). 
This method has an interesting property. Note that using 
grid sub-networks and MRN in method 1 and method 2 
creates a problem where some shortcuts by using minor 
roads could not be considered such that the solution found 
may not be the shortest. For example (see Figure 4), we 
are traveling from 1 to D, assuming D is in a grid sub­
network and 1 is an intermediate node on MRN (the 
source is far away). Using method 1 and 2, only minor 
roads in the grid sub-network where D is located will be 
considered. The minor road 2-5 will not be in. In this 
case, the path will be 1-2-3-4-5-D. Obviously, this is not 
the shortest path if 2-5 is included. The path 1-2-5-D is 
definitely shorter in terms of distance (assuming it is also 
true of traveling time). 2-5 is a shortcut. 

Figure 4. An example shortcut problem situation 
Method 3 is able to handle this type of simple shortcuts. 
In the above example, when the system searches the nodes 
from 2, the road segment 2-5 will be considered because 
node 5 is on a major road. This method, however, cannot 
consider shortcuts that have more than one segment 
between two nodes on major roads, e.g., 2-6-5. 
Although this method is only able to handle one-segment 
shortcuts, surprisingly the results listed in the next section 
show it can produce solutions that are very close to 
optimal ones using the Singapore road network. 
All the above discussion follows the ideal situation in 

Section 4, which is for long distance travels. So how about 

short .and medium distance travels? Indeed, it is easy to see 
that they can also use the proposed techniques. 

7. Evaluations 
The aim of this project is to build a road guidance system 
for cars and other types of vehicles in Singapore. A 
prototype, called KB-RFinder, has been implemented. It is 
based on method 1 above with A* as its search algorithm. It 
uses the whole Singapore road network, which has over 
12600 nodes and 30700 road segments. Out of this, about 
1100 nodes are major road junctions forming MRN. The 
number of grids formed is 958. 

The system is implemented in C on a 486 PC. Due to the 
space limitation, we are not able to describe the system in 
detail. Interested reader, please refer to [Liu and Tay, 
1995]. Here, we concentrate on the evaluation of the 
proposed techniques. 

We have implemented all the three methods. The second 
method was implemented by storing the grid sub-networks 
in the hard disk of our PC. So far, numerous tests have also 
been performed, using short, medium and long distance 
travels. The results from method 1, 2 and 3 are compared 
with those obtained by using the full network, i.e., without 
any grid (we call this method method 0). Both Dijkstra 
algorithm and A* are employed as the search algorithms 
for comparison. 

Two sets of results are given below. One set uses travel 
distance as the cost function, and the other uses travel time 
as the cost function. Each algorithm solves 100 problems 
for every distance category using the same randomly 
generated sources and destinations. The running time (in 
second) is the sum of times in solving the 100 problems. 
Travel distance (in meter) and travel time (in minute) are 
the sum of distances and the sum of times of the 100 

122 ACTION AND PERCEPTION 



improves the performance by 3-4 times. As expected, 
method 1 outperforms method 3 significantly as method 3 
needs to test each node along the search. 

Regarding the travel distance, method 1 and 2 produce 
routes around 9% longer than the optimal routes. Although 
method 3 is only able to handle simple shortcuts, it 
produces routes that are very close to the optimal solutions. 

When using (ravel time as the cost function (see the table 
below), the running time comparison of various methods 
still apply. For the travel time, method 1 and 2 also produce 
routes that take around 9% more lime than the optimal 
routes. Again, method 3 produces routes that are very close 
to the optimal solutions. 

For all our tests, we did not consider the waiting time, 
starting and slowing down time at traffic lights. When these 
are considered, we believe all the methods will be able to 
produce results that are much closer to the optimal 
solutions because the new methods travel mostly on major 
roads and expressways, which have less or no traffic lights. 

The running time performance of the second method 
cannot be compared with the other two in both cases since 
disk accesses are involved in loading in sub-networks. 
However, it is more efficient than method 0 for medium 
and long distance travels. It can also be noted that the 
running times for different distance categories are not that 
different. This is because the disk access dominates the 
computation in this method. It is also seen that running 
time for long distance travels is slightly shorter than for 
short distance travels. This is because for short distance 
travels many grids could be in the city centre areas, where a 
grid tends to have more minor roads in it than the outskirts 
of the city. For long distance travels, the grids are mainly in 
the outskirts of the city. 

Let us now discuss in what situations each of these three 
methods should be applied. 
• The first method and the third method can be used in 

situations where the whole network can be loaded into 
the system. Method 3 is much easier to implement and 

also produces routes that are very close to optimal 
solutions (although it is not as efficient as method 1). It 
may be used in the situations where its performance is 
acceptable. The first method is more difficult to 
implement because of its complex network representation 
and linking up operations. However, it is much more 
efficient than method 3. Both these two methods do not 
save any memory space. 

• The second method should be used in situations where 
storing the whole network in the system is not possible. 
For a 486 PC with 4MB of RAM, the largest network 
that can be used is 13000 nodes and 50000 arcs without 
road names loaded in. If we have the road network of a 
state or a country and still use a small machine such as a 
PC or an even smaller specific system, a large part of the 
road network (or the whole network) has to be stored in a 
hard disk or a CD ROM. In these cases, our approach of 
partitioning, reorganizing and storing the road network 
as many pieces becomes valuable as it allows minimal 
data to be retrieved for route finding. 

8. Related Work 
Shortest path problem has been studied extensively in 
Network Theory over the past three decades. Many efficient 
algorithms have been produced [e.g., Dial et a/., 1979; 
Gallo, and Pallotuno, 1986; Pearl, 1988]. However, limited 
research has been done in adapting these algorithms for 
route finding purposes. In AI, a number of studies have also 
been made. Their emphasis has been on using topographic 
and geographic knowledge and reasoning to solve the 
problem [Kuipers, 1978; Levitt, and Lawton, 1990; 
McDermott and Davis, 1984; Goel et al, 1991]. The major 
concerns in AI are spatial knowledge representation and 
reasoning, rather than efficiency and optimization. 

[Shapiro et a/., 1992], which is the latest work we could 
find in network theory and its applications, propose a 
technique to use level structure of the road network to help 
searching for a path efficiently. Applying their technique to 
our problem, it will be like this. Assuming the source and 
the destination are both on some minor roads. The 
algorithm will first search for the nearest entry point u to 
and the departure point v from MRN from the source and 
the destination respectively. After that, it uses Dijkstra 
algorithm to search only the major roads to find a path 
linking u and v. This technique indeed minimizes the time 
traveling on minor roads and also greatly reduces the 
search. However, the problem is that the two nodes u and v 
connecting the source and the destination to MRN could be 
on the wrong major roads. Then, the path found would be 
quite far from the shortest path. This technique is 
particularly not good for short and medium distance travels. 

Our approach solves this problem by using grid sub­
networks. This means there will be no problem of landing 
on the wrong major roads because all the major roads 
surrounding the source or the destination are considered. 

Our approach also offers a way to partition the whole 
network into small sub-networks that can be stored 
separately. This will be important for large networks. 

The work reported in this paper is a continuation of our 
earlier R-Finder system [Liu et a/., 1994], which uses 

LIU 123 



Dijkstra algorithm, knowledge-based technique and case-
based reasoning for route finding. KB-RFinder has made 
many improvements over R-Finder. The most important 
improvement is on the grid formation. In R-Finder grids 
are assigned at run time for each problem, rather than 
formed statically for each node as in KB-RFinder. 

Each grid used in R-Finder is a rectangle that encloses a 
small area of the network. Figure 2 actually shows such an 
example. The sizes of the grids around the source and the 
destination are decided according to the density of the road 
network at their respective locations. For a dense part of the 
road network, the grid is smaller and for a sparse part of the 
network, the grid is bigger. The major grid (see also Figure 
2) is determined according to the major roads between the 
source and the destination. This approach has a number of 
problems: 
• The network knowledge used only provides qualitative 

information. There is no quantitative guideline. It is still 
difficult to decide precisely how big a grid should be and 
where the grid should be. 

• It can also be seen that this approach requires a great 
deal of network and geographical knowledge. Then, 
knowledge representation presents a difficult problem. 

• The system built with this method may be useful only in 
a particular place due to the heavy use of local network 
knowledge. It is useless in another place as the road 
network of the place will be completely different. 

It is these difficult issues that have prompted us to seek a 
better solution. In KB-RFinder, all the above problems with 
the dynamically assignment of grids are eliminated. 
• Firstly, in static formation of grid sub-networks, there is 

no such problem of deciding the shape and the size of 
each grid. A gird is simply a sub-network. 

• Secondly, there is no need to acquire a large amount of 
network knowledge and to have a complicated 
knowledge representation. Although static formation of 
grids also requires various types of knowledge, as we can 
see they are very simple. 

• Thirdly, this technique can be easily applied to build 
systems in other places since the types of knowledge used 
are generic to most modern road networks. 

The performance of KB-RFinder is also much better than 
R-Finder. R-Finder typically uses half of the time taken by 
a pure Dijkstra algorithm without any grids, while KB-
RFinder uses only around one eigtoh of the time. 

9. Conclusion 
This paper presented a novel and yet simple approach and 
three specific methods for practical route finding. They 
exploits two key kinds of knowledge about a road network, 
namely, road types and the fact that major roads naturally 
partition the whole network into many small sub-networks. 
These kinds of knowledge help to reduce the computation 
time and space required for route finding considerably. 
They also guarantees human oriented solutions. 

The proposed approach and its specific methods are 
general as the types of knowledge they use are very simple 
and generic to different road networks. They can be readily 
applied to build route finding systems in other places. 

Acknowledgments: I would like to thank Land System 
Support Unit, Ministry of Law, Republic of Singapore for 
providing Singapore road network data. Without it, this 
project would be impossible. I would also like to thank 
Jimmy Tay, Hui-Peng Goh, Mary Heng, and Sook-Ming 
Hong for implementing various parts of the system. 

References 
[Deo and Pang, 1984] N. Deo and C. Pang. Shortest path 

algorithms: taxonomy and annotation. Networks, 14:257-
323,1984. 

[Dial et al, 1979] R. Dial, F. Glover, D. Karney, and D. 
Klingman. A computational analysis of alternative 
algorithms and labeling techniques for finding shortest 
path trees. Netoorks, 9:215-25, 1979. 

[Gazllo, and Pallottino, 1986] G. Gallo, and S. Pallottino. 
Shortest path methods: a unified approach. 
Mathematical Programming Study, 26:38-64, 1986. 

[Goel et al., 1991] A.K. Goel, T.J. Callantine, M. Shankar 
and B. Chandrasekaran. Representation, organization, 
and use of topographic models of physical spaces for 
route planning. In Proceedings of the 7th Conference on 
Artificial Intelligence for Applications (CAIA-91), pages 
308-314, 1991. 

[Hayes-Roth et al, 1983] F. Hayes-Roth, D.A. Waterman, 
and D.B. Lenat (eds), Building Expert Systems, Addison-
Wesley, 1983. 

[Helgason et al, 1993] R.V. Helgason, J. L Kennington 
and B. D Stewart. The one-to-one shortest-path 
problems: an empirical analysis with the two-tree 
Dijkstra algorithm. Computational Optimization and 
Applications, 1:45-75,1993. 

[King and Mast, 1987] G. F King and T. M Mast. Excess 
travel: causes, extent, and consequences. Transportation 
Research Record, 1111:126-134, 1987. 

[Kuipers, 1978] B. Kuipers, Modeling spatial knowledge. 
Cognitive Science, 2(2): 129-154,1978. 

[Levitt, and Lawton, 1990] T Levitt, and D. Lawton. 
Qualitative navigation for mobile robots. Artificial 
Intelligence 44(3):305-360,1990, 

[Liu et al, 1994] Bing Liu, et al. Finding the shortest route 
using cases, knowledge, and Dijkstra's algorithm. IEEE 
Expert,9(5):7-11,1994. 

[Liu and Tay, 1995] Bing Liu and Jimmy Tay. Integrating 
knowledge-based and algorithmic approaches for route 
finding. Forthcoming Report, 1995. 

[McDermott and Davis, 1984] D. McDermott and E. Davis. 
Planning routes through uncertain territory. Artificial 
lntelligence,22:107-156,l984 

[Pearl, 1988] J. Pearl. Heuristics. Addison-Wesley, 
Reading, MA, 1988. 

[Pohl, 1971] I. Pohl. Bi-directional search. Machine 
Intelligence, B Meltzer and D. Michie (eds), 6:127-140, 
1971. 

[Sedgewick, 1988] R. Sedgewick. Algorithms, Addison-
Wesley, 1988. 

[Shapiro et al., 1992] J. Shapiro, J. Waxman, and D. Nir. 
Level graphs and approximate shortest path algorithm. 
Networks, 22: 691-717,1992. 

[Winston, 1992] P.H. Winston. Artificial Intelligence, 
Third Edition. Addison-Wesley, 1992. 

124 ACTION AND PERCEPTION 


